mausezahn.8: Document -r
[netsniff-ng-new.git] / mausezahn.8
blob8379111a5bacd99abf8c5c92cb5df371238bcab5
1 .\" netsniff-ng - the packet sniffing beast
2 .\" Copyright 2013 Herbert Haas, modified by Daniel Borkmann.
3 .\" Subject to the GPL, version 2.
4 .TH MAUSEZAHN 8 "03 March 2013" "Linux" "netsniff-ng toolkit"
5 .SH NAME
6 mausezahn \- a fast versatile packet generator with Cisco-cli
7 .PP
8 .SH SYNOPSIS
9 .PP
10 \fBmausezahn\fR { [\fIoptions\fR] "<arg-string> | <hex-string>" }
11 .PP
12 .SH DESCRIPTION
13 .PP
14 mausezahn is a fast traffic generator which allows you to send nearly every
15 possible and impossible packet. In contrast to trafgen(8), mausezahn's packet
16 configuration is on a protocol-level instead of byte-level and mausezahn also
17 comes with a built-in Cisco-like command-line interface, making it suitable
18 as a network traffic generator box in your network lab.
19 .PP
20 Next to network labs, it can also be used as a didactical tool and for security
21 audits including penetration and DoS testing. As a traffic generator, mausezahn
22 is also able to test IP multicast or VoIP networks. Packet rates close to the
23 physical limit are reachable, depending on the hardware platform.
24 .PP
25 mausezahn supports two modes, ''direct mode'' and a multi-threaded ''interactive
26 mode''.
27 .PP
28 The ''direct mode'' allows you to create a packet directly on the command line
29 and every packet parameter is specified in the argument list when calling
30 mausezahn.
31 .PP
32 The ''interactive mode'' is an advanced multi-threaded configuration mode with
33 its own command line interface (CLI). This mode allows you to create an arbitrary
34 number of packet types and streams in parallel, each with different parameters.
35 .PP
36 The interactive mode utilizes a completely redesigned and more flexible protocol
37 framework called ''mops'' (mausezahn's own packet system). The look and feel of
38 the CLI is very close to the Cisco IOS^tm command line interface.
39 .PP
40 You can start the interactive mode by executing mausezahn with the ''\-x''
41 argument (an optional port number may follow, otherwise it is 25542). Then use
42 telnet(1) to connect to this mausezahn instance. If not otherwise specified,
43 the default login and password combination is mz:mz and the enable password is: mops.
44 This can be changed in /etc/netsniff-ng/mausezahn.conf.
45 .PP
46 The direct mode supports two specification schemes: The ''raw-layer-2'' scheme,
47 where every single byte to be sent can be specified, and ''higher-layer'' scheme,
48 where packet builder interfaces are used (using the ''\-t'' option).
49 .PP
50 To use the ''raw-layer-2'' scheme, simply specify the desired frame as a
51 hexadecimal sequence (the ''hex-string''), such as:
52 .PP
53   mausezahn eth0 "00:ab:cd:ef:00 00:00:00:00:00:01 08:00 ca:fe:ba:be"
54 .PP
55 In this example, whitespaces within the byte string are optional and separate
56 the Ethernet fields (destination and source address, type field, and a short
57 payload). The only additional options supported are ''\-a'', ''\-b'', ''\-c'',
58 and ''\-p''. The frame length must be greater than or equal to 15 bytes.
59 .PP
60 The ''higher-layer'' scheme is enabled using the ''\-t <packet-type>'' option.
61 This option activates a packet builder, and besides the ''packet-type'', an
62 optional ''arg-string'' can be specified. The ''arg-string'' contains packet-
63 specific parameters, such as TCP flags, port numbers, etc. (see example section).
64 .PP
65 .SH OPTIONS
66 .PP
67 mausezahn provides a built-in context-specific help. Append the keyword
68  ''help'' after the configuration options. The most important options
69 are:
70 .PP
71 .SS -x [<port>]
72 Start mausezahn in interactive mode with a Cisco-like CLI. Use telnet to log
73 into the local mausezahn instance. If no port has been specified, port 25542
74 is used by default.
75 .PP
76 .SS -6
77 Specify IPv6 mode (IPv4 is the default).
78 .PP
79 .SS -l <IP>
80 Specify the IP address mausezahn should bind to when in interactive mode, default: 0.0.0.0.
81 .PP
82 .SS -v
83 Verbose mode. Capital \-V is even more verbose.
84 .PP
85 .SS -S
86 Simulation mode, i.e. don't put anything on the wire. This is typically combined
87 with the verbose mode.
88 .PP
89 .SS -q
90 Quiet mode where only warnings and errors are displayed.
91 .PP
92 .SS -c <count>
93 Send the packet count times (default: 1, infinite: 0).
94 .PP
95 .SS -d <delay>
96 Apply delay between transmissions. The delay value can be specified in usec
97 (default, no additional unit needed), or in msec (e.g. 100m or 100msec), or
98 in seconds (e.g. 100s or 100sec). Note: mops also supports nanosecond delay
99 resolution if you need it (see interactive mode).
101 .SS -r
102 Multiply the specified delay with a random value.
104 .SS -p <length>
105 Pad the raw frame to specified length using zero bytes. Note that for raw
106 layer 2 frames the specified length defines the whole frame length, while for
107 higher layer packets the number of additional padding bytes are specified.
109 .SS -a <src-mac|keyword>
110 Use specified source MAC address with hexadecimal notation such as 00:00:aa:bb:cc:dd.
111 By default the interface MAC address will be used. The keywords ''rand'' and ''own''
112 refer to a random MAC address (only unicast addresses are created)
113 and the own address, respectively. You can also use the keywords mentioned
114 below although broadcast-type source addresses are officially invalid.
116 .SS -b <dst-mac|keyword>
117 Use specified destination MAC address. By default, a broadcast is sent in raw
118 layer 2 mode or to the destination hosts or gateway interface MAC address in normal
119 (IP) mode. You can use the same keywords as mentioned above, as well as ''bc''
120 or ''bcast'', ''cisco'', and ''stp''.
122 .SS -A <src-ip|range|rand>
123 Use specified source IP address, default is own interface address. Optionally, the
124 keyword ''rand'' can again be used for a random source IP address or a range
125 can be specified, such as ''192.168.1.1-192.168.1.100'' or ''10.1.0.0/16''.
126 Also, a DNS name can be specified for which mausezahn tries to determine the
127 corresponding IP address automatically.
129 .SS -B <dst-ip|range>
130 Use specified destination IP address (default is broadcast i.e. 255.255.255.255).
131 As with the source address (see above) you can also specify a range or a DNS name.
133 .SS -t <packet-type [help] | help>
134 Create the specified packet type using the built-in packet builder. Currently,
135 supported packet types are: ''arp'', ''bpdu'', ''ip'', ''udp'', ''tcp'', ''rtp'',
136 and ''dns''. Currently, there is also limited support for ''icmp''. Type
137  ''\-t help'' to verify which packet builders your actual mausezahn version
138 supports. Also, for any particular packet type, for example ''tcp'' type
139  ''mausezahn \-t tcp help'' to receive a more in-depth context specific help.
141 .SS -T <packet-type>
142 Make this mausezahn instance the receiving station. Currently, only ''rtp'' is
143 an option here and provides precise jitter measurements. For this purpose, start
144 another mausezahn instance on the sending station and the local receiving station
145 will output jitter statistics. See ''mausezahn \-T rtp help'' for a detailed help.
147 .SS -Q <[CoS:]vlan> [, <[CoS:]vlan>, ...]
148 Specify 802.1Q VLAN tag and optional Class of Service. An arbitrary number of
149 VLAN tags can be specified (that is, you can simulate QinQ or even QinQinQinQ..).
150 Multiple tags must be separated via a comma or a period (e.g. "5:10,20,2:30").
151 VLAN tags are not supported for ARP and BPDU packets (in which case you could
152 specify the whole frame in hexadecimal using the raw layer 2 interface of mausezahn).
154 .SS -M <label[:cos[:ttl]][bos]> [, <label...>]
155 Specify a MPLS label or even a MPLS label stack. Optionally, for each label the
156 experimental bits (usually the Class of Service, CoS) and the Time To Live
157 (TTL) can be specified. If you are really crazy you can set and unset the
158 Bottom of Stack (BoS) bit for each label using the ''S'' (set) and ''s''
159 (unset) option. By default, the BoS is set automatically and correctly. Any other
160 setting will lead to invalid frames. Enter ''\-M help'' for detailed instructions
161 and examples.
163 .SS -P <ascii-payload>
164 Specify a cleartext payload. Alternatively, each packet type supports a
165 hexadecimal specification of the payload (see for example ''\-t udp help'').
167 .SS -f <filename>
168 Read the ASCII payload from the specified file.
170 .SS -F <filename>
171 Read the hexadecimal payload from the specified file. Actually, this file must be also
172 an ASCII text file, but must contain hexadecimal digits, e.g. "aa:bb:cc:0f:e6...".
173 You can use also spaces as separation characters.
175 .SH USAGE EXAMPLE
177 For more comprehensive examples, have a look at the two following HOWTO sections.
179 .SS mausezahn eth0 \-c 0 \-d 2s \-t bpdu vlan=5
180 Send BPDU frames for VLAN 5 as used with Cisco's PVST+ type of STP. By default
181 mausezahn assumes that you want to become the root bridge.
183 .SS mausezahn eth0 \-c 128000 \-a rand \-p 64
184 Perform a CAM table overflow attack.
186 .SS mausezahn eth0 \-c 0 \-Q 5,100 \-t tcp "flags=syn,dp=1-1023" \-p 20 \-A rand \-B 10.100.100.0/24
187 Perform a SYN flood attack to another VLAN using VLAN hopping. This only works
188 if you are connected to the same VLAN which is configured as native VLAN on the
189 trunk. We assume that the victim VLAN is VLAN 100 and the native VLAN is VLAN 5.
190 Lets attack every host in VLAN 100 which use an IP prefix of 10.100.100.0/24, also
191 try out all ports between 1 and 1023 and use a random source IP address.
193 .SS mausezahn eth0 \-c 0 \-d 10msec \-B 230.1.1.1 \-t udp "dp=32000,dscp=46" \-P "Multicast test packet"
194 Send IP multicast packets to the multicast group 230.1.1.1 using a UDP header
195 with destination port 32000 and set the IP DSCP field to EF (46). Send one
196 frame every 10 msec.
198 .SS mausezahn eth0 \-Q 6:420 \-M 100,200,300:5 \-A 172.30.0.0/16 \-B target.anynetwork.foo \-t udp "sp=666,dp=1-65535" \-p 1000 \-c 10
199 Send UDP packets to the destination host target.anynetwork.foo using all
200 possible destination ports and send every packet with all possible source
201 addresses of the range 172.30.0.0/16; additionally use a source port of 666
202 and three MPLS labels, 100, 200, and 300, the outer (300) with QoS field 5.
203 Send the frame with a VLAN tag 420 and CoS 6; eventually pad with 1000 bytes
204 and repeat the whole thing 10 times.
206 .SS mausezahn \-t syslog sev=3 \-P "Main reactor reached critical temperature." \-A 192.168.33.42 \-B 10.1.1.9 \-c 6 \-d 10s
207 Send six forged syslog messages with severity 3 to a Syslog server 10.1.1.9; use
208 a forged source IP address 192.168.33.42 and let mausezahn decide which local
209 interface to use. Use an inter-packet delay of 10 seconds.
211 .SS mausezahn \-t tcp "flags=syn|urg|rst, sp=145, dp=145, win=0, s=0-4294967295, ds=1500, urg=666" \-a bcast \-b bcast \-A bcast \-B 10.1.1.6 \-p 5
212 Send an invalid TCP packet with only a 5 byte payload as layer-2 broadcast and
213 also use the broadcast MAC address as source address. The target should be
214 10.1.1.6 but use a broadcast source address. The source and destination port
215 shall be 145 and the window size 0. Set the TCP flags SYN, URG, and RST
216 simultaneously and sweep through the whole TCP sequence number space with an
217 increment of 1500. Finally set the urgent pointer to 666, i.e. pointing to
218 nowhere.
220 .SH CONFIGURATION FILE
222 When mausezahn is run in interactive mode it automatically looks for and reads
223 a configuration file located at /etc/netsniff-ng/mausezahn.conf for custom options
224 if the file is available, otherwise it uses defaults set at compile time.
225 .SS Config file: /etc/netsniff-ng/mausezahn.conf
227 The configuration file contains lines of the form:
229         option = value
231 Options supported in the configuration file are:
232    Option:              Description:
234    user                 Username for authentication (default: mz)
235    password             Password for authentication (default: mz)
236    enable                    Password to enter privilege mode (default: mops)
237    port                 The listening port for the CLI (default: 25542)
238    listen-addr          IP address to bind CLI to (default: 0.0.0.0)
239    management-only      Set management interface (no data traffic is allowed to pass through)
240    cli-device           Interface to bind CLI to (default: all) *not fully implemented*
241    automops         Path to automops file (contains XML data describing protocols) *in development*
243 .SS Example:
245  $ cat /etc/netsniff-ng/mausezahn.conf
246  user = mzadmin
247  password = mzpasswd
248  enable = privilege-mode-passwd
249  port = 65000
250  listen-addr = 127.0.0.1
252 .SH INTERACTIVE MODE HOWTO
254 .SS Telnet:
256 Using the interactive mode requires starting mausezahn as a server:
258   # mausezahn \-x
260 Now you can telnet(1) to that server using the default port number 25542, but also
261 an arbitrary port number can be specified:
263   # mausezahn \-x 99
264   mausezahn accepts incoming telnet connections on port 99.
265   mz: Problems opening config file. Will use defaults
268 Either from another terminal or from another host try to telnet to the
269 mausezahn server:
271   caprica$ telnet galactica 99
272   Trying 192.168.0.4...
273   Connected to galactica.
274   Escape character is '^]'.
275   mausezahn <version>
277   Username: mz
278   Password: mz
280   mz> enable
281   Password: mops
282   mz#
284 It is recommended to configure your own login credentials in
285 /etc/netsniff-ng/mausezahn.conf, (see configuration file section)
286 .SS Basics:
288 Since you reached the mausezahn prompt, lets try some common commands. You can
289 use the '?' character at any time for context-specific help. Note that Cisco-like
290 short form of commands are accepted in interactive mode. For example, one
291 can use "sh pac" instead of "show packet"; another common example is to use
292 "config t" in place of "configure terminal". For readability, this manual will
293 continue with the full commands.
295 First try out the show command:
297   mz# show ?
299 mausezahn maintains its own ARP table and observes anomalies. There is an entry
300 for every physical interface (however this host has only one):
302   mz# show arp
303   Intf    Index     IP address     MAC address       last       Ch  UCast BCast Info
304   ----------------------------------------------------------------------------------
305   eth0    [1] D     192.168.0.1  00:09:5b:9a:15:84  23:44:41     1     1     0  0000
307 The column Ch tells us that the announced MAC address has only changed one time
308 (= when it was learned). The columns Ucast and BCast tell us how often this
309 entry was announced via unicast or broadcast respectively.
311 Let's check our interfaces:
313   mz# show interface
314   Available network interfaces:
315                  real             real                  used (fake)      used (fake)
316    device        IPv4 address     MAC address           IPv4 address     MAC address
317   ---------------------------------------------------------------------------------------
318   > eth0         192.168.0.4      00:30:05:76:2e:8d     192.168.0.4      00:30:05:76:2e:8d
319     lo           127.0.0.1        00:00:00:00:00:00     127.0.0.1        00:00:00:00:00:00
320   2 interfaces found.
321   Default interface is eth0.
323 .SS Defining packets:
325 Let's check the current packet list:
327   mz# show packet
328   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
329   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
330       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
331   1 packets defined, 0 active.
333 We notice that there is already one system-defined packet process; it has been
334 created and used only once (during startup) by mausezahn's ARP service.
335 Currently, its state is config which means that the process is sleeping.
337 .SS General packet options:
339 Now let's create our own packet process and switch into the global
340 configuration mode:
342   mz# configure terminal
343   mz(config)# packet
344   Allocated new packet PKT0002 at slot 2
345   mz(config-pkt-2)# ?
346   ...
347   name                 Assign a unique name
348   description          Assign a packet description text
349   bind                 Select the network interface
350   count                Configure the packet count value
351   delay                Configure the inter-packet delay
352   interval             Configure a greater interval
353   type                 Specify packet type
354   mac                  Configure packet's MAC addresses
355   tag                  Configure tags
356   payload              Configure a payload
357   port                 Configure packet's port numbers
358   end                  End packet configuration mode
359   ethernet             Configure frame's Ethernet, 802.2, 802.3, or SNAP settings
360   ip                   Configure packet's IP settings
361   udp                  Configure packet's UDP header parameters
362   tcp                  Configure packet's TCP header parameters
364 Here are a lot of options but normally you only need a few of them. When you
365 configure lots of different packets you might assign a reasonable name and
366 description for them:
368   mz(config-pkt-2)# name Test
369   mz(config-pkt-2)# description This is just a test
371 You can, for example, change the default settings for the source and destination MAC or IP
372 addresses using the mac and ip commands:
374   mz(config-pkt-2)# ip address destination 10.1.1.0 /24
375   mz(config-pkt-2)# ip address source random
377 In the example above, we configured a range of addresses (all hosts in the
378 network 10.1.1.0 should be addressed). Additionally we spoof our source IP
379 address. Of course, we can also add one or more VLAN and, or, MPLS tag(s):
381   mz(config-pkt-2)# tag ?
382   dot1q                Configure 802.1Q (and 802.1P) parameters
383   mpls                 Configure MPLS label stack
384   mz(config-pkt-2)# tag dot ?
385   Configure 802.1Q tags:
386   VLAN[:CoS] [VLAN[:CoS]] ...   The leftmost tag is the outer tag in the frame
387   remove <tag-nr> | all         Remove one or more tags (<tag-nr> starts with 1),
388                                 by default the first (=leftmost,outer) tag is removed,
389                                 keyword 'all' can be used instead of tag numbers.
390   cfi | nocfi [<tag-nr>]        Set or unset the CFI-bit in any tag (by default
391                                 assuming the first tag).
392   mz(config-pkt-2)# tag dot 1:7 200:5
394 .SS Configure count and delay:
396   mz(config-pkt-2)# count 1000
397   mz(config-pkt-2)# delay ?
398   delay <value> [hour | min | sec | msec | usec | nsec]
400 Specify the inter-packet delay in hours, minutes, seconds, milliseconds,
401 microseconds or nanoseconds. The default unit is milliseconds (i.e. when no
402 unit is given).
404   mz(config-pkt-2)# delay 1 msec
405   Inter-packet delay set to 0 sec and 1000000 nsec
406   mz(config-pkt-2)#
408 .SS Configuring protocol types:
410 mausezahn's interactive mode supports a growing list of protocols and only
411 relies on the MOPS architecture (and not on libnet as is the case with
412 the legacy direct mode):
414   mz(config-pkt-2)# type
415   Specify a packet type from the following list:
416   arp
417   bpdu
418   igmp
419   ip
420   lldp
421   tcp
422   udp
423   mz(config-pkt-2)# type tcp
424   mz(config-pkt-2-tcp)#
425   ....
426   seqnr                Configure the TCP sequence number
427   acknr                Configure the TCP acknowledgement number
428   hlen                 Configure the TCP header length
429   reserved             Configure the TCP reserved field
430   flags                Configure a combination of TCP flags at once
431   cwr                  Set or unset the TCP CWR flag
432   ece                  Set or unset the TCP ECE flag
433   urg                  Set or unset the TCP URG flag
434   ack                  set or unset the TCP ACK flag
435   psh                  set or unset the TCP PSH flag
436   rst                  set or unset the TCP RST flag
437   syn                  set or unset the TCP SYN flag
438   fin                  set or unset the TCP FIN flag
439   window               Configure the TCP window size
440   checksum             Configure the TCP checksum
441   urgent-pointer       Configure the TCP urgent pointer
442   options              Configure TCP options
443   end                  End TCP configuration mode
444   mz(config-pkt-2-tcp)# flags syn fin rst
445   Current setting is: --------------------RST-SYN-FIN
446   mz(config-pkt-2-tcp)# end
447   mz(config-pkt-2)# payload ascii This is a dummy payload for my first packet
448   mz(config-pkt-2)# end
450 Now configure another packet, for example let's assume we want an LLDP process:
452   mz(config)# packet
453   Allocated new packet PKT0003 at slot 3
454   mz(config-pkt-3)# type lldp
455   mz(config-pkt-3-lldp)# exit
456   mz(config)# exit
458 In the above example we only use the default LLDP settings and don't configure
459 further LLDP options or TLVs. Back in the top level of the CLI let's verify
460 what we had done:
462   mz# show packet
463   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
464   PktID  PktName            Layers  Proto    Size  State      Device   Delay      Count/CntX
465      1   sysARP_servic...   E-----  ARP        60  config     lo       100 msec       1/0 (100%)
466      2   Test               E-Q-IT            125  config     eth0    1000 usec    1000/1000 (0%)
467      3   PKT0003            E-----  LLDP       36  config     eth0      30 sec        0/0 (0%)
468   3 packets defined, 0 active.
470 The column Layers indicates which major protocols have been combined. For
471 example the packet with packet-id 2 ("Test") utilizes Ethernet (E),
472 IP (I), and TCP (T). Additionally an 802.1Q tag (Q) has been inserted. Now
473 start one of these packet processes:
475   mz# start slot 3
476   Activate [3]
477   mz# show packet
478   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
479   PktID  PktName            Layers  Proto    Size  State      Device   Delay      Count/CntX
480      1   sysARP_servic...   E-----  ARP        60  config     lo       100 msec       1/0 (100%)
481      2   Test               E-Q-IT            125  config     eth0    1000 usec    1000/1000 (0%)
482      3   PKT0003            E-----  LLDP       36  config     eth0      30 sec        0/1 (0%)
483   3 packets defined, 1 active.
485 Let's have a more detailed look at a specific packet process:
487   mz# show packet 2
488   Packet [2] Test
489   Description: This is just a test
490   State: config, Count=1000, delay=1000 usec (0 s 1000000 nsec), interval= (undefined)
491   Headers:
492    Ethernet: 00-30-05-76-2e-8d => ff-ff-ff-ff-ff-ff  [0800 after 802.1Q tag]
493    Auto-delivery is ON (that is, the actual MAC is adapted upon transmission)
494    802.1Q: 0 tag(s);  (VLAN:CoS)
495    IP:  SA=192.168.0.4 (not random) (no range)
496         DA=255.255.255.255 (no range)
497         ToS=0x00  proto=17  TTL=255  ID=0  offset=0  flags: -|-|-
498         len=49664(correct)  checksum=0x2e8d(correct)
499    TCP: 83 bytes segment size (including TCP header)
500         SP=0 (norange) (not random), DP=0 (norange) (not random)
501         SQNR=3405691582 (start 0, stop 4294967295, delta 0) -- ACKNR=0 (invalid)
502         Flags: ------------------------SYN----, reserved field is 00, urgent pointer= 0
503         Announced window size= 100
504         Offset= 0 (times 32 bit; value is valid), checksum= ffff (valid)
505         (No TCP options attached) - 0 bytes defined
506    Payload size: 43 bytes
507    Frame size: 125 bytes
508     1  ff:ff:ff:ff:ff:ff:00:30  05:76:2e:8d:81:00:e0:01  81:00:a0:c8:08:00:45:00  00:67:00:00:00:00:ff:06
509    33  fa:e4:c0:a8:00:04:ff:ff  ff:ff:00:00:00:00:ca:fe  ba:be:00:00:00:00:a0:07  00:64:f7:ab:00:00:02:04
510    65  05:ac:04:02:08:0a:19:35  90:c3:00:00:00:00:01:03  03:05:54:68:69:73:20:69  73:20:61:20:64:75:6d:6d
511    97  79:20:70:61:79:6c:6f:61  64:20:66:6f:72:20:6d:79  20:66:69:72:73:74:20:70  61:63:6b:65:74
512   mz#
514 If you want to stop one or more packet processes, use the stop command. The
515 "emergency stop" is when you use stop all:
517   mz# stop all
518   Stopping
519   [3] PKT0003
520   Stopped 1 transmission processe(s)
522 The launch command provides a shortcut for commonly used packet processes. For
523 example to behave like a STP-capable bridge we want to start an BPDU process
524 with typical parameters:
526   mz# launch bpdu
527   Allocated new packet sysBPDU at slot 5
528   mz# show packet
529   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
530   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
531       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
532       2  Test              E-Q-IT            125  config     eth0       1000 usec     1000/1000 (0%)
533       3  PKT0003           E-----  LLDP       36  config     eth0          30 sec        0/12 (0%)
534       4  PKT0004           E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
535       5  sysBPDU           ES----  BPDU       29  active     eth0           2 sec        0/1 (0%)
536   5 packets defined, 1 active.
538 Now a Configuration BPDU is sent every 2 seconds, claiming to be the root
539 bridge (and usually confusing the LAN. Note that only packet 5 (i.e. the
540 last row) is active and therefore sending packets while all other packets
541 are in state config (i.e. they have been configured but they are not doing
542 anything at the moment).
544 .SS Configuring a greater interval:
546 Sometimes you may want to send a burst of packets at a greater interval:
548   mz(config)# packet 2
549   Modify packet parameters for packet Test [2]
550   mz(config-pkt-2)# interval
551   Configure a greater packet interval in days, hours, minutes, or seconds
552   Arguments: <value>  <days | hours | minutes | seconds>
553   Use a zero value to disable an interval.
554   mz(config-pkt-2)# interval 1 hour
555   mz(config-pkt-2)# count 10
556   mz(config-pkt-2)# delay 15 usec
557   Inter-packet delay set to 0 sec and 15000 nsec
559 Now this packet is sent ten times with an inter-packet delay of 15 microseconds
560 and this is repeated every hour. When you look at the packet list, an interval
561 is indicated with the additional flag 'i' when inactive or 'I' when active:
563   mz# show packet
564   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
565   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
566       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
567       2  Test              E-Q-IT            125  config-i   eth0         15 usec       10/10 (0%)
568       3  PKT0003           E-----  LLDP       36  config     eth0          30 sec        0/12 (0%)
569       4  PKT0004           E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
570       5  sysBPDU           ES----  BPDU       29  active     eth0           2 sec        0/251 (0%)
571   5 packets defined, 1 active.
572   mz# start slot 2
573   Activate [2]
574   mz# show packet
575   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
576   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
577       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
578       2  Test              E-Q-IT            125  config+I   eth0         15 usec       10/0 (100%)
579       3  PKT0003           E-----  LLDP       36  config     eth0          30 sec        0/12 (0%)
580       4  PKT0004           E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
581       5  sysBPDU           ES----  BPDU       29  active     eth0           2 sec        0/256 (0%)
582   5 packets defined, 1 active.
584 Note that the flag 'I' indicates that an interval has been specified for
585 packet 2. The process is not active at the moment (only packet 5 is active
586 here) but it will become active at a regular interval. You can verify the
587 actual interval when viewing the packet details via the 'show packet 2' command.
589 .SS Load prepared configurations:
591 You can prepare packet configurations using the same commands as you would
592 type them in on the CLI and then load them to the CLI. For example, assume we
593 have prepared a file 'test.mops' containing:
595   configure terminal
596   packet
597   name IGMP_TEST
598   desc This is only a demonstration how to load a file to mops
599   type igmp
601 Then we can add this packet configuration to our packet list using the load
602 command:
604   mz# load test.mops
605   Read commands from test.mops...
606   Allocated new packet PKT0002 at slot 2
607   mz# show packet
608   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
609   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
610       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
611       2  IGMP_TEST         E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
612   2 packets defined, 0 active.
614 The file src/examples/mausezahn/example_lldp.conf contains another example
615 list of commands to create a bogus LLDP packet. You can load this
616 configuration from the mausezahn command line as follows:
618   mz# load /home/hh/tmp/example_lldp.conf
620 In case you copied the file in that path. Now when you enter 'show packet' you
621 will see a new packet entry in the packet list. Use the 'start slot <nr>'
622 command to activate this packet.
624 You can store your own packet creations in such a file and easily load them when
625 you need them. Every command within such configuration files is executed on the
626 command line interface as if you had typed it in -- so be careful about the
627 order and don't forget to use 'configure terminal' as first command.
629 You can even load other files from within a central config file.
631 .SH DIRECT MODE HOWTO
633 .SS How to specify hexadecimal digits:
635 Many arguments allow direct byte input. Bytes are represented as two
636 hexadecimal digits. Multiple bytes must be separated either by spaces, colons,
637 or dashes - whichever you prefer. The following byte strings are equivalent:
639   "aa:bb cc-dd-ee ff 01 02 03-04 05"
640   "aa bb cc dd ee ff:01:02:03:04 05"
642 To begin with, you may want to send an arbitrary fancy (possibly invalid)
643 frame right through your network card:
645   mausezahn ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:08:00:ca:fe:ba:be
647  or equivalent but more readable:
649   mausezahn ff:ff:ff:ff:ff:ff-ff:ff:ff:ff:ff:ff-08:00-ca:fe:ba:be
651 .SS Basic operations:
653 All major command line options are listed when you execute mausezahn without
654 arguments. For practical usage, keep the following special (not so widely
655 known) options in mind:
657   \-r                    Multiplies the specified delay with a random value.
658   \-p <length>           Pad the raw frame to specified length (using random bytes).
659   \-P <ASCII Payload>    Use the specified ASCII payload.
660   \-f <filename>         Read the ASCII payload from a file.
661   \-F <filename>         Read the hexadecimal payload from a file.
662   \-S                    Simulation mode: DOES NOT put anything on the wire.
663                         This is typically combined with one of the verbose
664                         modes (\-v or V).
666 Many options require a keyword or a number but the \-t option is an exception
667 since it requires both a packet type (such as ip, udp, dns, etc) and an
668 argument string which is specific for that packet type. Here are some simple
669 examples:
671   mausezahn \-t help
672   mausezahn \-t tcp help
673   mausezahn eth3 \-t udp sp=69,dp=69,p=ca:fe:ba:be
675 Note: Don't forget that on the CLI the Linux shell (usually the Bash)
676 interprets spaces as a delimiting character. That is, if you are specifying
677 an argument that consists of multiple words with spaces in between, you MUST
678 group these within quotes. For example, instead of
680   mausezahn eth0 \-t udp sp=1,dp=80,p=00:11:22:33
682  you could either omit the spaces
684   mausezahn eth0 \-t udp sp=1,dp=80,p=00:11:22:33
686  or, for greater safety, use quotes:
688   mausezahn eth0 \-t udp "sp=1,dp=80,p=00:11:22:33"
690 In order to monitor what's going on, you can enable the verbose mode using
691 the \-v option. The opposite is the quiet mode (\-q) which will keep mausezahn
692 absolutely quiet (except for error messages and warnings.)
694 Don't confuse the payload argument p=... with the padding option \-p. The latter
695 is used outside the quotes!
697 .SS The automatic packet builder:
699 An important argument is \-t which invokes a packet builder. Currently there
700 are packet builders for ARP, BPDU, CDP, IP, partly ICMP, UDP, TCP, RTP, DNS,
701 and SYSLOG. (Additionally you can insert a VLAN tag or a MPLS label stack but
702 this works independently of the packet builder.)
704 You get context specific help for every packet builder using the help keyword,
705 such as:
707   mausezahn \-t bpdu help
708   mausezahn \-t tcp help
710 For every packet you may specify an optional payload. This can be done either
711 via hexadecimal notation using the payload (or short p) argument or directly as ASCII
712 text using the \-P option:
714   mausezahn eth0 \-t ip \-P "Hello World"                        # ASCII payload
715   mausezahn eth0 \-t ip p=68:65:6c:6c:6f:20:77:6f:72:6c:64       # hex payload
716   mausezahn eth0 \-t ip "proto=89,                           \\
717                         p=68:65:6c:6c:6f:20:77:6f:72:6c:64, \\   # same with other
718                         ttl=1"                                   # IP arguments
720 Note: The raw link access mode only accepts hexadecimal payloads (because you specify
721 everything in hexadecimal here.)
723 .SS Packet count and delay:
725 By default only one packet is sent. If you want to send more packets then
726 use the count option \-c <count>. When count is zero then mausezahn will send
727 forever. By default, mausezahn sends at maximum speed (and this is really
728 fast ;-)). If you don't want to overwhelm your network devices or have other
729 reasons to send at a slower rate then you might want to specify a delay using
730 the \-d <delay> option.
732 If you only specify a numeric value it is interpreted in microsecond units.
733 Alternatively, for easier use, you might specify units such as seconds, sec,
734 milliseconds, or msec. (You can also abbreviate this with s or m.)
735 Note: Don't use spaces between the value and the unit! Here are typical examples:
737 Send an infinite number of frames as fast as possible:
739   mausezahn \-c 0  "aa bb cc dd ...."
741 Send 100,000 frames with a 50 msec interval:
743   mausezahn \-c 100000 \-d 50msec "aa bb cc dd ...."
745 Send an unlimited number of BPDU frames in a 2 second interval:
747   mausezahn \-c 0 \-d 2s \-t bpdu conf
749 Note: mausezahn does not support fractional numbers. If you want to specify for
750 example 2.5 seconds then express this in milliseconds (2500 msec).
752 .SS Source and destination addresses:
754 As a mnemonic trick keep in mind that all packets run from "A" to "B". You can
755 always specify source and destination MAC addresses using the \-a and \-b
756 options, respectively. These options also allow keywords such as rand, own,
757 bpdu, cisco, and others.
759 Similarly, you can specify source and destination IP addresses using the \-A
760 and \-B options, respectively. These options also support FQDNs (i.e. domain
761 names) and ranges such as 192.168.0.0/24 or 10.0.0.11-10.0.3.22. Additionally,
762 the source address option supports the rand keyword (ideal for "attacks").
764 Note: When you use the packet builder for IP-based packets (e.g. UDP or TCP)
765 then mausezahn automatically cares about correct MAC and IP addresses (i.e.
766 it performs ARP, DHCP, and DNS for you). But when you specify at least a single
767 link-layer address (or any other L2 option such as a VLAN tag or MPLS header)
768 then ARP is disabled and you must care for the Ethernet destination address for
769 yourself.
771 .SS Layer-2:
773 .SS `-- Direct link access:
775 mausezahn allows you to send ANY chain of bytes directly through your Ethernet
776 interface:
778   mausezahn eth0 "ff:ff:ff:ff:ff:ff ff:ff:ff:ff:ff:ff 00:00 ca:fe:ba:be"
780 This way you can craft every packet you want but you must do it by hand. Note:
781 On Wi-Fi interfaces the header is much more complicated and automatically
782 created by the Wi-Fi driver. As an example to introduce some interesting options,
783 lets continuously send frames at max speed with random source MAC address and
784 broadcast destination address, additionally pad the frame to 1000 bytes:
786   mausezahn eth0 \-c 0 \-a rand \-b bcast \-p 1000 "08 00 aa bb cc dd"
788 The direct link access supports automatic padding using the \-p <total frame
789 length> option. This allows you to pad a raw L2 frame to the desired length.
790 You must specify the total length, and the total frame length must have at
791 least 15 bytes for technical reasons. Zero bytes are used for padding.
793 .SS `-- ARP:
795 mausezahn provides a simple interface to the ARP packet. You can specify the
796 ARP method (request|reply) and up to four arguments: sendermac, targetmac,
797 senderip, targetip, or short smac, tmac, sip, tip. By default, an ARP reply is
798 sent with your own interface addresses as source MAC and IP address, and a
799 broadcast destination MAC and IP address. Send a gratuitous ARP request (as used for
800 duplicate IP address detection):
802   mausezahn eth0 \-t arp
804 ARP cache poisoning:
806   mausezahn eth0 \-t arp "reply, senderip=192.168.0.1, targetmac=00:00:0c:01:02:03, \\
807                           targetip=172.16.1.50"
809  where by default your interface MAC address will be used as sendermac,
810 senderip denotes the spoofed IP address, targetmac and targetip identifies the
811 receiver. By default, the Ethernet source address is your interface MAC and the
812 destination address is the broadcast address. You can change this
813 using the flags \-a and \-b.
815 .SS `-- BPDU:
817 mausezahn provides a simple interface to the 802.1D BPDU frame format (used to
818 create the Spanning Tree in bridged networks). By default, standard IEEE 802.1D
819 BPDUs are sent and it is assumed that your computer wants to become the
820 root bridge (rid=bid). Optionally the 802.3 destination address can be a
821 specified MAC address, broadcast, own MAC, or Cisco's PVST+ MAC address. The
822 destination MAC can be specified using the \-b command which, besides MAC
823 addresses, accepts keywords such as bcast, own, pvst, or stp (default). PVST+
824 is supported as well. Simply specify the VLAN for which you want to send a BPDU:
826   mausezahn eth0 \-t bpdu "vlan=123, rid=2000"
828 See mausezahn \-t bpdu help for more details.
830 .SS `-- CDP:
832 mausezahn can send Cisco Discovery Protocol (CDP) messages since this protocol
833 has security relevance. Of course lots of dirty tricks are possible; for
834 example arbitrary TLVs can be created (using the hex-payload argument for
835 example p=00:0e:00:07:01:01:90) and if you want to stress the CDP database of
836 some device, mausezahn can send each CDP message with another system-id using
837 the change keyword:
839   mausezahn \-t cdp change \-c 0
841 Some routers and switches may run into deep problems ;-) See
842 mausezahn \-t cdp help for more details.
844 .SS `-- 802.1Q VLAN Tags:
846 mausezahn allows simple VLAN tagging for IP (and other higher layer) packets.
847 Simply use the option \-Q <[CoS:]VLAN>, such as \-Q 10 or \-Q 3:921. By
848 default CoS=0. For example send a TCP packet in VLAN 500 using CoS=7:
850   mausezahn eth0 \-t tcp \-Q 7:500 "dp=80, flags=rst, p=aa:aa:aa"
852 You can create as many VLAN tags as you want! This is interesting to create
853 QinQ encapsulations or VLAN hopping: Send a UDP packet with VLAN tags 100
854 (outer) and 651 (inner):
856   mausezahn eth0 \-t udp "dp=8888, sp=13442" \-P "Mausezahn is great" \-Q 100,651
858 Don't know if this is useful anywhere but at least it is possible:
860   mausezahn eth0 \-t udp "dp=8888, sp=13442" \-P "Mausezahn is great"  \\
861                  \-Q 6:5,7:732,5:331,5,6
863 Mix it with MPLS:
865   mausezahn eth0 \-t udp "dp=8888, sp=13442" \-P "Mausezahn is great" \-Q 100,651 \-M 314
867 When in raw Layer 2 mode you must create the VLAN tag completely by yourself.
868 For example if you want to send a frame in VLAN 5 using CoS 0 simply specify
869 81:00 as type field and for the next two bytes the CoS (PCP), DEI (CFI), and
870 VLAN ID values (all together known as TCI):
872   mausezahn eth0 \-b bc \-a rand "81:00 00:05 08:00 aa-aa-aa-aa-aa-aa-aa-aa-aa"
874 .SS `-- MPLS labels:
876 mausezahn allows you to insert one or more MPLS headers. Simply use the option
877 \-M <label:CoS:TTL:BoS> where only the label is mandatory. If you specify a
878 second number it is interpreted as the experimental bits (the CoS usually). If
879 you specify a third number it is interpreted as TTL. By default the TTL is
880 set to 255. The Bottom of Stack flag is set automatically, otherwise the frame
881 would be invalid, but if you want you can also set or unset it using the
882 S (set) and s (unset) argument. Note that the BoS must be the last argument in
883 each MPLS header definition. Here are some examples:
885 Use MPLS label 214:
887   mausezahn eth0 \-M 214 \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
889 Use three labels (the 214 is now the outer):
891   mausezahn eth0 \-M 9999,51,214 \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
893 Use two labels, one with CoS=5 and TTL=1, the other with CoS=7:
895   mausezahn eth0 \-M 100:5:1,500:7 \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
897 Unset the BoS flag (which will result in an invalid frame):
899   mausezahn eth0 \-M 214:s \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
901 .SS Layer 3-7:
903 IP, UDP, and TCP packets can be padded using the \-p option. Currently 0x42 is
904 used as padding byte ('the answer'). You cannot pad DNS packets (would be
905 useless anyway).
907 .SS `-- IP:
909 mausezahn allows you to send any malformed or correct IP packet. Every field
910 in the IP header can be manipulated. The IP addresses can be specified via
911 the \-A and \-B options, denoting the source and destination address,
912 respectively. You can also specify an address range or a host name (FQDN).
913 Additionally, the source address can also be random. By default the source
914 address is your interface IP address and the destination address is a
915 broadcast address. Here are some examples:
917 ASCII payload:
919   mausezahn eth0 \-t ip \-A rand \-B 192.168.1.0/24  \-P "hello world"
921 Hexadecimal payload:
923   mausezahn eth0 \-t ip \-A 10.1.0.1-10.1.255.254 \-B 255.255.255.255 p=ca:fe:ba:be
925 Will use correct source IP address:
927   mausezahn eth0 \-t ip \-B www.xyz.com
929 The Type of Service (ToS) byte can either be specified directly by two
930 hexadecimal digits, which means you can also easily set the Explicit
931 Congestion Notification (ECN) bits (LSB 1 and 2), or you may only want to
932 specify a common DSCP value (bits 3-8) using a decimal number (0..63):
934 Packet sent with DSCP = Expedited Forwarding (EF):
936   mausezahn eth0 \-t ip dscp=46,ttl=1,proto=1,p=08:00:5a:a2:de:ad:be:af
938 If you leave the checksum as zero (or unspecified) the correct checksum will
939 be automatically computed. Note that you can only use a wrong checksum when
940 you also specify at least one L2 field manually.
942 .SS `-- UDP:
944 mausezahn supports easy UDP datagram generation. Simply specify the
945 destination address (\-B option) and optionally an arbitrary source address
946 (\-A option) and as arguments you may specify the port numbers using the
947 dp (destination port) and sp (source port) arguments and a payload. You can
948 also easily specify a whole port range which will result in sending multiple
949 packets. Here are some examples:
951 Send test packets to the RTP port range:
953   mausezahn eth0 \-B 192.168.1.1 \-t udp "dp=16384-32767, \\
954                    p=A1:00:CC:00:00:AB:CD:EE:EE:DD:DD:00"
956 Send a DNS request as local broadcast (often a local router replies):
958   mausezahn eth0 \-t udp dp=53,p=c5-2f-01-00-00-01-00-00-00-00-00-00-03-77-77-\\
959                                  77-03-78-79-7a-03-63-6f-6d-00-00-01-00-01"
961 Additionally you may specify the length and checksum using the len and sum
962 arguments (will be set correctly by default). Note: several protocols have same
963 arguments such as len (length) and sum (checksum). If you specified a UDP type
964 packet (via \-t udp) and want to modify the IP length, then use the alternate
965 keyword iplen and ipsum. Also note that you must specify at least one L2 field
966 which tells mausezahn to build everything without the help of your kernel (the
967 kernel would not allow modifying the IP checksum and the IP length).
969 .SS `-- ICMP:
971 mausezahn currently only supports the following ICMP methods: PING (echo
972 request), Redirect (various types), Unreachable (various types). Additional
973 ICMP types will be supported in future. Currently you would need to tailor them
974 by yourself, e.g. using the IP packet builder (setting proto=1). Use the
975 mausezahn \-t icmp help for help on currently implemented options.
977 .SS `-- TCP:
979 mausezahn allows you to easily tailor any TCP packet. Similarly as with UDP you
980 can specify source and destination port (ranges) using the sp and dp arguments.
981 Then you can directly specify the desired flags using an "|" as delimiter if
982 you want to specify multiple flags. For example, a SYN-Flood attack against
983 host 1.1.1.1 using a random source IP address and periodically using all 1023
984 well-known ports could be created via:
986   mausezahn eth0 \-A rand \-B 1.1.1.1 \-c 0 \-t tcp "dp=1-1023, flags=syn"  \\
987                  \-P "Good morning! This is a SYN Flood Attack.             \\
988                      We apologize for any inconvenience."
990 Be careful with such SYN floods and only use them for firewall testing. Check
991 your legal position! Remember that a host with an open TCP session only accepts
992 packets with correct socket information (addresses and ports) and a valid TCP
993 sequence number (SQNR). If you want to try a DoS attack by sending a RST-flood
994 and you do NOT know the target's initial SQNR (which is normally the case) then
995 you may want to sweep through a range of sequence numbers:
997   mausezahn eth0 \-A legal.host.com \-B target.host.com \\
998                  \-t tcp "sp=80,dp=80,s=1-4294967295"
1000 Fortunately, the SQNR must match the target host's acknowledgement number plus
1001 the announced window size. Since the typical window size is something between
1002 40000 and 65535 you are MUCH quicker when using an increment via the ds argument:
1004   mausezahn eth0 \-A legal.host.com \-B target.host.com \\
1005                  \-t tcp "sp=80, dp=80, s=1-4294967295, ds=40000"
1007 In the latter case mausezahn will only send 107375 packets instead of
1008 4294967295 (which results in a duration of approximately 1 second compared to
1009 11 hours!). Of course you can tailor any TCP packet you like. As with other L4
1010 protocols mausezahn builds a correct IP header but you can additionally access
1011 every field in the IP packet (also in the Ethernet frame).
1013 .SS `-- DNS:
1015 mausezahn supports UDP-based DNS requests or responses. Typically you may want
1016 to send a query or an answer. As usual, you can modify every flag in the header.
1017 Here is an example of a simple query:
1019   mausezahn eth0 \-B mydns-server.com \-t dns "q=www.ibm.com"
1021 You can also create server-type messages:
1023   mausezahn eth0 \-A spoofed.dns-server.com \-B target.host.com \\
1024                  "q=www.topsecret.com, a=172.16.1.1"
1026 The syntax according to the online help (\-t dns help) is:
1028   query|q = <name>[:<type>]  ............. where type is per default "A"
1029                                            (and class is always "IN")
1030   answer|a = [<type>:<ttl>:]<rdata> ...... ttl is per default 0.
1031            = [<type>:<ttl>:]<rdata>/[<type>:<ttl>:]<rdata>/...
1033 Note: If you only use the 'query' option then a query is sent. If you
1034 additionally add an 'answer' then an answer is sent. Examples:
1036   q = www.xyz.com
1037   q = www.xyz.com, a=192.168.1.10
1038   q = www.xyz.com, a=A:3600:192.168.1.10
1039   q = www.xyz.com, a=CNAME:3600:abc.com/A:3600:192.168.1.10
1041 Please try out mausezahn \-t dns help to see the many other optional command
1042 line options.
1044 .SS `-- RTP and VoIP path measurements:
1046 mausezahn can send arbitrary Real Time Protocol (RTP) packets. By default a
1047 classical G.711 codec packet of 20 ms segment size and 160 bytes is assumed. You
1048 can measure jitter, packet loss, and reordering along a path between two hosts
1049 running mausezahn. The jitter measurement is either done following the variance
1050 low-pass filtered estimation specified in RFC 3550 or using an alternative
1051 "real-time" method which is even more precise (the RFC-method is used by
1052 default). For example on Host1 you start a transmission process:
1054   mausezahn \-t rtp \-B 192.168.1.19
1056 And on Host2 (192.168.1.19) a receiving process which performs the measurement:
1058   mausezahn \-T rtp
1060 Note that the option flag with the capital "T" means that it is a server RTP
1061 process, waiting for incoming RTP packets from any mausezahn source. In case
1062 you want to restrict the measurement to a specific source or you want to
1063 perform a bidirectional measurement, you must specify a stream identifier.
1064 Here is an example for bidirectional measurements which logs the running
1065 jitter average in a file:
1067   Host1# mausezahn \-t rtp id=11:11:11:11 \-B 192.168.2.2 &
1068   Host1# mausezahn \-T rtp id=22:22:22:22 "log, path=/tmp/mz/"
1070   Host2# mausezahn \-t rtp id=22:22:22:22 \-B 192.168.1.1 &
1071   Host2# mausezahn \-T rtp id=11:11:11:11 "log, path=/tmp/mz/"
1073 In any case the measurements are printed continuously onto the screen; by
1074 default it looks like this:
1076   0.00                     0.19                      0.38                      0.57
1077   |-------------------------|-------------------------|-------------------------|
1078   #########                                                                      0.07 msec
1079   ####################                                                           0.14 msec
1080   ##                                                                             0.02 msec
1081   ###                                                                            0.02 msec
1082   #########                                                                      0.07 msec
1083   ####                                                                           0.03 msec
1084   #########                                                                      0.07 msec
1085   #############                                                                  0.10 msec
1086   ##                                                                             0.02 msec
1087   ###########################################                                    0.31 msec
1088   #########                                                                      0.07 msec
1089   ##############################################                                 0.33 msec
1090   ###############                                                                0.11 msec
1091   ##########                                                                     0.07 msec
1092   ###############                                                                0.11 msec
1093   ##########################################################                     0.42 msec
1094   #####                                                                          0.04 msec
1096 More information is shown using the txt keyword:
1098   mausezahn \-T rtp txt
1099   Got 100 packets from host 192.168.0.3: 0 lost (0 absolute lost), 1 out of order
1100     Jitter_RFC (low pass filtered) = 30 usec
1101     Samples jitter (min/avg/max)   = 1/186/2527 usec
1102     Delta-RX (min/avg/max)         = 2010/20167/24805 usec
1103   Got 100 packets from host 192.168.0.3: 0 lost (0 absolute lost), 1 out of order
1104     Jitter_RFC (low pass filtered) = 17 usec
1105     Samples jitter (min/avg/max)   = 1/53/192 usec
1106     Delta-RX (min/avg/max)         = 20001/20376/20574 usec
1107   Got 100 packets from host 192.168.0.3: 0 lost (0 absolute lost), 1 out of order
1108     Jitter_RFC (low pass filtered) = 120 usec
1109     Samples jitter (min/avg/max)   = 0/91/1683 usec
1110     Delta-RX (min/avg/max)         = 18673/20378/24822 usec
1112 See mausezahn \-t rtp help and mz \-T rtp help for more details.
1114 .SS `-- Syslog:
1116 The traditional Syslog protocol is widely used even in professional networks
1117 and is sometimes vulnerable. For example you might insert forged Syslog
1118 messages by spoofing your source address (e.g. impersonate the address of a
1119 legit network device):
1121   mausezahn \-t syslog sev=3 \-P "You have been mausezahned." \-A 10.1.1.109 \-B 192.168.7.7
1123 See mausezahn \-t syslog help for more details.
1125 .SH NOTE
1127 When multiple ranges are specified, e.g. destination port ranges and
1128 destination address ranges, then all possible combinations of ports and
1129 addresses are used for packet generation. Furthermore, this can be mixed with
1130 other ranges e.g. a TCP sequence number range. Note that combining ranges
1131 can lead to a very huge number of frames to be sent. As a rule of thumb you
1132 can assume that about 100,000 frames and more are sent in a fraction of one
1133 second, depending on your network interface.
1135 mausezahn has been designed as a fast traffic generator so you might easily
1136 overwhelm a LAN segment with myriads of packets. And because mausezahn could
1137 also support security audits it is possible to create malicious or invalid
1138 packets, SYN floods, port and address sweeps, DNS and ARP poisoning, etc.
1140 Therefore, don't use this tool when you are not aware of the possible
1141 consequences or have only a little knowledge about networks and data
1142 communication. If you abuse mausezahn for 'unallowed' attacks and get caught,
1143 or damage something of your own, then this is completely your fault. So the
1144 safest solution is to try it out in a lab environment.
1146 Also have a look at the netsniff-ng(8) note section on how you can properly
1147 setup and tune your system.
1149 .SH LEGAL
1150 mausezahn is licensed under the GNU GPL version 2.0.
1152 .SH HISTORY
1153 .B mausezahn
1154 was originally written by Herbert Haas. According to his website [1], he
1155 unfortunately passed away in 2011 thus leaving this tool unmaintained.
1156 It has been adopted and integrated into the netsniff-ng toolkit and is further
1157 being maintained and developed from there. Maintainers are Tobias Klauser
1158 <tklauser@distanz.ch> and Daniel Borkmann <dborkma@tik.ee.ethz.ch>.
1160   [1] http://www.perihel.at/
1162 .SH SEE ALSO
1163 .BR netsniff-ng (8),
1164 .BR trafgen (8),
1165 .BR ifpps (8),
1166 .BR bpfc (8),
1167 .BR flowtop (8),
1168 .BR astraceroute (8),
1169 .BR curvetun (8)
1171 .SH AUTHOR
1172 Manpage was written by Herbert Haas and modified by Daniel Borkmann.
1174 .SH COLOPHON
1175 This page is part of the Linux netsniff-ng toolkit project. A description of the project,
1176 and information about reporting bugs, can be found at http://netsniff-ng.org/.