more x86_64 work. started to put the mmu bits together in the (former) stage2 loader.
[newos.git] / boot / pc / x86_64 / inflate.c
blobe627ffe4ef797843cde1cdf9b89f19f67d9066f6
1 /* inflate.c -- Not copyrighted 1992 by Mark Adler
2 version c10p1, 10 January 1993 */
4 /* You can do whatever you like with this source file, though I would
5 prefer that if you modify it and redistribute it that you include
6 comments to that effect with your name and the date. Thank you.
7 [The history has been moved to the file ChangeLog.]
8 */
11 Inflate deflated (PKZIP's method 8 compressed) data. The compression
12 method searches for as much of the current string of bytes (up to a
13 length of 258) in the previous 32K bytes. If it doesn't find any
14 matches (of at least length 3), it codes the next byte. Otherwise, it
15 codes the length of the matched string and its distance backwards from
16 the current position. There is a single Huffman code that codes both
17 single bytes (called "literals") and match lengths. A second Huffman
18 code codes the distance information, which follows a length code. Each
19 length or distance code actually represents a base value and a number
20 of "extra" (sometimes zero) bits to get to add to the base value. At
21 the end of each deflated block is a special end-of-block (EOB) literal/
22 length code. The decoding process is basically: get a literal/length
23 code; if EOB then done; if a literal, emit the decoded byte; if a
24 length then get the distance and emit the referred-to bytes from the
25 sliding window of previously emitted data.
27 There are (currently) three kinds of inflate blocks: stored, fixed, and
28 dynamic. The compressor deals with some chunk of data at a time, and
29 decides which method to use on a chunk-by-chunk basis. A chunk might
30 typically be 32K or 64K. If the chunk is uncompressible, then the
31 "stored" method is used. In this case, the bytes are simply stored as
32 is, eight bits per byte, with none of the above coding. The bytes are
33 preceded by a count, since there is no longer an EOB code.
35 If the data is compressible, then either the fixed or dynamic methods
36 are used. In the dynamic method, the compressed data is preceded by
37 an encoding of the literal/length and distance Huffman codes that are
38 to be used to decode this block. The representation is itself Huffman
39 coded, and so is preceded by a description of that code. These code
40 descriptions take up a little space, and so for small blocks, there is
41 a predefined set of codes, called the fixed codes. The fixed method is
42 used if the block codes up smaller that way (usually for quite small
43 chunks), otherwise the dynamic method is used. In the latter case, the
44 codes are customized to the probabilities in the current block, and so
45 can code it much better than the pre-determined fixed codes.
47 The Huffman codes themselves are decoded using a mutli-level table
48 lookup, in order to maximize the speed of decoding plus the speed of
49 building the decoding tables. See the comments below that precede the
50 lbits and dbits tuning parameters.
55 Notes beyond the 1.93a appnote.txt:
57 1. Distance pointers never point before the beginning of the output
58 stream.
59 2. Distance pointers can point back across blocks, up to 32k away.
60 3. There is an implied maximum of 7 bits for the bit length table and
61 15 bits for the actual data.
62 4. If only one code exists, then it is encoded using one bit. (Zero
63 would be more efficient, but perhaps a little confusing.) If two
64 codes exist, they are coded using one bit each (0 and 1).
65 5. There is no way of sending zero distance codes--a dummy must be
66 sent if there are none. (History: a pre 2.0 version of PKZIP would
67 store blocks with no distance codes, but this was discovered to be
68 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
69 zero distance codes, which is sent as one code of zero bits in
70 length.
71 6. There are up to 286 literal/length codes. Code 256 represents the
72 end-of-block. Note however that the static length tree defines
73 288 codes just to fill out the Huffman codes. Codes 286 and 287
74 cannot be used though, since there is no length base or extra bits
75 defined for them. Similarly, there are up to 30 distance codes.
76 However, static trees define 32 codes (all 5 bits) to fill out the
77 Huffman codes, but the last two had better not show up in the data.
78 7. Unzip can check dynamic Huffman blocks for complete code sets.
79 The exception is that a single code would not be complete (see #4).
80 8. The five bits following the block type is really the number of
81 literal codes sent minus 257.
82 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
83 (1+6+6). Therefore, to output three times the length, you output
84 three codes (1+1+1), whereas to output four times the same length,
85 you only need two codes (1+3). Hmm.
86 10. In the tree reconstruction algorithm, Code = Code + Increment
87 only if BitLength(i) is not zero. (Pretty obvious.)
88 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
89 12. Note: length code 284 can represent 227-258, but length code 285
90 really is 258. The last length deserves its own, short code
91 since it gets used a lot in very redundant files. The length
92 258 is special since 258 - 3 (the min match length) is 255.
93 13. The literal/length and distance code bit lengths are read as a
94 single stream of lengths. It is possible (and advantageous) for
95 a repeat code (16, 17, or 18) to go across the boundary between
96 the two sets of lengths.
99 #ifdef RCSID
100 static char rcsid[] = "$Id$";
101 #endif
103 #include <string.h>
104 #include <stdio.h>
105 #include <stdarg.h>
106 #include "inflate.h"
108 typedef unsigned char uch;
109 typedef unsigned short ush;
110 typedef unsigned int ulg;
112 #define memzero(a, b) memset(a, 0, b)
114 /* 32k sliding window */
115 #define WSIZE 0x8000
116 static unsigned char *window = 0;
117 static unsigned int inptr = 0; /* index of next byte to be processed in inbuf */
118 static unsigned int outcnt = 0; /* bytes in output buffer */
119 static const unsigned char *inbuf = 0;
120 static unsigned char *outbuf = 0;
122 #define get_byte() (inbuf[inptr++])
124 static void flush_window()
126 if (!outcnt) return;
127 memcpy(outbuf, window, outcnt);
128 outbuf += outcnt;
129 outcnt = 0;
132 #define OF(a) a
133 #define Tracecv(a,b)
134 #define Tracevv(a)
135 #define printf dprintf
136 #define fprintf(a,b) printf(b)
138 #if defined(STDC_HEADERS) || !defined(NO_STDLIB_H)
139 # include <stdlib.h>
140 #endif
142 /*#include "gzip.h"*/
143 #define slide window
145 /* Huffman code lookup table entry--this entry is four bytes for machines
146 that have 16-bit pointers (e.g. PC's in the small or medium model).
147 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
148 means that v is a literal, 16 < e < 32 means that v is a pointer to
149 the next table, which codes e - 16 bits, and lastly e == 99 indicates
150 an unused code. If a code with e == 99 is looked up, this implies an
151 error in the data. */
152 struct huft {
153 uch e; /* number of extra bits or operation */
154 uch b; /* number of bits in this code or subcode */
155 union {
156 ush n; /* literal, length base, or distance base */
157 struct huft *t; /* pointer to next level of table */
158 } v;
162 /* Function prototypes */
163 int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *,
164 struct huft **, int *));
165 int huft_free OF((struct huft *));
167 static int inflate_codes OF((struct huft *, struct huft *, int, int));
168 static int inflate_stored OF((void));
169 static int inflate_fixed OF((void));
170 static int inflate_dynamic OF((void));
171 static int inflate_block OF((int *));
172 static int inflate OF((void));
175 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
176 stream to find repeated byte strings. This is implemented here as a
177 circular buffer. The index is updated simply by incrementing and then
178 and'ing with 0x7fff (32K-1). */
179 /* It is left to other modules to supply the 32K area. It is assumed
180 to be usable as if it were declared "uch slide[32768];" or as just
181 "uch *slide;" and then malloc'ed in the latter case. The definition
182 must be in unzip.h, included above. */
183 /* unsigned wp; current position in slide */
184 #define wp outcnt
185 #define flush_output(w) (wp=(w),flush_window())
187 /* Tables for deflate from PKZIP's appnote.txt. */
188 static unsigned border[] = { /* Order of the bit length code lengths */
189 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
190 static ush cplens[] = { /* Copy lengths for literal codes 257..285 */
191 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
192 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
193 /* note: see note #13 above about the 258 in this list. */
194 static ush cplext[] = { /* Extra bits for literal codes 257..285 */
195 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
196 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
197 static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
198 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
199 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
200 8193, 12289, 16385, 24577};
201 static ush cpdext[] = { /* Extra bits for distance codes */
202 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
203 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
204 12, 12, 13, 13};
208 /* Macros for inflate() bit peeking and grabbing.
209 The usage is:
211 NEEDBITS(j)
212 x = b & mask_bits[j];
213 DUMPBITS(j)
215 where NEEDBITS makes sure that b has at least j bits in it, and
216 DUMPBITS removes the bits from b. The macros use the variable k
217 for the number of bits in b. Normally, b and k are register
218 variables for speed, and are initialized at the beginning of a
219 routine that uses these macros from a global bit buffer and count.
221 If we assume that EOB will be the longest code, then we will never
222 ask for bits with NEEDBITS that are beyond the end of the stream.
223 So, NEEDBITS should not read any more bytes than are needed to
224 meet the request. Then no bytes need to be "returned" to the buffer
225 at the end of the last block.
227 However, this assumption is not true for fixed blocks--the EOB code
228 is 7 bits, but the other literal/length codes can be 8 or 9 bits.
229 (The EOB code is shorter than other codes because fixed blocks are
230 generally short. So, while a block always has an EOB, many other
231 literal/length codes have a significantly lower probability of
232 showing up at all.) However, by making the first table have a
233 lookup of seven bits, the EOB code will be found in that first
234 lookup, and so will not require that too many bits be pulled from
235 the stream.
238 ulg bb = 0; /* bit buffer */
239 unsigned bk = 0; /* bits in bit buffer */
241 ush mask_bits[] = {
242 0x0000,
243 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
244 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
247 #ifdef CRYPT
248 uch cc;
249 # define NEXTBYTE() \
250 (decrypt ? (cc = get_byte(), zdecode(cc), cc) : get_byte())
251 #else
252 # define NEXTBYTE() (uch)get_byte()
253 #endif
254 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
255 #define DUMPBITS(n) {b>>=(n);k-=(n);}
259 Huffman code decoding is performed using a multi-level table lookup.
260 The fastest way to decode is to simply build a lookup table whose
261 size is determined by the longest code. However, the time it takes
262 to build this table can also be a factor if the data being decoded
263 is not very long. The most common codes are necessarily the
264 shortest codes, so those codes dominate the decoding time, and hence
265 the speed. The idea is you can have a shorter table that decodes the
266 shorter, more probable codes, and then point to subsidiary tables for
267 the longer codes. The time it costs to decode the longer codes is
268 then traded against the time it takes to make longer tables.
270 This results of this trade are in the variables lbits and dbits
271 below. lbits is the number of bits the first level table for literal/
272 length codes can decode in one step, and dbits is the same thing for
273 the distance codes. Subsequent tables are also less than or equal to
274 those sizes. These values may be adjusted either when all of the
275 codes are shorter than that, in which case the longest code length in
276 bits is used, or when the shortest code is *longer* than the requested
277 table size, in which case the length of the shortest code in bits is
278 used.
280 There are two different values for the two tables, since they code a
281 different number of possibilities each. The literal/length table
282 codes 286 possible values, or in a flat code, a little over eight
283 bits. The distance table codes 30 possible values, or a little less
284 than five bits, flat. The optimum values for speed end up being
285 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
286 The optimum values may differ though from machine to machine, and
287 possibly even between compilers. Your mileage may vary.
291 int lbits = 9; /* bits in base literal/length lookup table */
292 int dbits = 6; /* bits in base distance lookup table */
295 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
296 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
297 #define N_MAX 288 /* maximum number of codes in any set */
300 unsigned hufts = 0; /* track memory usage */
303 int huft_build(b, n, s, d, e, t, m)
304 unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
305 unsigned n; /* number of codes (assumed <= N_MAX) */
306 unsigned s; /* number of simple-valued codes (0..s-1) */
307 ush *d; /* list of base values for non-simple codes */
308 ush *e; /* list of extra bits for non-simple codes */
309 struct huft **t; /* result: starting table */
310 int *m; /* maximum lookup bits, returns actual */
311 /* Given a list of code lengths and a maximum table size, make a set of
312 tables to decode that set of codes. Return zero on success, one if
313 the given code set is incomplete (the tables are still built in this
314 case), two if the input is invalid (all zero length codes or an
315 oversubscribed set of lengths), and three if not enough memory. */
317 unsigned a; /* counter for codes of length k */
318 unsigned c[BMAX+1]; /* bit length count table */
319 unsigned f; /* i repeats in table every f entries */
320 int g; /* maximum code length */
321 int h; /* table level */
322 register unsigned i; /* counter, current code */
323 register unsigned j; /* counter */
324 register int k; /* number of bits in current code */
325 int l; /* bits per table (returned in m) */
326 register unsigned *p; /* pointer into c[], b[], or v[] */
327 register struct huft *q; /* points to current table */
328 struct huft r; /* table entry for structure assignment */
329 struct huft *u[BMAX]; /* table stack */
330 unsigned v[N_MAX]; /* values in order of bit length */
331 register int w; /* bits before this table == (l * h) */
332 unsigned x[BMAX+1]; /* bit offsets, then code stack */
333 unsigned *xp; /* pointer into x */
334 int y; /* number of dummy codes added */
335 unsigned z; /* number of entries in current table */
338 /* Generate counts for each bit length */
339 memzero(c, sizeof(c));
340 p = b; i = n;
341 do {
342 Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
343 n-i, *p));
344 c[*p]++; /* assume all entries <= BMAX */
345 p++; /* Can't combine with above line (Solaris bug) */
346 } while (--i);
347 if (c[0] == n) /* null input--all zero length codes */
349 *t = (struct huft *)NULL;
350 *m = 0;
351 return 0;
355 /* Find minimum and maximum length, bound *m by those */
356 l = *m;
357 for (j = 1; j <= BMAX; j++)
358 if (c[j])
359 break;
360 k = j; /* minimum code length */
361 if ((unsigned)l < j)
362 l = j;
363 for (i = BMAX; i; i--)
364 if (c[i])
365 break;
366 g = i; /* maximum code length */
367 if ((unsigned)l > i)
368 l = i;
369 *m = l;
372 /* Adjust last length count to fill out codes, if needed */
373 for (y = 1 << j; j < i; j++, y <<= 1)
374 if ((y -= c[j]) < 0)
375 return 2; /* bad input: more codes than bits */
376 if ((y -= c[i]) < 0)
377 return 2;
378 c[i] += y;
381 /* Generate starting offsets into the value table for each length */
382 x[1] = j = 0;
383 p = c + 1; xp = x + 2;
384 while (--i) { /* note that i == g from above */
385 *xp++ = (j += *p++);
389 /* Make a table of values in order of bit lengths */
390 p = b; i = 0;
391 do {
392 if ((j = *p++) != 0)
393 v[x[j]++] = i;
394 } while (++i < n);
397 /* Generate the Huffman codes and for each, make the table entries */
398 x[0] = i = 0; /* first Huffman code is zero */
399 p = v; /* grab values in bit order */
400 h = -1; /* no tables yet--level -1 */
401 w = -l; /* bits decoded == (l * h) */
402 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
403 q = (struct huft *)NULL; /* ditto */
404 z = 0; /* ditto */
406 /* go through the bit lengths (k already is bits in shortest code) */
407 for (; k <= g; k++)
409 a = c[k];
410 while (a--)
412 /* here i is the Huffman code of length k bits for value *p */
413 /* make tables up to required level */
414 while (k > w + l)
416 h++;
417 w += l; /* previous table always l bits */
419 /* compute minimum size table less than or equal to l bits */
420 z = (z = g - w) > (unsigned)l ? (unsigned)l : z; /* upper limit on table size */
421 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
422 { /* too few codes for k-w bit table */
423 f -= a + 1; /* deduct codes from patterns left */
424 xp = c + k;
425 while (++j < z) /* try smaller tables up to z bits */
427 if ((f <<= 1) <= *++xp)
428 break; /* enough codes to use up j bits */
429 f -= *xp; /* else deduct codes from patterns */
432 z = 1 << j; /* table entries for j-bit table */
434 /* allocate and link in new table */
435 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
436 (struct huft *)NULL)
438 if (h)
439 huft_free(u[0]);
440 return 3; /* not enough memory */
442 hufts += z + 1; /* track memory usage */
443 *t = q + 1; /* link to list for huft_free() */
444 *(t = &(q->v.t)) = (struct huft *)NULL;
445 u[h] = ++q; /* table starts after link */
447 /* connect to last table, if there is one */
448 if (h)
450 x[h] = i; /* save pattern for backing up */
451 r.b = (uch)l; /* bits to dump before this table */
452 r.e = (uch)(16 + j); /* bits in this table */
453 r.v.t = q; /* pointer to this table */
454 j = i >> (w - l); /* (get around Turbo C bug) */
455 u[h-1][j] = r; /* connect to last table */
459 /* set up table entry in r */
460 r.b = (uch)(k - w);
461 if (p >= v + n)
462 r.e = 99; /* out of values--invalid code */
463 else if (*p < s)
465 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
466 r.v.n = (ush)(*p); /* simple code is just the value */
467 p++; /* one compiler does not like *p++ */
469 else
471 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
472 r.v.n = d[*p++ - s];
475 /* fill code-like entries with r */
476 f = 1 << (k - w);
477 for (j = i >> w; j < z; j += f)
478 q[j] = r;
480 /* backwards increment the k-bit code i */
481 for (j = 1 << (k - 1); i & j; j >>= 1)
482 i ^= j;
483 i ^= j;
485 /* backup over finished tables */
486 while ((i & ((1 << w) - 1)) != x[h])
488 h--; /* don't need to update q */
489 w -= l;
495 /* Return true (1) if we were given an incomplete table */
496 return y != 0 && g != 1;
501 int huft_free(t)
502 struct huft *t; /* table to free */
503 /* Free the malloc'ed tables built by huft_build(), which makes a linked
504 list of the tables it made, with the links in a dummy first entry of
505 each table. */
507 register struct huft *p, *q;
510 /* Go through linked list, freeing from the malloced (t[-1]) address. */
511 p = t;
512 while (p != (struct huft *)NULL)
514 q = (--p)->v.t;
515 free((char*)p);
516 p = q;
518 return 0;
522 static int inflate_codes(tl, td, bl, bd)
523 struct huft *tl, *td; /* literal/length and distance decoder tables */
524 int bl, bd; /* number of bits decoded by tl[] and td[] */
525 /* inflate (decompress) the codes in a deflated (compressed) block.
526 Return an error code or zero if it all goes ok. */
528 register unsigned e; /* table entry flag/number of extra bits */
529 unsigned n, d; /* length and index for copy */
530 unsigned w; /* current window position */
531 struct huft *t; /* pointer to table entry */
532 unsigned ml, md; /* masks for bl and bd bits */
533 register ulg b; /* bit buffer */
534 register unsigned k; /* number of bits in bit buffer */
537 /* make local copies of globals */
538 b = bb; /* initialize bit buffer */
539 k = bk;
540 w = wp; /* initialize window position */
542 /* inflate the coded data */
543 ml = mask_bits[bl]; /* precompute masks for speed */
544 md = mask_bits[bd];
545 for (;;) /* do until end of block */
547 NEEDBITS((unsigned)bl)
548 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
549 do {
550 if (e == 99)
551 return 1;
552 DUMPBITS(t->b)
553 e -= 16;
554 NEEDBITS(e)
555 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
556 DUMPBITS(t->b)
557 if (e == 16) /* then it's a literal */
559 slide[w++] = (uch)t->v.n;
560 Tracevv((stderr, "%c", slide[w-1]));
561 if (w == WSIZE)
563 flush_output(w);
564 w = 0;
567 else /* it's an EOB or a length */
569 /* exit if end of block */
570 if (e == 15)
571 break;
573 /* get length of block to copy */
574 NEEDBITS(e)
575 n = t->v.n + ((unsigned)b & mask_bits[e]);
576 DUMPBITS(e);
578 /* decode distance of block to copy */
579 NEEDBITS((unsigned)bd)
580 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
581 do {
582 if (e == 99)
583 return 1;
584 DUMPBITS(t->b)
585 e -= 16;
586 NEEDBITS(e)
587 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
588 DUMPBITS(t->b)
589 NEEDBITS(e)
590 d = w - t->v.n - ((unsigned)b & mask_bits[e]);
591 DUMPBITS(e)
592 Tracevv((stderr,"\\[%d,%d]", w-d, n));
594 /* do the copy */
595 do {
596 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
597 #if !defined(NOMEMCPY) && !defined(DEBUG)
598 if (w - d >= e) /* (this test assumes unsigned comparison) */
600 memcpy(slide + w, slide + d, e);
601 w += e;
602 d += e;
604 else /* do it slow to avoid memcpy() overlap */
605 #endif /* !NOMEMCPY */
606 do {
607 slide[w++] = slide[d++];
608 Tracevv((stderr, "%c", slide[w-1]));
609 } while (--e);
610 if (w == WSIZE)
612 flush_output(w);
613 w = 0;
615 } while (n);
620 /* restore the globals from the locals */
621 wp = w; /* restore global window pointer */
622 bb = b; /* restore global bit buffer */
623 bk = k;
625 /* done */
626 return 0;
631 static int inflate_stored()
632 /* "decompress" an inflated type 0 (stored) block. */
634 unsigned n; /* number of bytes in block */
635 unsigned w; /* current window position */
636 register ulg b; /* bit buffer */
637 register unsigned k; /* number of bits in bit buffer */
640 /* make local copies of globals */
641 b = bb; /* initialize bit buffer */
642 k = bk;
643 w = wp; /* initialize window position */
646 /* go to byte boundary */
647 n = k & 7;
648 DUMPBITS(n);
651 /* get the length and its complement */
652 NEEDBITS(16)
653 n = ((unsigned)b & 0xffff);
654 DUMPBITS(16)
655 NEEDBITS(16)
656 if (n != (unsigned)((~b) & 0xffff))
657 return 1; /* error in compressed data */
658 DUMPBITS(16)
661 /* read and output the compressed data */
662 while (n--)
664 NEEDBITS(8)
665 slide[w++] = (uch)b;
666 if (w == WSIZE)
668 flush_output(w);
669 w = 0;
671 DUMPBITS(8)
675 /* restore the globals from the locals */
676 wp = w; /* restore global window pointer */
677 bb = b; /* restore global bit buffer */
678 bk = k;
679 return 0;
684 static int inflate_fixed()
685 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
686 either replace this with a custom decoder, or at least precompute the
687 Huffman tables. */
689 int i; /* temporary variable */
690 struct huft *tl; /* literal/length code table */
691 struct huft *td; /* distance code table */
692 int bl; /* lookup bits for tl */
693 int bd; /* lookup bits for td */
694 unsigned l[288]; /* length list for huft_build */
697 /* set up literal table */
698 for (i = 0; i < 144; i++)
699 l[i] = 8;
700 for (; i < 256; i++)
701 l[i] = 9;
702 for (; i < 280; i++)
703 l[i] = 7;
704 for (; i < 288; i++) /* make a complete, but wrong code set */
705 l[i] = 8;
706 bl = 7;
707 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
708 return i;
711 /* set up distance table */
712 for (i = 0; i < 30; i++) /* make an incomplete code set */
713 l[i] = 5;
714 bd = 5;
715 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
717 huft_free(tl);
718 return i;
722 /* decompress until an end-of-block code */
723 if (inflate_codes(tl, td, bl, bd))
724 return 1;
727 /* free the decoding tables, return */
728 huft_free(tl);
729 huft_free(td);
730 return 0;
735 static int inflate_dynamic()
736 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
738 int i; /* temporary variables */
739 unsigned j;
740 unsigned l; /* last length */
741 unsigned m; /* mask for bit lengths table */
742 unsigned n; /* number of lengths to get */
743 struct huft *tl; /* literal/length code table */
744 struct huft *td; /* distance code table */
745 int bl; /* lookup bits for tl */
746 int bd; /* lookup bits for td */
747 unsigned nb; /* number of bit length codes */
748 unsigned nl; /* number of literal/length codes */
749 unsigned nd; /* number of distance codes */
750 #ifdef PKZIP_BUG_WORKAROUND
751 unsigned ll[288+32]; /* literal/length and distance code lengths */
752 #else
753 unsigned ll[286+30]; /* literal/length and distance code lengths */
754 #endif
755 register ulg b; /* bit buffer */
756 register unsigned k; /* number of bits in bit buffer */
759 /* make local bit buffer */
760 b = bb;
761 k = bk;
764 /* read in table lengths */
765 NEEDBITS(5)
766 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
767 DUMPBITS(5)
768 NEEDBITS(5)
769 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
770 DUMPBITS(5)
771 NEEDBITS(4)
772 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
773 DUMPBITS(4)
774 #ifdef PKZIP_BUG_WORKAROUND
775 if (nl > 288 || nd > 32)
776 #else
777 if (nl > 286 || nd > 30)
778 #endif
779 return 1; /* bad lengths */
782 /* read in bit-length-code lengths */
783 for (j = 0; j < nb; j++)
785 NEEDBITS(3)
786 ll[border[j]] = (unsigned)b & 7;
787 DUMPBITS(3)
789 for (; j < 19; j++)
790 ll[border[j]] = 0;
793 /* build decoding table for trees--single level, 7 bit lookup */
794 bl = 7;
795 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
797 if (i == 1)
798 huft_free(tl);
799 return i; /* incomplete code set */
803 /* read in literal and distance code lengths */
804 n = nl + nd;
805 m = mask_bits[bl];
806 i = l = 0;
807 while ((unsigned)i < n)
809 NEEDBITS((unsigned)bl)
810 j = (td = tl + ((unsigned)b & m))->b;
811 DUMPBITS(j)
812 j = td->v.n;
813 if (j < 16) /* length of code in bits (0..15) */
814 ll[i++] = l = j; /* save last length in l */
815 else if (j == 16) /* repeat last length 3 to 6 times */
817 NEEDBITS(2)
818 j = 3 + ((unsigned)b & 3);
819 DUMPBITS(2)
820 if ((unsigned)i + j > n)
821 return 1;
822 while (j--)
823 ll[i++] = l;
825 else if (j == 17) /* 3 to 10 zero length codes */
827 NEEDBITS(3)
828 j = 3 + ((unsigned)b & 7);
829 DUMPBITS(3)
830 if ((unsigned)i + j > n)
831 return 1;
832 while (j--)
833 ll[i++] = 0;
834 l = 0;
836 else /* j == 18: 11 to 138 zero length codes */
838 NEEDBITS(7)
839 j = 11 + ((unsigned)b & 0x7f);
840 DUMPBITS(7)
841 if ((unsigned)i + j > n)
842 return 1;
843 while (j--)
844 ll[i++] = 0;
845 l = 0;
850 /* free decoding table for trees */
851 huft_free(tl);
854 /* restore the global bit buffer */
855 bb = b;
856 bk = k;
859 /* build the decoding tables for literal/length and distance codes */
860 bl = lbits;
861 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
863 if (i == 1) {
864 fprintf(stderr, " incomplete literal tree\n");
865 huft_free(tl);
867 return i; /* incomplete code set */
869 bd = dbits;
870 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
872 if (i == 1) {
873 fprintf(stderr, " incomplete distance tree\n");
874 #ifdef PKZIP_BUG_WORKAROUND
875 i = 0;
877 #else
878 huft_free(td);
880 huft_free(tl);
881 return i; /* incomplete code set */
882 #endif
886 /* decompress until an end-of-block code */
887 if (inflate_codes(tl, td, bl, bd))
888 return 1;
891 /* free the decoding tables, return */
892 huft_free(tl);
893 huft_free(td);
894 return 0;
899 static int inflate_block(e)
900 int *e; /* last block flag */
901 /* decompress an inflated block */
903 unsigned t; /* block type */
904 register ulg b; /* bit buffer */
905 register unsigned k; /* number of bits in bit buffer */
908 /* make local bit buffer */
909 b = bb;
910 k = bk;
913 /* read in last block bit */
914 NEEDBITS(1)
915 *e = (int)b & 1;
916 DUMPBITS(1)
919 /* read in block type */
920 NEEDBITS(2)
921 t = (unsigned)b & 3;
922 DUMPBITS(2)
925 /* restore the global bit buffer */
926 bb = b;
927 bk = k;
929 /* inflate that block type */
930 if (t == 2)
931 return inflate_dynamic();
932 if (t == 0)
933 return inflate_stored();
934 if (t == 1)
935 return inflate_fixed();
938 /* bad block type */
939 return 2;
944 static int inflate()
945 /* decompress an inflated entry */
947 int e; /* last block flag */
948 int r; /* result code */
949 unsigned h; /* maximum struct huft's malloc'ed */
952 /* initialize window, bit buffer */
953 wp = 0;
954 bk = 0;
955 bb = 0;
958 /* decompress until the last block */
959 h = 0;
960 do {
961 hufts = 0;
962 if ((r = inflate_block(&e)) != 0)
963 return r;
964 if (hufts > h)
965 h = hufts;
966 printf(".");
967 } while (!e);
969 /* Undo too much lookahead. The next read will be byte aligned so we
970 * can discard unused bits in the last meaningful byte.
972 while (bk >= 8) {
973 bk -= 8;
974 inptr--;
977 /* flush out slide */
978 flush_output(wp);
981 /* return success */
982 #ifdef xDEBUG
983 //fprintf("<%d> ", h);
984 #endif /* DEBUG */
985 return 0;
988 static ulg crc32tab[0x100] = { 0, };
990 static void inittab()
992 ulg i, j, c;
993 for (i=0;i<0x100;i++) {
994 c = i;
995 for (j=0;j<8;j++)
996 c = (c & 1) ? ((c >> 1) ^ 0xedb88320) : (c >> 1);
997 /* debb20e3 */
998 crc32tab[i] = c;
1002 static ulg crc32(uch *buff, int len)
1004 ulg c = 0xffffffff;
1006 inittab();
1008 while (len--)
1009 c = (c >> 8) ^ crc32tab[(c ^ *(buff++)) & 0xff];
1010 return c ^ 0xffffffff;
1013 ulg gunzip(const uch *in, uch *out, uch *inflate_buf)
1015 if (in[2] != 8) panic("Unsupported compression method");
1016 if (in[3] & 0xe3) panic("Unsupported gzip format");
1018 inbuf = in + 10; /* skip header */
1019 if (in[3] & 4) inbuf += in[10] + in[11] * 0x100;
1020 if (in[3] & 8) while (*(inbuf++) != 0) ; /* skip original file name */
1021 if (in[3] & 0x10) while (*(inbuf++) != 0) ; /* skip file comment */
1023 outbuf = out; inptr = 0; outcnt = 0;
1024 window = inflate_buf;
1026 if (inflate()) panic("Error inflating file");
1028 inbuf += inptr;
1030 if ((ulg)(outbuf - out) != *(ulg *)(inbuf + 4))
1031 panic("Invalid size %d != %d\n", outbuf - out, *(ulg *)(inbuf + 4));
1033 if (crc32(out, outbuf - out) != *(ulg *)inbuf)
1034 panic("Bad crc\n");
1036 return outbuf - out;