1 /* $NetBSD: lfs_segment.c,v 1.213 2008/06/02 16:25:34 ad Exp $ */
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant@hhhh.org>.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.213 2008/06/02 16:25:34 ad Exp $");
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_flag & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
72 # define vndebug(vp, str)
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
77 #if defined(_KERNEL_OPT)
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/dir.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_extern.h>
107 #include <uvm/uvm_extern.h>
109 MALLOC_JUSTDEFINE(M_SEGMENT
, "LFS segment", "Segment for LFS");
111 extern int count_lock_queue(void);
112 extern kmutex_t vnode_free_list_lock
; /* XXX */
114 static void lfs_generic_callback(struct buf
*, void (*)(struct buf
*));
115 static void lfs_free_aiodone(struct buf
*);
116 static void lfs_super_aiodone(struct buf
*);
117 static void lfs_cluster_aiodone(struct buf
*);
118 static void lfs_cluster_callback(struct buf
*);
121 * Determine if it's OK to start a partial in this segment, or if we need
122 * to go on to a new segment.
124 #define LFS_PARTIAL_FITS(fs) \
125 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
126 fragstofsb((fs), (fs)->lfs_frag))
129 * Figure out whether we should do a checkpoint write or go ahead with
132 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
133 ((flags & SEGM_CLEAN) == 0 && \
134 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
135 (flags & SEGM_CKP) || \
136 fs->lfs_nclean < LFS_MAX_ACTIVE)))
138 int lfs_match_fake(struct lfs
*, struct buf
*);
139 void lfs_newseg(struct lfs
*);
141 void lfs_shellsort(struct buf
**, int32_t *, int, int);
142 void lfs_supercallback(struct buf
*);
143 void lfs_updatemeta(struct segment
*);
144 void lfs_writesuper(struct lfs
*, daddr_t
);
145 int lfs_writevnodes(struct lfs
*fs
, struct mount
*mp
,
146 struct segment
*sp
, int dirops
);
148 int lfs_allclean_wakeup
; /* Cleaner wakeup address. */
149 int lfs_writeindir
= 1; /* whether to flush indir on non-ckp */
150 int lfs_clean_vnhead
= 0; /* Allow freeing to head of vn list */
151 int lfs_dirvcount
= 0; /* # active dirops */
153 /* Statistics Counters */
155 struct lfs_stats lfs_stats
;
157 /* op values to lfs_writevnodes */
164 * XXX KS - Set modification time on the Ifile, so the cleaner can
165 * read the fs mod time off of it. We don't set IN_UPDATE here,
166 * since we don't really need this to be flushed to disk (and in any
167 * case that wouldn't happen to the Ifile until we checkpoint).
170 lfs_imtime(struct lfs
*fs
)
175 ASSERT_MAYBE_SEGLOCK(fs
);
177 ip
= VTOI(fs
->lfs_ivnode
);
178 ip
->i_ffs1_mtime
= ts
.tv_sec
;
179 ip
->i_ffs1_mtimensec
= ts
.tv_nsec
;
183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
192 lfs_vflush(struct vnode
*vp
)
197 struct buf
*bp
, *nbp
, *tbp
, *tnbp
;
204 fs
= VFSTOUFS(vp
->v_mount
)->um_lfs
;
208 ASSERT_NO_SEGLOCK(fs
);
209 if (ip
->i_flag
& IN_CLEANING
) {
210 ivndebug(vp
,"vflush/in_cleaning");
211 mutex_enter(&lfs_lock
);
212 LFS_CLR_UINO(ip
, IN_CLEANING
);
213 LFS_SET_UINO(ip
, IN_MODIFIED
);
214 mutex_exit(&lfs_lock
);
217 * Toss any cleaning buffers that have real counterparts
218 * to avoid losing new data.
220 mutex_enter(&vp
->v_interlock
);
221 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
); bp
; bp
= nbp
) {
222 nbp
= LIST_NEXT(bp
, b_vnbufs
);
223 if (!LFS_IS_MALLOC_BUF(bp
))
226 * Look for pages matching the range covered
227 * by cleaning blocks. It's okay if more dirty
228 * pages appear, so long as none disappear out
231 if (bp
->b_lblkno
> 0 && vp
->v_type
== VREG
&&
232 vp
!= fs
->lfs_ivnode
) {
236 for (off
= lblktosize(fs
, bp
->b_lblkno
);
237 off
< lblktosize(fs
, bp
->b_lblkno
+ 1);
239 pg
= uvm_pagelookup(&vp
->v_uobj
, off
);
242 if ((pg
->flags
& PG_CLEAN
) == 0 ||
243 pmap_is_modified(pg
)) {
244 fs
->lfs_avail
+= btofsb(fs
,
246 wakeup(&fs
->lfs_avail
);
247 mutex_exit(&vp
->v_interlock
);
249 mutex_enter(&vp
->v_interlock
);
255 for (tbp
= LIST_FIRST(&vp
->v_dirtyblkhd
); tbp
;
258 tnbp
= LIST_NEXT(tbp
, b_vnbufs
);
259 if (tbp
->b_vp
== bp
->b_vp
260 && tbp
->b_lblkno
== bp
->b_lblkno
263 fs
->lfs_avail
+= btofsb(fs
,
265 wakeup(&fs
->lfs_avail
);
266 mutex_exit(&vp
->v_interlock
);
268 mutex_enter(&vp
->v_interlock
);
275 mutex_enter(&vp
->v_interlock
);
278 /* If the node is being written, wait until that is done */
279 while (WRITEINPROG(vp
)) {
280 ivndebug(vp
,"vflush/writeinprog");
281 cv_wait(&vp
->v_cv
, &vp
->v_interlock
);
283 mutex_exit(&vp
->v_interlock
);
285 /* Protect against VI_XLOCK deadlock in vinvalbuf() */
286 lfs_seglock(fs
, SEGM_SYNC
);
288 /* If we're supposed to flush a freed inode, just toss it */
289 if (ip
->i_lfs_iflags
& LFSI_DELETED
) {
290 DLOG((DLOG_VNODE
, "lfs_vflush: ino %d freed, not flushing\n",
292 /* Drain v_numoutput */
293 mutex_enter(&vp
->v_interlock
);
294 while (vp
->v_numoutput
> 0) {
295 cv_wait(&vp
->v_cv
, &vp
->v_interlock
);
297 KASSERT(vp
->v_numoutput
== 0);
298 mutex_exit(&vp
->v_interlock
);
300 mutex_enter(&bufcache_lock
);
301 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
); bp
; bp
= nbp
) {
302 nbp
= LIST_NEXT(bp
, b_vnbufs
);
304 KASSERT((bp
->b_flags
& B_GATHERED
) == 0);
305 if (bp
->b_oflags
& BO_DELWRI
) { /* XXX always true? */
306 fs
->lfs_avail
+= btofsb(fs
, bp
->b_bcount
);
307 wakeup(&fs
->lfs_avail
);
309 /* Copied from lfs_writeseg */
310 if (bp
->b_iodone
!= NULL
) {
311 mutex_exit(&bufcache_lock
);
313 mutex_enter(&bufcache_lock
);
317 mutex_enter(&vp
->v_interlock
);
318 bp
->b_flags
&= ~(B_READ
| B_GATHERED
);
319 bp
->b_oflags
= (bp
->b_oflags
& ~BO_DELWRI
) | BO_DONE
;
322 mutex_exit(&vp
->v_interlock
);
326 mutex_exit(&bufcache_lock
);
327 LFS_CLR_UINO(ip
, IN_CLEANING
);
328 LFS_CLR_UINO(ip
, IN_MODIFIED
| IN_ACCESSED
);
329 ip
->i_flag
&= ~IN_ALLMOD
;
330 DLOG((DLOG_VNODE
, "lfs_vflush: done not flushing ino %d\n",
334 KASSERT(LIST_FIRST(&vp
->v_dirtyblkhd
) == NULL
);
339 fs
->lfs_flushvp
= vp
;
340 if (LFS_SHOULD_CHECKPOINT(fs
, fs
->lfs_sp
->seg_flags
)) {
341 error
= lfs_segwrite(vp
->v_mount
, SEGM_CKP
| SEGM_SYNC
);
342 fs
->lfs_flushvp
= NULL
;
343 KASSERT(fs
->lfs_flushvp_fakevref
== 0);
346 /* Make sure that any pending buffers get written */
347 mutex_enter(&vp
->v_interlock
);
348 while (vp
->v_numoutput
> 0) {
349 cv_wait(&vp
->v_cv
, &vp
->v_interlock
);
351 KASSERT(LIST_FIRST(&vp
->v_dirtyblkhd
) == NULL
);
352 KASSERT(vp
->v_numoutput
== 0);
353 mutex_exit(&vp
->v_interlock
);
361 lfs_writevnodes(fs
, vp
->v_mount
, sp
, VN_EMPTY
);
363 } else if ((ip
->i_flag
& IN_CLEANING
) &&
364 (fs
->lfs_sp
->seg_flags
& SEGM_CLEAN
)) {
365 ivndebug(vp
,"vflush/clean");
366 lfs_writevnodes(fs
, vp
->v_mount
, sp
, VN_CLEAN
);
368 } else if (lfs_dostats
) {
369 if (!VPISEMPTY(vp
) || (VTOI(vp
)->i_flag
& IN_ALLMOD
))
370 ++lfs_stats
.vflush_invoked
;
371 ivndebug(vp
,"vflush");
375 if (vp
->v_uflag
& VU_DIROP
) {
376 DLOG((DLOG_VNODE
, "lfs_vflush: flushing VU_DIROP\n"));
377 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
384 if (LIST_FIRST(&vp
->v_dirtyblkhd
) != NULL
) {
385 relock
= lfs_writefile(fs
, sp
, vp
);
388 * Might have to wait for the
389 * cleaner to run; but we're
390 * still not done with this vnode.
392 KDASSERT(ip
->i_number
!= LFS_IFILE_INUM
);
393 lfs_writeinode(fs
, sp
, ip
);
394 mutex_enter(&lfs_lock
);
395 LFS_SET_UINO(ip
, IN_MODIFIED
);
396 mutex_exit(&lfs_lock
);
397 lfs_writeseg(fs
, sp
);
399 lfs_segunlock_relock(fs
);
404 * If we begin a new segment in the middle of writing
405 * the Ifile, it creates an inconsistent checkpoint,
406 * since the Ifile information for the new segment
407 * is not up-to-date. Take care of this here by
408 * sending the Ifile through again in case there
409 * are newly dirtied blocks. But wait, there's more!
410 * This second Ifile write could *also* cross a segment
411 * boundary, if the first one was large. The second
412 * one is guaranteed to be no more than 8 blocks,
413 * though (two segment blocks and supporting indirects)
414 * so the third write *will not* cross the boundary.
416 if (vp
== fs
->lfs_ivnode
) {
417 lfs_writefile(fs
, sp
, vp
);
418 lfs_writefile(fs
, sp
, vp
);
422 log(LOG_NOTICE
, "lfs_vflush: looping count=%d\n", loopcount
);
424 } while (lfs_writeinode(fs
, sp
, ip
));
425 } while (lfs_writeseg(fs
, sp
) && ip
->i_number
== LFS_IFILE_INUM
);
429 if (sp
->seg_flags
& SEGM_SYNC
)
430 ++lfs_stats
.nsync_writes
;
431 if (sp
->seg_flags
& SEGM_CKP
)
432 ++lfs_stats
.ncheckpoints
;
435 * If we were called from somewhere that has already held the seglock
436 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
437 * the write to complete because we are still locked.
438 * Since lfs_vflush() must return the vnode with no dirty buffers,
439 * we must explicitly wait, if that is the case.
441 * We compare the iocount against 1, not 0, because it is
442 * artificially incremented by lfs_seglock().
444 mutex_enter(&lfs_lock
);
445 if (fs
->lfs_seglock
> 1) {
446 while (fs
->lfs_iocount
> 1)
447 (void)mtsleep(&fs
->lfs_iocount
, PRIBIO
+ 1,
448 "lfs_vflush", 0, &lfs_lock
);
450 mutex_exit(&lfs_lock
);
454 /* Wait for these buffers to be recovered by aiodoned */
455 mutex_enter(&vp
->v_interlock
);
456 while (vp
->v_numoutput
> 0) {
457 cv_wait(&vp
->v_cv
, &vp
->v_interlock
);
459 KASSERT(LIST_FIRST(&vp
->v_dirtyblkhd
) == NULL
);
460 KASSERT(vp
->v_numoutput
== 0);
461 mutex_exit(&vp
->v_interlock
);
463 fs
->lfs_flushvp
= NULL
;
464 KASSERT(fs
->lfs_flushvp_fakevref
== 0);
470 lfs_writevnodes(struct lfs
*fs
, struct mount
*mp
, struct segment
*sp
, int op
)
474 int inodes_written
= 0, only_cleaning
;
479 /* start at last (newest) vnode. */
480 mutex_enter(&mntvnode_lock
);
481 TAILQ_FOREACH_REVERSE(vp
, &mp
->mnt_vnodelist
, vnodelst
, v_mntvnodes
) {
483 * If the vnode that we are about to sync is no longer
484 * associated with this mount point, start over.
486 if (vp
->v_mount
!= mp
) {
487 DLOG((DLOG_VNODE
, "lfs_writevnodes: starting over\n"));
489 * After this, pages might be busy
490 * due to our own previous putpages.
491 * Start actual segment write here to avoid deadlock.
493 mutex_exit(&mntvnode_lock
);
494 (void)lfs_writeseg(fs
, sp
);
498 mutex_enter(&vp
->v_interlock
);
499 if (vp
->v_type
== VNON
|| vismarker(vp
) ||
500 (vp
->v_iflag
& VI_CLEAN
) != 0) {
501 mutex_exit(&vp
->v_interlock
);
506 if ((op
== VN_DIROP
&& !(vp
->v_uflag
& VU_DIROP
)) ||
507 (op
!= VN_DIROP
&& op
!= VN_CLEAN
&&
508 (vp
->v_uflag
& VU_DIROP
))) {
509 mutex_exit(&vp
->v_interlock
);
514 if (op
== VN_EMPTY
&& !VPISEMPTY(vp
)) {
515 mutex_exit(&vp
->v_interlock
);
520 if (op
== VN_CLEAN
&& ip
->i_number
!= LFS_IFILE_INUM
521 && vp
!= fs
->lfs_flushvp
522 && !(ip
->i_flag
& IN_CLEANING
)) {
523 mutex_exit(&vp
->v_interlock
);
524 vndebug(vp
,"cleaning");
528 mutex_exit(&mntvnode_lock
);
531 mutex_enter(&mntvnode_lock
);
537 * Write the inode/file if dirty and it's not the IFILE.
539 if ((ip
->i_flag
& IN_ALLMOD
) || !VPISEMPTY(vp
)) {
541 ((ip
->i_flag
& IN_ALLMOD
) == IN_CLEANING
);
543 if (ip
->i_number
!= LFS_IFILE_INUM
) {
544 error
= lfs_writefile(fs
, sp
, vp
);
547 if (error
== EAGAIN
) {
549 * This error from lfs_putpages
550 * indicates we need to drop
551 * the segment lock and start
552 * over after the cleaner has
553 * had a chance to run.
555 lfs_writeinode(fs
, sp
, ip
);
556 lfs_writeseg(fs
, sp
);
557 if (!VPISEMPTY(vp
) &&
559 !(ip
->i_flag
& IN_ALLMOD
)) {
560 mutex_enter(&lfs_lock
);
561 LFS_SET_UINO(ip
, IN_MODIFIED
);
562 mutex_exit(&lfs_lock
);
564 mutex_enter(&mntvnode_lock
);
567 error
= 0; /* XXX not quite right */
568 mutex_enter(&mntvnode_lock
);
572 if (!VPISEMPTY(vp
)) {
573 if (WRITEINPROG(vp
)) {
574 ivndebug(vp
,"writevnodes/write2");
575 } else if (!(ip
->i_flag
& IN_ALLMOD
)) {
576 mutex_enter(&lfs_lock
);
577 LFS_SET_UINO(ip
, IN_MODIFIED
);
578 mutex_exit(&lfs_lock
);
581 (void) lfs_writeinode(fs
, sp
, ip
);
586 if (lfs_clean_vnhead
&& only_cleaning
)
591 mutex_enter(&mntvnode_lock
);
593 mutex_exit(&mntvnode_lock
);
601 lfs_segwrite(struct mount
*mp
, int flags
)
609 int do_ckp
, did_ckp
, error
;
610 unsigned n
, segleft
, maxseg
, sn
, i
, curseg
;
617 fs
= VFSTOUFS(mp
)->um_lfs
;
618 ASSERT_MAYBE_SEGLOCK(fs
);
626 * Allocate a segment structure and enough space to hold pointers to
627 * the maximum possible number of buffers which can be described in a
628 * single summary block.
630 do_ckp
= LFS_SHOULD_CHECKPOINT(fs
, flags
);
632 lfs_seglock(fs
, flags
| (do_ckp
? SEGM_CKP
: 0));
634 if (sp
->seg_flags
& (SEGM_CLEAN
| SEGM_CKP
))
638 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
639 * in which case we have to flush *all* buffers off of this vnode.
640 * We don't care about other nodes, but write any non-dirop nodes
641 * anyway in anticipation of another getnewvnode().
643 * If we're cleaning we only write cleaning and ifile blocks, and
644 * no dirops, since otherwise we'd risk corruption in a crash.
646 if (sp
->seg_flags
& SEGM_CLEAN
)
647 lfs_writevnodes(fs
, mp
, sp
, VN_CLEAN
);
648 else if (!(sp
->seg_flags
& SEGM_FORCE_CKP
)) {
650 um_error
= lfs_writevnodes(fs
, mp
, sp
, VN_REG
);
652 if (do_ckp
|| fs
->lfs_dirops
== 0) {
654 lfs_writer_enter(fs
, "lfs writer");
657 error
= lfs_writevnodes(fs
, mp
, sp
, VN_DIROP
);
660 /* In case writevnodes errored out */
661 lfs_flush_dirops(fs
);
662 ((SEGSUM
*)(sp
->segsum
))->ss_flags
&= ~(SS_CONT
);
663 lfs_finalize_fs_seguse(fs
);
665 if (do_ckp
&& um_error
) {
666 lfs_segunlock_relock(fs
);
669 } while (do_ckp
&& um_error
!= 0);
673 * If we are doing a checkpoint, mark everything since the
674 * last checkpoint as no longer ACTIVE.
676 if (do_ckp
|| fs
->lfs_doifile
) {
677 segleft
= fs
->lfs_nseg
;
679 for (n
= 0; n
< fs
->lfs_segtabsz
; n
++) {
681 if (bread(fs
->lfs_ivnode
, fs
->lfs_cleansz
+ n
,
682 fs
->lfs_bsize
, NOCRED
, B_MODIFY
, &bp
))
683 panic("lfs_segwrite: ifile read");
684 segusep
= (SEGUSE
*)bp
->b_data
;
685 maxseg
= min(segleft
, fs
->lfs_sepb
);
686 for (i
= 0; i
< maxseg
; i
++) {
688 if (sn
!= dtosn(fs
, fs
->lfs_curseg
) &&
689 segusep
->su_flags
& SEGUSE_ACTIVE
) {
690 segusep
->su_flags
&= ~SEGUSE_ACTIVE
;
694 fs
->lfs_suflags
[fs
->lfs_activesb
][sn
] =
696 if (fs
->lfs_version
> 1)
700 ((SEGUSE_V1
*)segusep
+ 1);
704 error
= LFS_BWRITE_LOG(bp
); /* Ifile */
707 segleft
-= fs
->lfs_sepb
;
708 curseg
+= fs
->lfs_sepb
;
712 KASSERT(LFS_SEGLOCK_HELD(fs
));
715 if (do_ckp
|| fs
->lfs_doifile
) {
717 vn_lock(vp
, LK_EXCLUSIVE
);
721 LFS_ENTER_LOG("pretend", __FILE__
, __LINE__
, 0, 0, curproc
->p_pid
);
723 mutex_enter(&lfs_lock
);
724 fs
->lfs_flags
&= ~LFS_IFDIRTY
;
725 mutex_exit(&lfs_lock
);
729 if (LIST_FIRST(&vp
->v_dirtyblkhd
) != NULL
) {
731 * Ifile has no pages, so we don't need
732 * to check error return here.
734 lfs_writefile(fs
, sp
, vp
);
736 * Ensure the Ifile takes the current segment
737 * into account. See comment in lfs_vflush.
739 lfs_writefile(fs
, sp
, vp
);
740 lfs_writefile(fs
, sp
, vp
);
743 if (ip
->i_flag
& IN_ALLMOD
)
746 redo
= (do_ckp
? lfs_writeinode(fs
, sp
, ip
) : 0);
748 redo
= lfs_writeinode(fs
, sp
, ip
);
750 redo
+= lfs_writeseg(fs
, sp
);
751 mutex_enter(&lfs_lock
);
752 redo
+= (fs
->lfs_flags
& LFS_IFDIRTY
);
753 mutex_exit(&lfs_lock
);
756 log(LOG_NOTICE
, "lfs_segwrite: looping count=%d\n",
759 } while (redo
&& do_ckp
);
762 * Unless we are unmounting, the Ifile may continue to have
763 * dirty blocks even after a checkpoint, due to changes to
764 * inodes' atime. If we're checkpointing, it's "impossible"
765 * for other parts of the Ifile to be dirty after the loop
766 * above, since we hold the segment lock.
768 mutex_enter(&vp
->v_interlock
);
769 if (LIST_EMPTY(&vp
->v_dirtyblkhd
)) {
770 LFS_CLR_UINO(ip
, IN_ALLMOD
);
775 LIST_FOREACH(bp
, &vp
->v_dirtyblkhd
, b_vnbufs
) {
776 if (bp
->b_lblkno
< fs
->lfs_cleansz
+
778 !(bp
->b_flags
& B_GATHERED
)) {
779 printf("ifile lbn %ld still dirty (flags %lx)\n",
786 panic("dirty blocks");
789 mutex_exit(&vp
->v_interlock
);
792 (void) lfs_writeseg(fs
, sp
);
795 /* Note Ifile no longer needs to be written */
798 lfs_writer_leave(fs
);
801 * If we didn't write the Ifile, we didn't really do anything.
802 * That means that (1) there is a checkpoint on disk and (2)
803 * nothing has changed since it was written.
805 * Take the flags off of the segment so that lfs_segunlock
806 * doesn't have to write the superblock either.
808 if (do_ckp
&& !did_ckp
) {
809 sp
->seg_flags
&= ~SEGM_CKP
;
814 if (sp
->seg_flags
& SEGM_SYNC
)
815 ++lfs_stats
.nsync_writes
;
816 if (sp
->seg_flags
& SEGM_CKP
)
817 ++lfs_stats
.ncheckpoints
;
824 * Write the dirty blocks associated with a vnode.
827 lfs_writefile(struct lfs
*fs
, struct segment
*sp
, struct vnode
*vp
)
839 lfs_acquire_finfo(fs
, ip
->i_number
, ip
->i_gen
);
841 if (vp
->v_uflag
& VU_DIROP
)
842 ((SEGSUM
*)(sp
->segsum
))->ss_flags
|= (SS_DIROP
|SS_CONT
);
844 if (sp
->seg_flags
& SEGM_CLEAN
) {
845 lfs_gather(fs
, sp
, vp
, lfs_match_fake
);
847 * For a file being flushed, we need to write *all* blocks.
848 * This means writing the cleaning blocks first, and then
849 * immediately following with any non-cleaning blocks.
850 * The same is true of the Ifile since checkpoints assume
851 * that all valid Ifile blocks are written.
853 if (IS_FLUSHING(fs
, vp
) || vp
== fs
->lfs_ivnode
) {
854 lfs_gather(fs
, sp
, vp
, lfs_match_data
);
856 * Don't call VOP_PUTPAGES: if we're flushing,
857 * we've already done it, and the Ifile doesn't
858 * use the page cache.
862 lfs_gather(fs
, sp
, vp
, lfs_match_data
);
864 * If we're flushing, we've already called VOP_PUTPAGES
865 * so don't do it again. Otherwise, we want to write
866 * everything we've got.
868 if (!IS_FLUSHING(fs
, vp
)) {
869 mutex_enter(&vp
->v_interlock
);
870 error
= VOP_PUTPAGES(vp
, 0, 0,
871 PGO_CLEANIT
| PGO_ALLPAGES
| PGO_LOCKED
);
876 * It may not be necessary to write the meta-data blocks at this point,
877 * as the roll-forward recovery code should be able to reconstruct the
880 * We have to write them anyway, though, under two conditions: (1) the
881 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
884 * BUT if we are cleaning, we might have indirect blocks that refer to
885 * new blocks not being written yet, in addition to fragments being
886 * moved out of a cleaned segment. If that is the case, don't
887 * write the indirect blocks, or the finfo will have a small block
888 * in the middle of it!
889 * XXX in this case isn't the inode size wrong too?
892 if (sp
->seg_flags
& SEGM_CLEAN
) {
893 for (i
= 0; i
< NDADDR
; i
++)
894 if (ip
->i_lfs_fragsize
[i
] > 0 &&
895 ip
->i_lfs_fragsize
[i
] < fs
->lfs_bsize
)
900 panic("lfs_writefile: more than one fragment!");
902 if (IS_FLUSHING(fs
, vp
) ||
903 (frag
== 0 && (lfs_writeindir
|| (sp
->seg_flags
& SEGM_CKP
)))) {
904 lfs_gather(fs
, sp
, vp
, lfs_match_indir
);
905 lfs_gather(fs
, sp
, vp
, lfs_match_dindir
);
906 lfs_gather(fs
, sp
, vp
, lfs_match_tindir
);
909 lfs_release_finfo(fs
);
915 * Update segment accounting to reflect this inode's change of address.
918 lfs_update_iaddr(struct lfs
*fs
, struct segment
*sp
, struct inode
*ip
, daddr_t ndaddr
)
925 int redo_ifile
, error
;
931 * If updating the ifile, update the super-block. Update the disk
932 * address and access times for this inode in the ifile.
935 if (ino
== LFS_IFILE_INUM
) {
936 daddr
= fs
->lfs_idaddr
;
937 fs
->lfs_idaddr
= dbtofsb(fs
, ndaddr
);
939 LFS_IENTRY(ifp
, fs
, ino
, bp
);
940 daddr
= ifp
->if_daddr
;
941 ifp
->if_daddr
= dbtofsb(fs
, ndaddr
);
942 error
= LFS_BWRITE_LOG(bp
); /* Ifile */
946 * If this is the Ifile and lfs_offset is set to the first block
947 * in the segment, dirty the new segment's accounting block
948 * (XXX should already be dirty?) and tell the caller to do it again.
950 if (ip
->i_number
== LFS_IFILE_INUM
) {
951 sn
= dtosn(fs
, fs
->lfs_offset
);
952 if (sntod(fs
, sn
) + btofsb(fs
, fs
->lfs_sumsize
) ==
954 LFS_SEGENTRY(sup
, fs
, sn
, bp
);
955 KASSERT(bp
->b_oflags
& BO_DELWRI
);
956 LFS_WRITESEGENTRY(sup
, fs
, sn
, bp
);
957 /* fs->lfs_flags |= LFS_IFDIRTY; */
963 * The inode's last address should not be in the current partial
964 * segment, except under exceptional circumstances (lfs_writevnodes
965 * had to start over, and in the meantime more blocks were written
966 * to a vnode). Both inodes will be accounted to this segment
967 * in lfs_writeseg so we need to subtract the earlier version
968 * here anyway. The segment count can temporarily dip below
969 * zero here; keep track of how many duplicates we have in
970 * "dupino" so we don't panic below.
972 if (daddr
>= fs
->lfs_lastpseg
&& daddr
<= fs
->lfs_offset
) {
974 DLOG((DLOG_SEG
, "lfs_writeinode: last inode addr in current pseg "
975 "(ino %d daddr 0x%llx) ndupino=%d\n", ino
,
976 (long long)daddr
, sp
->ndupino
));
979 * Account the inode: it no longer belongs to its former segment,
980 * though it will not belong to the new segment until that segment
981 * is actually written.
983 if (daddr
!= LFS_UNUSED_DADDR
) {
984 u_int32_t oldsn
= dtosn(fs
, daddr
);
986 int ndupino
= (sp
->seg_number
== oldsn
) ? sp
->ndupino
: 0;
988 LFS_SEGENTRY(sup
, fs
, oldsn
, bp
);
991 sizeof (struct ufs1_dinode
) * ndupino
992 < sizeof (struct ufs1_dinode
)) {
993 printf("lfs_writeinode: negative bytes "
994 "(segment %" PRIu32
" short by %d, "
995 "oldsn=%" PRIu32
", cursn=%" PRIu32
996 ", daddr=%" PRId64
", su_nbytes=%u, "
999 (int)sizeof (struct ufs1_dinode
) *
1000 (1 - sp
->ndupino
) - sup
->su_nbytes
,
1001 oldsn
, sp
->seg_number
, daddr
,
1002 (unsigned int)sup
->su_nbytes
,
1004 panic("lfs_writeinode: negative bytes");
1005 sup
->su_nbytes
= sizeof (struct ufs1_dinode
);
1008 DLOG((DLOG_SU
, "seg %d -= %d for ino %d inode\n",
1009 dtosn(fs
, daddr
), sizeof (struct ufs1_dinode
), ino
));
1010 sup
->su_nbytes
-= sizeof (struct ufs1_dinode
);
1012 (ino
== LFS_IFILE_INUM
&& !(bp
->b_flags
& B_GATHERED
));
1014 mutex_enter(&lfs_lock
);
1015 fs
->lfs_flags
|= LFS_IFDIRTY
;
1016 mutex_exit(&lfs_lock
);
1017 /* Don't double-account */
1018 fs
->lfs_idaddr
= 0x0;
1020 LFS_WRITESEGENTRY(sup
, fs
, oldsn
, bp
); /* Ifile */
1027 lfs_writeinode(struct lfs
*fs
, struct segment
*sp
, struct inode
*ip
)
1030 struct ufs1_dinode
*cdp
;
1032 int32_t *daddrp
; /* XXX ondisk32 */
1039 if (!(ip
->i_flag
& IN_ALLMOD
))
1042 /* Can't write ifile when writer is not set */
1043 KASSERT(ip
->i_number
!= LFS_IFILE_INUM
|| fs
->lfs_writer
> 0 ||
1044 (sp
->seg_flags
& SEGM_CLEAN
));
1047 * If this is the Ifile, see if writing it here will generate a
1048 * temporary misaccounting. If it will, do the accounting and write
1049 * the blocks, postponing the inode write until the accounting is
1053 while (ip
->i_number
== LFS_IFILE_INUM
) {
1056 if (sp
->idp
== NULL
&& sp
->ibp
== NULL
&&
1057 (sp
->seg_bytes_left
< fs
->lfs_ibsize
||
1058 sp
->sum_bytes_left
< sizeof(int32_t))) {
1059 (void) lfs_writeseg(fs
, sp
);
1063 /* Look for dirty Ifile blocks */
1064 LIST_FOREACH(bp
, &fs
->lfs_ivnode
->v_dirtyblkhd
, b_vnbufs
) {
1065 if (!(bp
->b_flags
& B_GATHERED
)) {
1072 redo
= lfs_update_iaddr(fs
, sp
, ip
, 0x0);
1077 sp
->idp
->di_inumber
= 0;
1082 log(LOG_NOTICE
, "lfs_writeinode: looping count=%d\n", count
);
1083 lfs_writefile(fs
, sp
, fs
->lfs_ivnode
);
1086 /* Allocate a new inode block if necessary. */
1087 if ((ip
->i_number
!= LFS_IFILE_INUM
|| sp
->idp
== NULL
) &&
1089 /* Allocate a new segment if necessary. */
1090 if (sp
->seg_bytes_left
< fs
->lfs_ibsize
||
1091 sp
->sum_bytes_left
< sizeof(int32_t))
1092 (void) lfs_writeseg(fs
, sp
);
1094 /* Get next inode block. */
1095 daddr
= fs
->lfs_offset
;
1096 fs
->lfs_offset
+= btofsb(fs
, fs
->lfs_ibsize
);
1097 sp
->ibp
= *sp
->cbpp
++ =
1098 getblk(VTOI(fs
->lfs_ivnode
)->i_devvp
,
1099 fsbtodb(fs
, daddr
), fs
->lfs_ibsize
, 0, 0);
1102 /* Zero out inode numbers */
1103 for (i
= 0; i
< INOPB(fs
); ++i
)
1104 ((struct ufs1_dinode
*)sp
->ibp
->b_data
)[i
].di_inumber
=
1108 fs
->lfs_avail
-= btofsb(fs
, fs
->lfs_ibsize
);
1109 /* Set remaining space counters. */
1110 sp
->seg_bytes_left
-= fs
->lfs_ibsize
;
1111 sp
->sum_bytes_left
-= sizeof(int32_t);
1112 ndx
= fs
->lfs_sumsize
/ sizeof(int32_t) -
1113 sp
->ninodes
/ INOPB(fs
) - 1;
1114 ((int32_t *)(sp
->segsum
))[ndx
] = daddr
;
1117 /* Check VU_DIROP in case there is a new file with no data blocks */
1118 if (ITOV(ip
)->v_uflag
& VU_DIROP
)
1119 ((SEGSUM
*)(sp
->segsum
))->ss_flags
|= (SS_DIROP
|SS_CONT
);
1121 /* Update the inode times and copy the inode onto the inode page. */
1122 /* XXX kludge --- don't redirty the ifile just to put times on it */
1123 if (ip
->i_number
!= LFS_IFILE_INUM
)
1124 LFS_ITIMES(ip
, NULL
, NULL
, NULL
);
1127 * If this is the Ifile, and we've already written the Ifile in this
1128 * partial segment, just overwrite it (it's not on disk yet) and
1131 * XXX we know that the bp that we get the second time around has
1132 * already been gathered.
1134 if (ip
->i_number
== LFS_IFILE_INUM
&& sp
->idp
) {
1135 *(sp
->idp
) = *ip
->i_din
.ffs1_din
;
1136 ip
->i_lfs_osize
= ip
->i_size
;
1141 cdp
= ((struct ufs1_dinode
*)bp
->b_data
) + (sp
->ninodes
% INOPB(fs
));
1142 *cdp
= *ip
->i_din
.ffs1_din
;
1145 * If cleaning, link counts and directory file sizes cannot change,
1146 * since those would be directory operations---even if the file
1147 * we are writing is marked VU_DIROP we should write the old values.
1148 * If we're not cleaning, of course, update the values so we get
1149 * current values the next time we clean.
1151 if (sp
->seg_flags
& SEGM_CLEAN
) {
1152 if (ITOV(ip
)->v_uflag
& VU_DIROP
) {
1153 cdp
->di_nlink
= ip
->i_lfs_odnlink
;
1154 /* if (ITOV(ip)->v_type == VDIR) */
1155 cdp
->di_size
= ip
->i_lfs_osize
;
1158 ip
->i_lfs_odnlink
= cdp
->di_nlink
;
1159 ip
->i_lfs_osize
= ip
->i_size
;
1163 /* We can finish the segment accounting for truncations now */
1164 lfs_finalize_ino_seguse(fs
, ip
);
1167 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1168 * addresses to disk; possibly change the on-disk record of
1169 * the inode size, either by reverting to the previous size
1170 * (in the case of cleaning) or by verifying the inode's block
1171 * holdings (in the case of files being allocated as they are being
1173 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1174 * XXX count on disk wrong by the same amount. We should be
1175 * XXX able to "borrow" from lfs_avail and return it after the
1176 * XXX Ifile is written. See also in lfs_writeseg.
1179 /* Check file size based on highest allocated block */
1180 if (((ip
->i_ffs1_mode
& IFMT
) == IFREG
||
1181 (ip
->i_ffs1_mode
& IFMT
) == IFDIR
) &&
1182 ip
->i_size
> ((ip
->i_lfs_hiblk
+ 1) << fs
->lfs_bshift
)) {
1183 cdp
->di_size
= (ip
->i_lfs_hiblk
+ 1) << fs
->lfs_bshift
;
1184 DLOG((DLOG_SEG
, "lfs_writeinode: ino %d size %" PRId64
" -> %"
1185 PRId64
"\n", (int)ip
->i_number
, ip
->i_size
, cdp
->di_size
));
1187 if (ip
->i_lfs_effnblks
!= ip
->i_ffs1_blocks
) {
1188 DLOG((DLOG_SEG
, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1189 " at %x\n", ip
->i_number
, ip
->i_lfs_effnblks
,
1190 ip
->i_ffs1_blocks
, fs
->lfs_offset
));
1191 for (daddrp
= cdp
->di_db
; daddrp
< cdp
->di_ib
+ NIADDR
;
1193 if (*daddrp
== UNWRITTEN
) {
1194 DLOG((DLOG_SEG
, "lfs_writeinode: wiping UNWRITTEN\n"));
1202 * Check dinode held blocks against dinode size.
1203 * This should be identical to the check in lfs_vget().
1205 for (i
= (cdp
->di_size
+ fs
->lfs_bsize
- 1) >> fs
->lfs_bshift
;
1208 if ((cdp
->di_mode
& IFMT
) == IFLNK
)
1210 if (((cdp
->di_mode
& IFMT
) == IFBLK
||
1211 (cdp
->di_mode
& IFMT
) == IFCHR
) && i
== 0)
1213 if (cdp
->di_db
[i
] != 0) {
1215 lfs_dump_dinode(cdp
);
1217 panic("writing inconsistent inode");
1220 #endif /* DIAGNOSTIC */
1222 if (ip
->i_flag
& IN_CLEANING
)
1223 LFS_CLR_UINO(ip
, IN_CLEANING
);
1226 LFS_CLR_UINO(ip
, IN_ACCESSED
| IN_ACCESS
| IN_CHANGE
|
1227 IN_UPDATE
| IN_MODIFY
);
1228 if (ip
->i_lfs_effnblks
== ip
->i_ffs1_blocks
)
1229 LFS_CLR_UINO(ip
, IN_MODIFIED
);
1231 DLOG((DLOG_VNODE
, "lfs_writeinode: ino %d: real "
1232 "blks=%d, eff=%d\n", ip
->i_number
,
1233 ip
->i_ffs1_blocks
, ip
->i_lfs_effnblks
));
1237 if (ip
->i_number
== LFS_IFILE_INUM
) {
1238 /* We know sp->idp == NULL */
1239 sp
->idp
= ((struct ufs1_dinode
*)bp
->b_data
) +
1240 (sp
->ninodes
% INOPB(fs
));
1242 /* Not dirty any more */
1243 mutex_enter(&lfs_lock
);
1244 fs
->lfs_flags
&= ~LFS_IFDIRTY
;
1245 mutex_exit(&lfs_lock
);
1249 mutex_enter(&bufcache_lock
);
1252 mutex_exit(&bufcache_lock
);
1255 /* Increment inode count in segment summary block. */
1256 ++((SEGSUM
*)(sp
->segsum
))->ss_ninos
;
1258 /* If this page is full, set flag to allocate a new page. */
1259 if (++sp
->ninodes
% INOPB(fs
) == 0)
1262 redo_ifile
= lfs_update_iaddr(fs
, sp
, ip
, bp
->b_blkno
);
1264 KASSERT(redo_ifile
== 0);
1265 return (redo_ifile
);
1269 lfs_gatherblock(struct segment
*sp
, struct buf
*bp
, kmutex_t
*mptr
)
1275 ASSERT_SEGLOCK(sp
->fs
);
1277 * If full, finish this segment. We may be doing I/O, so
1278 * release and reacquire the splbio().
1282 panic ("lfs_gatherblock: Null vp in segment");
1285 blksinblk
= howmany(bp
->b_bcount
, fs
->lfs_bsize
);
1286 if (sp
->sum_bytes_left
< sizeof(int32_t) * blksinblk
||
1287 sp
->seg_bytes_left
< bp
->b_bcount
) {
1292 vers
= sp
->fip
->fi_version
;
1293 (void) lfs_writeseg(fs
, sp
);
1295 /* Add the current file to the segment summary. */
1296 lfs_acquire_finfo(fs
, VTOI(sp
->vp
)->i_number
, vers
);
1303 if (bp
->b_flags
& B_GATHERED
) {
1304 DLOG((DLOG_SEG
, "lfs_gatherblock: already gathered! Ino %d,"
1305 " lbn %" PRId64
"\n",
1306 sp
->fip
->fi_ino
, bp
->b_lblkno
));
1310 /* Insert into the buffer list, update the FINFO block. */
1311 bp
->b_flags
|= B_GATHERED
;
1314 for (j
= 0; j
< blksinblk
; j
++) {
1315 sp
->fip
->fi_blocks
[sp
->fip
->fi_nblocks
++] = bp
->b_lblkno
+ j
;
1316 /* This block's accounting moves from lfs_favail to lfs_avail */
1317 lfs_deregister_block(sp
->vp
, bp
->b_lblkno
+ j
);
1320 sp
->sum_bytes_left
-= sizeof(int32_t) * blksinblk
;
1321 sp
->seg_bytes_left
-= bp
->b_bcount
;
1326 lfs_gather(struct lfs
*fs
, struct segment
*sp
, struct vnode
*vp
,
1327 int (*match
)(struct lfs
*, struct buf
*))
1329 struct buf
*bp
, *nbp
;
1333 if (vp
->v_type
== VBLK
)
1335 KASSERT(sp
->vp
== NULL
);
1337 mutex_enter(&bufcache_lock
);
1339 #ifndef LFS_NO_BACKBUF_HACK
1340 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1341 # define BUF_OFFSET \
1342 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1343 # define BACK_BUF(BP) \
1344 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1345 # define BEG_OF_LIST \
1346 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1349 /* Find last buffer. */
1350 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
);
1351 bp
&& LIST_NEXT(bp
, b_vnbufs
) != NULL
;
1352 bp
= LIST_NEXT(bp
, b_vnbufs
))
1354 for (; bp
&& bp
!= BEG_OF_LIST
; bp
= nbp
) {
1356 #else /* LFS_NO_BACKBUF_HACK */
1358 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
); bp
; bp
= nbp
) {
1359 nbp
= LIST_NEXT(bp
, b_vnbufs
);
1360 #endif /* LFS_NO_BACKBUF_HACK */
1361 if ((bp
->b_cflags
& BC_BUSY
) != 0 ||
1362 (bp
->b_flags
& B_GATHERED
) != 0 || !match(fs
, bp
)) {
1364 if (vp
== fs
->lfs_ivnode
&&
1365 (bp
->b_cflags
& BC_BUSY
) != 0 &&
1366 (bp
->b_flags
& B_GATHERED
) == 0)
1367 log(LOG_NOTICE
, "lfs_gather: ifile lbn %"
1368 PRId64
" busy (%x) at 0x%x",
1369 bp
->b_lblkno
, bp
->b_flags
,
1370 (unsigned)fs
->lfs_offset
);
1375 # ifdef LFS_USE_B_INVAL
1376 if ((bp
->b_flags
& BC_INVAL
) != 0 && bp
->b_iodone
== NULL
) {
1377 DLOG((DLOG_SEG
, "lfs_gather: lbn %" PRId64
1378 " is BC_INVAL\n", bp
->b_lblkno
));
1379 VOP_PRINT(bp
->b_vp
);
1381 # endif /* LFS_USE_B_INVAL */
1382 if (!(bp
->b_oflags
& BO_DELWRI
))
1383 panic("lfs_gather: bp not BO_DELWRI");
1384 if (!(bp
->b_flags
& B_LOCKED
)) {
1385 DLOG((DLOG_SEG
, "lfs_gather: lbn %" PRId64
1386 " blk %" PRId64
" not B_LOCKED\n",
1388 dbtofsb(fs
, bp
->b_blkno
)));
1389 VOP_PRINT(bp
->b_vp
);
1390 panic("lfs_gather: bp not B_LOCKED");
1393 if (lfs_gatherblock(sp
, bp
, &bufcache_lock
)) {
1398 mutex_exit(&bufcache_lock
);
1400 KASSERT(sp
->vp
== vp
);
1406 # define DEBUG_OOFF(n) do { \
1408 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1409 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1410 ", was 0x0 (or %" PRId64 ")\n", \
1411 (n), ip->i_number, lbn, ndaddr, daddr)); \
1415 # define DEBUG_OOFF(n)
1419 * Change the given block's address to ndaddr, finding its previous
1420 * location using ufs_bmaparray().
1422 * Account for this change in the segment table.
1424 * called with sp == NULL by roll-forwarding code.
1427 lfs_update_single(struct lfs
*fs
, struct segment
*sp
,
1428 struct vnode
*vp
, daddr_t lbn
, int32_t ndaddr
, int size
)
1432 struct indir a
[NIADDR
+ 2], *ap
;
1434 daddr_t daddr
, ooff
;
1439 KASSERT(sp
== NULL
|| sp
->vp
== vp
);
1442 error
= ufs_bmaparray(vp
, lbn
, &daddr
, a
, &num
, NULL
, NULL
);
1444 panic("lfs_updatemeta: ufs_bmaparray returned %d", error
);
1446 daddr
= (daddr_t
)((int32_t)daddr
); /* XXX ondisk32 */
1447 KASSERT(daddr
<= LFS_MAX_DADDR
);
1449 daddr
= dbtofsb(fs
, daddr
);
1451 bb
= fragstofsb(fs
, numfrags(fs
, size
));
1454 ooff
= ip
->i_ffs1_db
[lbn
];
1456 if (ooff
== UNWRITTEN
)
1457 ip
->i_ffs1_blocks
+= bb
;
1459 /* possible fragment truncation or extension */
1460 obb
= btofsb(fs
, ip
->i_lfs_fragsize
[lbn
]);
1461 ip
->i_ffs1_blocks
+= (bb
- obb
);
1463 ip
->i_ffs1_db
[lbn
] = ndaddr
;
1466 ooff
= ip
->i_ffs1_ib
[a
[0].in_off
];
1468 if (ooff
== UNWRITTEN
)
1469 ip
->i_ffs1_blocks
+= bb
;
1470 ip
->i_ffs1_ib
[a
[0].in_off
] = ndaddr
;
1474 if (bread(vp
, ap
->in_lbn
, fs
->lfs_bsize
, NOCRED
,
1476 panic("lfs_updatemeta: bread bno %" PRId64
,
1480 ooff
= ((int32_t *)bp
->b_data
)[ap
->in_off
];
1482 if (ooff
== UNWRITTEN
)
1483 ip
->i_ffs1_blocks
+= bb
;
1485 ((int32_t *)bp
->b_data
)[ap
->in_off
] = ndaddr
;
1486 (void) VOP_BWRITE(bp
);
1489 KASSERT(ooff
== 0 || ooff
== UNWRITTEN
|| ooff
== daddr
);
1491 /* Update hiblk when extending the file */
1492 if (lbn
> ip
->i_lfs_hiblk
)
1493 ip
->i_lfs_hiblk
= lbn
;
1496 * Though we'd rather it couldn't, this *can* happen right now
1497 * if cleaning blocks and regular blocks coexist.
1499 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1502 * Update segment usage information, based on old size
1506 u_int32_t oldsn
= dtosn(fs
, daddr
);
1510 if (sp
&& sp
->seg_number
== oldsn
) {
1511 ndupino
= sp
->ndupino
;
1516 KASSERT(oldsn
< fs
->lfs_nseg
);
1517 if (lbn
>= 0 && lbn
< NDADDR
)
1518 osize
= ip
->i_lfs_fragsize
[lbn
];
1520 osize
= fs
->lfs_bsize
;
1521 LFS_SEGENTRY(sup
, fs
, oldsn
, bp
);
1523 if (sup
->su_nbytes
+ sizeof (struct ufs1_dinode
) * ndupino
1525 printf("lfs_updatemeta: negative bytes "
1526 "(segment %" PRIu32
" short by %" PRId64
1527 ")\n", dtosn(fs
, daddr
),
1529 (sizeof (struct ufs1_dinode
) * ndupino
+
1531 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1532 ", addr = 0x%" PRIx64
"\n",
1533 (unsigned long long)ip
->i_number
, lbn
, daddr
);
1534 printf("lfs_updatemeta: ndupino=%d\n", ndupino
);
1535 panic("lfs_updatemeta: negative bytes");
1536 sup
->su_nbytes
= osize
-
1537 sizeof (struct ufs1_dinode
) * ndupino
;
1540 DLOG((DLOG_SU
, "seg %" PRIu32
" -= %d for ino %d lbn %" PRId64
1541 " db 0x%" PRIx64
"\n",
1542 dtosn(fs
, daddr
), osize
,
1543 ip
->i_number
, lbn
, daddr
));
1544 sup
->su_nbytes
-= osize
;
1545 if (!(bp
->b_flags
& B_GATHERED
)) {
1546 mutex_enter(&lfs_lock
);
1547 fs
->lfs_flags
|= LFS_IFDIRTY
;
1548 mutex_exit(&lfs_lock
);
1550 LFS_WRITESEGENTRY(sup
, fs
, oldsn
, bp
);
1553 * Now that this block has a new address, and its old
1554 * segment no longer owns it, we can forget about its
1557 if (lbn
>= 0 && lbn
< NDADDR
)
1558 ip
->i_lfs_fragsize
[lbn
] = size
;
1562 * Update the metadata that points to the blocks listed in the FINFO
1566 lfs_updatemeta(struct segment
*sp
)
1572 int i
, nblocks
, num
;
1574 int bytesleft
, size
;
1576 ASSERT_SEGLOCK(sp
->fs
);
1578 nblocks
= &sp
->fip
->fi_blocks
[sp
->fip
->fi_nblocks
] - sp
->start_lbp
;
1579 KASSERT(nblocks
>= 0);
1580 KASSERT(vp
!= NULL
);
1585 * This count may be high due to oversize blocks from lfs_gop_write.
1586 * Correct for this. (XXX we should be able to keep track of these.)
1589 for (i
= 0; i
< nblocks
; i
++) {
1590 if (sp
->start_bpp
[i
] == NULL
) {
1591 DLOG((DLOG_SEG
, "lfs_updatemeta: nblocks = %d, not %d\n", i
, nblocks
));
1595 num
= howmany(sp
->start_bpp
[i
]->b_bcount
, fs
->lfs_bsize
);
1596 KASSERT(sp
->start_bpp
[i
]->b_lblkno
>= 0 || num
== 1);
1600 KASSERT(vp
->v_type
== VREG
||
1601 nblocks
== &sp
->fip
->fi_blocks
[sp
->fip
->fi_nblocks
] - sp
->start_lbp
);
1602 KASSERT(nblocks
== sp
->cbpp
- sp
->start_bpp
);
1607 * We have to sort even if the blocks come from the
1608 * cleaner, because there might be other pending blocks on the
1609 * same inode...and if we don't sort, and there are fragments
1610 * present, blocks may be written in the wrong place.
1612 lfs_shellsort(sp
->start_bpp
, sp
->start_lbp
, nblocks
, fs
->lfs_bsize
);
1615 * Record the length of the last block in case it's a fragment.
1616 * If there are indirect blocks present, they sort last. An
1617 * indirect block will be lfs_bsize and its presence indicates
1618 * that you cannot have fragments.
1620 * XXX This last is a lie. A cleaned fragment can coexist with
1621 * XXX a later indirect block. This will continue to be
1622 * XXX true until lfs_markv is fixed to do everything with
1623 * XXX fake blocks (including fake inodes and fake indirect blocks).
1625 sp
->fip
->fi_lastlength
= ((sp
->start_bpp
[nblocks
- 1]->b_bcount
- 1) &
1629 * Assign disk addresses, and update references to the logical
1630 * block and the segment usage information.
1632 for (i
= nblocks
; i
--; ++sp
->start_bpp
) {
1633 sbp
= *sp
->start_bpp
;
1634 lbn
= *sp
->start_lbp
;
1635 KASSERT(sbp
->b_lblkno
== lbn
);
1637 sbp
->b_blkno
= fsbtodb(fs
, fs
->lfs_offset
);
1640 * If we write a frag in the wrong place, the cleaner won't
1641 * be able to correctly identify its size later, and the
1642 * segment will be uncleanable. (Even worse, it will assume
1643 * that the indirect block that actually ends the list
1644 * is of a smaller size!)
1646 if ((sbp
->b_bcount
& fs
->lfs_bmask
) && i
!= 0)
1647 panic("lfs_updatemeta: fragment is not last block");
1650 * For each subblock in this possibly oversized block,
1651 * update its address on disk.
1653 KASSERT(lbn
>= 0 || sbp
->b_bcount
== fs
->lfs_bsize
);
1654 KASSERT(vp
== sbp
->b_vp
);
1655 for (bytesleft
= sbp
->b_bcount
; bytesleft
> 0;
1656 bytesleft
-= fs
->lfs_bsize
) {
1657 size
= MIN(bytesleft
, fs
->lfs_bsize
);
1658 bb
= fragstofsb(fs
, numfrags(fs
, size
));
1659 lbn
= *sp
->start_lbp
++;
1660 lfs_update_single(fs
, sp
, sp
->vp
, lbn
, fs
->lfs_offset
,
1662 fs
->lfs_offset
+= bb
;
1667 /* This inode has been modified */
1668 LFS_SET_UINO(VTOI(vp
), IN_MODIFIED
);
1672 * Move lfs_offset to a segment earlier than sn.
1675 lfs_rewind(struct lfs
*fs
, int newsn
)
1677 int sn
, osn
, isdirty
;
1683 osn
= dtosn(fs
, fs
->lfs_offset
);
1687 /* lfs_avail eats the remaining space in this segment */
1688 fs
->lfs_avail
-= fs
->lfs_fsbpseg
- (fs
->lfs_offset
- fs
->lfs_curseg
);
1690 /* Find a low-numbered segment */
1691 for (sn
= 0; sn
< fs
->lfs_nseg
; ++sn
) {
1692 LFS_SEGENTRY(sup
, fs
, sn
, bp
);
1693 isdirty
= sup
->su_flags
& SEGUSE_DIRTY
;
1699 if (sn
== fs
->lfs_nseg
)
1700 panic("lfs_rewind: no clean segments");
1701 if (newsn
>= 0 && sn
>= newsn
)
1703 fs
->lfs_nextseg
= sn
;
1705 fs
->lfs_offset
= fs
->lfs_curseg
;
1711 * Start a new partial segment.
1713 * Return 1 when we entered to a new segment.
1714 * Otherwise, return 0.
1717 lfs_initseg(struct lfs
*fs
)
1719 struct segment
*sp
= fs
->lfs_sp
;
1721 struct buf
*sbp
; /* buffer for SEGSUM */
1722 int repeat
= 0; /* return value */
1725 /* Advance to the next segment. */
1726 if (!LFS_PARTIAL_FITS(fs
)) {
1730 /* lfs_avail eats the remaining space */
1731 fs
->lfs_avail
-= fs
->lfs_fsbpseg
- (fs
->lfs_offset
-
1733 /* Wake up any cleaning procs waiting on this file system. */
1734 lfs_wakeup_cleaner(fs
);
1737 fs
->lfs_offset
= fs
->lfs_curseg
;
1739 sp
->seg_number
= dtosn(fs
, fs
->lfs_curseg
);
1740 sp
->seg_bytes_left
= fsbtob(fs
, fs
->lfs_fsbpseg
);
1743 * If the segment contains a superblock, update the offset
1744 * and summary address to skip over it.
1746 LFS_SEGENTRY(sup
, fs
, sp
->seg_number
, bp
);
1747 if (sup
->su_flags
& SEGUSE_SUPERBLOCK
) {
1748 fs
->lfs_offset
+= btofsb(fs
, LFS_SBPAD
);
1749 sp
->seg_bytes_left
-= LFS_SBPAD
;
1752 /* Segment zero could also contain the labelpad */
1753 if (fs
->lfs_version
> 1 && sp
->seg_number
== 0 &&
1754 fs
->lfs_start
< btofsb(fs
, LFS_LABELPAD
)) {
1756 btofsb(fs
, LFS_LABELPAD
) - fs
->lfs_start
;
1757 sp
->seg_bytes_left
-=
1758 LFS_LABELPAD
- fsbtob(fs
, fs
->lfs_start
);
1761 sp
->seg_number
= dtosn(fs
, fs
->lfs_curseg
);
1762 sp
->seg_bytes_left
= fsbtob(fs
, fs
->lfs_fsbpseg
-
1763 (fs
->lfs_offset
- fs
->lfs_curseg
));
1765 fs
->lfs_lastpseg
= fs
->lfs_offset
;
1767 /* Record first address of this partial segment */
1768 if (sp
->seg_flags
& SEGM_CLEAN
) {
1769 fs
->lfs_cleanint
[fs
->lfs_cleanind
] = fs
->lfs_offset
;
1770 if (++fs
->lfs_cleanind
>= LFS_MAX_CLEANIND
) {
1771 /* "1" is the artificial inc in lfs_seglock */
1772 mutex_enter(&lfs_lock
);
1773 while (fs
->lfs_iocount
> 1) {
1774 mtsleep(&fs
->lfs_iocount
, PRIBIO
+ 1,
1775 "lfs_initseg", 0, &lfs_lock
);
1777 mutex_exit(&lfs_lock
);
1778 fs
->lfs_cleanind
= 0;
1790 /* Get a new buffer for SEGSUM */
1791 sbp
= lfs_newbuf(fs
, VTOI(fs
->lfs_ivnode
)->i_devvp
,
1792 fsbtodb(fs
, fs
->lfs_offset
), fs
->lfs_sumsize
, LFS_NB_SUMMARY
);
1794 /* ... and enter it into the buffer list. */
1797 fs
->lfs_offset
+= btofsb(fs
, fs
->lfs_sumsize
);
1799 sp
->start_bpp
= sp
->cbpp
;
1801 /* Set point to SEGSUM, initialize it. */
1802 ssp
= sp
->segsum
= sbp
->b_data
;
1803 memset(ssp
, 0, fs
->lfs_sumsize
);
1804 ssp
->ss_next
= fs
->lfs_nextseg
;
1805 ssp
->ss_nfinfo
= ssp
->ss_ninos
= 0;
1806 ssp
->ss_magic
= SS_MAGIC
;
1808 /* Set pointer to first FINFO, initialize it. */
1809 sp
->fip
= (struct finfo
*)((char *)sp
->segsum
+ SEGSUM_SIZE(fs
));
1810 sp
->fip
->fi_nblocks
= 0;
1811 sp
->start_lbp
= &sp
->fip
->fi_blocks
[0];
1812 sp
->fip
->fi_lastlength
= 0;
1814 sp
->seg_bytes_left
-= fs
->lfs_sumsize
;
1815 sp
->sum_bytes_left
= fs
->lfs_sumsize
- SEGSUM_SIZE(fs
);
1821 * Remove SEGUSE_INVAL from all segments.
1824 lfs_unset_inval_all(struct lfs
*fs
)
1830 for (i
= 0; i
< fs
->lfs_nseg
; i
++) {
1831 LFS_SEGENTRY(sup
, fs
, i
, bp
);
1832 if (sup
->su_flags
& SEGUSE_INVAL
) {
1833 sup
->su_flags
&= ~SEGUSE_INVAL
;
1834 LFS_WRITESEGENTRY(sup
, fs
, i
, bp
);
1841 * Return the next segment to write.
1844 lfs_newseg(struct lfs
*fs
)
1849 int curseg
, isdirty
, sn
, skip_inval
;
1853 /* Honor LFCNWRAPSTOP */
1854 mutex_enter(&lfs_lock
);
1855 while (fs
->lfs_nextseg
< fs
->lfs_curseg
&& fs
->lfs_nowrap
) {
1856 if (fs
->lfs_wrappass
) {
1857 log(LOG_NOTICE
, "%s: wrappass=%d\n",
1858 fs
->lfs_fsmnt
, fs
->lfs_wrappass
);
1859 fs
->lfs_wrappass
= 0;
1862 fs
->lfs_wrapstatus
= LFS_WRAP_WAITING
;
1863 wakeup(&fs
->lfs_nowrap
);
1864 log(LOG_NOTICE
, "%s: waiting at log wrap\n", fs
->lfs_fsmnt
);
1865 mtsleep(&fs
->lfs_wrappass
, PVFS
, "newseg", 10 * hz
,
1868 fs
->lfs_wrapstatus
= LFS_WRAP_GOING
;
1869 mutex_exit(&lfs_lock
);
1871 LFS_SEGENTRY(sup
, fs
, dtosn(fs
, fs
->lfs_nextseg
), bp
);
1872 DLOG((DLOG_SU
, "lfs_newseg: seg %d := 0 in newseg\n",
1873 dtosn(fs
, fs
->lfs_nextseg
)));
1874 sup
->su_flags
|= SEGUSE_DIRTY
| SEGUSE_ACTIVE
;
1878 LFS_WRITESEGENTRY(sup
, fs
, dtosn(fs
, fs
->lfs_nextseg
), bp
);
1880 LFS_CLEANERINFO(cip
, fs
, bp
);
1883 fs
->lfs_nclean
= cip
->clean
;
1884 LFS_SYNC_CLEANERINFO(cip
, fs
, bp
, 1);
1886 fs
->lfs_lastseg
= fs
->lfs_curseg
;
1887 fs
->lfs_curseg
= fs
->lfs_nextseg
;
1889 for (sn
= curseg
= dtosn(fs
, fs
->lfs_curseg
) + fs
->lfs_interleave
;;) {
1890 sn
= (sn
+ 1) % fs
->lfs_nseg
;
1896 panic("lfs_nextseg: no clean segments");
1898 LFS_SEGENTRY(sup
, fs
, sn
, bp
);
1899 isdirty
= sup
->su_flags
& (SEGUSE_DIRTY
| (skip_inval
? SEGUSE_INVAL
: 0));
1900 /* Check SEGUSE_EMPTY as we go along */
1901 if (isdirty
&& sup
->su_nbytes
== 0 &&
1902 !(sup
->su_flags
& SEGUSE_EMPTY
))
1903 LFS_WRITESEGENTRY(sup
, fs
, sn
, bp
);
1910 if (skip_inval
== 0)
1911 lfs_unset_inval_all(fs
);
1914 fs
->lfs_nextseg
= sntod(fs
, sn
);
1916 ++lfs_stats
.segsused
;
1921 lfs_newclusterbuf(struct lfs
*fs
, struct vnode
*vp
, daddr_t addr
,
1924 struct lfs_cluster
*cl
;
1925 struct buf
**bpp
, *bp
;
1928 cl
= (struct lfs_cluster
*)pool_get(&fs
->lfs_clpool
, PR_WAITOK
);
1929 bpp
= (struct buf
**)pool_get(&fs
->lfs_bpppool
, PR_WAITOK
);
1930 memset(cl
, 0, sizeof(*cl
));
1936 /* If this segment is being written synchronously, note that */
1937 if (fs
->lfs_sp
->seg_flags
& SEGM_SYNC
) {
1938 cl
->flags
|= LFS_CL_SYNC
;
1939 cl
->seg
= fs
->lfs_sp
;
1940 ++cl
->seg
->seg_iocount
;
1943 /* Get an empty buffer header, or maybe one with something on it */
1944 bp
= getiobuf(vp
, true);
1946 bp
->b_blkno
= bp
->b_lblkno
= addr
;
1947 bp
->b_iodone
= lfs_cluster_callback
;
1954 lfs_writeseg(struct lfs
*fs
, struct segment
*sp
)
1956 struct buf
**bpp
, *bp
, *cbp
, *newbp
, *unbusybp
;
1960 int do_again
, nblocks
, byteoffset
;
1962 struct lfs_cluster
*cl
;
1964 struct vnode
*devvp
;
1967 int32_t *daddrp
; /* XXX ondisk32 */
1977 ssp
= (SEGSUM
*)sp
->segsum
;
1980 * If there are no buffers other than the segment summary to write,
1981 * don't do anything. If we are the end of a dirop sequence, however,
1982 * write the empty segment summary anyway, to help out the
1983 * roll-forward agent.
1985 if ((nblocks
= sp
->cbpp
- sp
->bpp
) == 1) {
1986 if ((ssp
->ss_flags
& (SS_DIROP
| SS_CONT
)) != SS_DIROP
)
1990 /* Note if partial segment is being written by the cleaner */
1991 if (sp
->seg_flags
& SEGM_CLEAN
)
1992 ssp
->ss_flags
|= SS_CLEAN
;
1994 devvp
= VTOI(fs
->lfs_ivnode
)->i_devvp
;
1996 /* Update the segment usage information. */
1997 LFS_SEGENTRY(sup
, fs
, sp
->seg_number
, bp
);
1999 /* Loop through all blocks, except the segment summary. */
2000 for (bpp
= sp
->bpp
; ++bpp
< sp
->cbpp
; ) {
2001 if ((*bpp
)->b_vp
!= devvp
) {
2002 sup
->su_nbytes
+= (*bpp
)->b_bcount
;
2003 DLOG((DLOG_SU
, "seg %" PRIu32
" += %ld for ino %d"
2004 " lbn %" PRId64
" db 0x%" PRIx64
"\n",
2005 sp
->seg_number
, (*bpp
)->b_bcount
,
2006 VTOI((*bpp
)->b_vp
)->i_number
, (*bpp
)->b_lblkno
,
2012 /* Check for zero-length and zero-version FINFO entries. */
2013 fip
= (struct finfo
*)((char *)ssp
+ SEGSUM_SIZE(fs
));
2014 for (findex
= 0; findex
< ssp
->ss_nfinfo
; findex
++) {
2015 KDASSERT(fip
->fi_nblocks
> 0);
2016 KDASSERT(fip
->fi_version
> 0);
2017 fip
= (FINFO
*)((char *)fip
+ FINFOSIZE
+
2018 sizeof(int32_t) * fip
->fi_nblocks
);
2022 ninos
= (ssp
->ss_ninos
+ INOPB(fs
) - 1) / INOPB(fs
);
2023 DLOG((DLOG_SU
, "seg %d += %d for %d inodes\n",
2024 sp
->seg_number
, ssp
->ss_ninos
* sizeof (struct ufs1_dinode
),
2026 sup
->su_nbytes
+= ssp
->ss_ninos
* sizeof (struct ufs1_dinode
);
2027 /* sup->su_nbytes += fs->lfs_sumsize; */
2028 if (fs
->lfs_version
== 1)
2029 sup
->su_olastmod
= time_second
;
2031 sup
->su_lastmod
= time_second
;
2032 sup
->su_ninos
+= ninos
;
2034 fs
->lfs_avail
-= btofsb(fs
, fs
->lfs_sumsize
);
2036 do_again
= !(bp
->b_flags
& B_GATHERED
);
2037 LFS_WRITESEGENTRY(sup
, fs
, sp
->seg_number
, bp
); /* Ifile */
2040 * Mark blocks B_BUSY, to prevent then from being changed between
2041 * the checksum computation and the actual write.
2043 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2044 * there are any, replace them with copies that have UNASSIGNED
2047 mutex_enter(&bufcache_lock
);
2048 for (bpp
= sp
->bpp
, i
= nblocks
- 1; i
--;) {
2051 if (bp
->b_iodone
!= NULL
) { /* UBC or malloced buffer */
2052 bp
->b_cflags
|= BC_BUSY
;
2056 while (bp
->b_cflags
& BC_BUSY
) {
2057 DLOG((DLOG_SEG
, "lfs_writeseg: avoiding potential"
2058 " data summary corruption for ino %d, lbn %"
2060 VTOI(bp
->b_vp
)->i_number
, bp
->b_lblkno
));
2061 bp
->b_cflags
|= BC_WANTED
;
2062 cv_wait(&bp
->b_busy
, &bufcache_lock
);
2064 bp
->b_cflags
|= BC_BUSY
;
2065 mutex_exit(&bufcache_lock
);
2069 * Check and replace indirect block UNWRITTEN bogosity.
2070 * XXX See comment in lfs_writefile.
2072 if (bp
->b_lblkno
< 0 && bp
->b_vp
!= devvp
&& bp
->b_vp
&&
2073 VTOI(bp
->b_vp
)->i_ffs1_blocks
!=
2074 VTOI(bp
->b_vp
)->i_lfs_effnblks
) {
2075 DLOG((DLOG_VNODE
, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2076 VTOI(bp
->b_vp
)->i_number
,
2077 VTOI(bp
->b_vp
)->i_lfs_effnblks
,
2078 VTOI(bp
->b_vp
)->i_ffs1_blocks
));
2079 /* Make a copy we'll make changes to */
2080 newbp
= lfs_newbuf(fs
, bp
->b_vp
, bp
->b_lblkno
,
2081 bp
->b_bcount
, LFS_NB_IBLOCK
);
2082 newbp
->b_blkno
= bp
->b_blkno
;
2083 memcpy(newbp
->b_data
, bp
->b_data
,
2088 for (daddrp
= (int32_t *)(newbp
->b_data
);
2089 daddrp
< (int32_t *)((char *)newbp
->b_data
+
2090 newbp
->b_bcount
); daddrp
++) {
2091 if (*daddrp
== UNWRITTEN
) {
2097 * Get rid of the old buffer. Don't mark it clean,
2098 * though, if it still has dirty data on it.
2101 DLOG((DLOG_SEG
, "lfs_writeseg: replacing UNWRITTEN(%d):"
2102 " bp = %p newbp = %p\n", changed
, bp
,
2105 bp
->b_flags
&= ~B_GATHERED
;
2107 if (bp
->b_iodone
!= NULL
) {
2108 DLOG((DLOG_SEG
, "lfs_writeseg: "
2109 "indir bp should not be B_CALL\n"));
2113 /* Still on free list, leave it there */
2116 * We have to re-decrement lfs_avail
2117 * since this block is going to come
2118 * back around to us in the next
2122 btofsb(fs
, bp
->b_bcount
);
2125 lfs_freebuf(fs
, newbp
);
2128 mutex_enter(&bufcache_lock
);
2129 if (unbusybp
!= NULL
) {
2130 unbusybp
->b_cflags
&= ~BC_BUSY
;
2131 if (unbusybp
->b_cflags
& BC_WANTED
)
2132 cv_broadcast(&bp
->b_busy
);
2135 mutex_exit(&bufcache_lock
);
2138 * Compute checksum across data and then across summary; the first
2139 * block (the summary block) is skipped. Set the create time here
2140 * so that it's guaranteed to be later than the inode mod times.
2143 if (fs
->lfs_version
== 1)
2144 el_size
= sizeof(u_long
);
2146 el_size
= sizeof(u_int32_t
);
2147 for (bpp
= sp
->bpp
, i
= nblocks
- 1; i
--; ) {
2149 /* Loop through gop_write cluster blocks */
2150 for (byteoffset
= 0; byteoffset
< (*bpp
)->b_bcount
;
2151 byteoffset
+= fs
->lfs_bsize
) {
2152 #ifdef LFS_USE_B_INVAL
2153 if (((*bpp
)->b_cflags
& BC_INVAL
) != 0 &&
2154 (*bpp
)->b_iodone
!= NULL
) {
2155 if (copyin((void *)(*bpp
)->b_saveaddr
+
2156 byteoffset
, dp
, el_size
)) {
2157 panic("lfs_writeseg: copyin failed [1]:"
2158 " ino %d blk %" PRId64
,
2159 VTOI((*bpp
)->b_vp
)->i_number
,
2163 #endif /* LFS_USE_B_INVAL */
2165 sum
= lfs_cksum_part((char *)
2166 (*bpp
)->b_data
+ byteoffset
, el_size
, sum
);
2170 if (fs
->lfs_version
== 1)
2171 ssp
->ss_ocreate
= time_second
;
2173 ssp
->ss_create
= time_second
;
2174 ssp
->ss_serial
= ++fs
->lfs_serial
;
2175 ssp
->ss_ident
= fs
->lfs_ident
;
2177 ssp
->ss_datasum
= lfs_cksum_fold(sum
);
2178 ssp
->ss_sumsum
= cksum(&ssp
->ss_datasum
,
2179 fs
->lfs_sumsize
- sizeof(ssp
->ss_sumsum
));
2181 mutex_enter(&lfs_lock
);
2182 fs
->lfs_bfree
-= (btofsb(fs
, ninos
* fs
->lfs_ibsize
) +
2183 btofsb(fs
, fs
->lfs_sumsize
));
2184 fs
->lfs_dmeta
+= (btofsb(fs
, ninos
* fs
->lfs_ibsize
) +
2185 btofsb(fs
, fs
->lfs_sumsize
));
2186 mutex_exit(&lfs_lock
);
2189 * When we simply write the blocks we lose a rotation for every block
2190 * written. To avoid this problem, we cluster the buffers into a
2191 * chunk and write the chunk. MAXPHYS is the largest size I/O
2192 * devices can handle, use that for the size of the chunks.
2194 * Blocks that are already clusters (from GOP_WRITE), however, we
2195 * don't bother to copy into other clusters.
2198 #define CHUNKSIZE MAXPHYS
2201 panic("devvp is NULL");
2202 for (bpp
= sp
->bpp
, i
= nblocks
; i
;) {
2203 cbp
= lfs_newclusterbuf(fs
, devvp
, (*bpp
)->b_blkno
, i
);
2204 cl
= cbp
->b_private
;
2206 cbp
->b_flags
|= B_ASYNC
;
2207 cbp
->b_cflags
|= BC_BUSY
;
2210 #if defined(DEBUG) && defined(DIAGNOSTIC)
2211 if (bpp
- sp
->bpp
> (fs
->lfs_sumsize
- SEGSUM_SIZE(fs
))
2212 / sizeof(int32_t)) {
2213 panic("lfs_writeseg: real bpp overwrite");
2215 if (bpp
- sp
->bpp
> segsize(fs
) / fs
->lfs_fsize
) {
2216 panic("lfs_writeseg: theoretical bpp overwrite");
2221 * Construct the cluster.
2223 mutex_enter(&lfs_lock
);
2225 mutex_exit(&lfs_lock
);
2226 while (i
&& cbp
->b_bcount
< CHUNKSIZE
) {
2229 if (bp
->b_bcount
> (CHUNKSIZE
- cbp
->b_bcount
))
2231 if (cbp
->b_bcount
> 0 && !(cl
->flags
& LFS_CL_MALLOC
))
2234 /* Clusters from GOP_WRITE are expedited */
2235 if (bp
->b_bcount
> fs
->lfs_bsize
) {
2236 if (cbp
->b_bcount
> 0)
2237 /* Put in its own buffer */
2240 cbp
->b_data
= bp
->b_data
;
2242 } else if (cbp
->b_bcount
== 0) {
2243 p
= cbp
->b_data
= lfs_malloc(fs
, CHUNKSIZE
,
2245 cl
->flags
|= LFS_CL_MALLOC
;
2248 if (dtosn(fs
, dbtofsb(fs
, bp
->b_blkno
+
2249 btodb(bp
->b_bcount
- 1))) !=
2251 printf("blk size %d daddr %" PRIx64
2253 bp
->b_bcount
, bp
->b_blkno
,
2255 panic("segment overwrite");
2259 #ifdef LFS_USE_B_INVAL
2261 * Fake buffers from the cleaner are marked as B_INVAL.
2262 * We need to copy the data from user space rather than
2263 * from the buffer indicated.
2264 * XXX == what do I do on an error?
2266 if ((bp
->b_cflags
& BC_INVAL
) != 0 &&
2267 bp
->b_iodone
!= NULL
) {
2268 if (copyin(bp
->b_saveaddr
, p
, bp
->b_bcount
))
2269 panic("lfs_writeseg: "
2270 "copyin failed [2]");
2272 #endif /* LFS_USE_B_INVAL */
2273 if (cl
->flags
& LFS_CL_MALLOC
) {
2274 /* copy data into our cluster. */
2275 memcpy(p
, bp
->b_data
, bp
->b_bcount
);
2279 cbp
->b_bcount
+= bp
->b_bcount
;
2280 cl
->bufsize
+= bp
->b_bcount
;
2282 bp
->b_flags
&= ~B_READ
;
2284 cl
->bpp
[cl
->bufcount
++] = bp
;
2287 mutex_enter(&bufcache_lock
);
2288 mutex_enter(&vp
->v_interlock
);
2289 bp
->b_oflags
&= ~(BO_DELWRI
| BO_DONE
);
2290 reassignbuf(bp
, vp
);
2292 mutex_exit(&vp
->v_interlock
);
2293 mutex_exit(&bufcache_lock
);
2298 if (fs
->lfs_sp
->seg_flags
& SEGM_SYNC
)
2299 BIO_SETPRIO(cbp
, BPRIO_TIMECRITICAL
);
2301 BIO_SETPRIO(cbp
, BPRIO_TIMELIMITED
);
2302 mutex_enter(&devvp
->v_interlock
);
2303 devvp
->v_numoutput
++;
2304 mutex_exit(&devvp
->v_interlock
);
2305 VOP_STRATEGY(devvp
, cbp
);
2306 curlwp
->l_ru
.ru_oublock
++;
2310 ++lfs_stats
.psegwrites
;
2311 lfs_stats
.blocktot
+= nblocks
- 1;
2312 if (fs
->lfs_sp
->seg_flags
& SEGM_SYNC
)
2313 ++lfs_stats
.psyncwrites
;
2314 if (fs
->lfs_sp
->seg_flags
& SEGM_CLEAN
) {
2315 ++lfs_stats
.pcleanwrites
;
2316 lfs_stats
.cleanblocks
+= nblocks
- 1;
2320 return (lfs_initseg(fs
) || do_again
);
2324 lfs_writesuper(struct lfs
*fs
, daddr_t daddr
)
2327 struct vnode
*devvp
= VTOI(fs
->lfs_ivnode
)->i_devvp
;
2330 ASSERT_MAYBE_SEGLOCK(fs
);
2332 KASSERT(fs
->lfs_magic
== LFS_MAGIC
);
2335 * If we can write one superblock while another is in
2336 * progress, we risk not having a complete checkpoint if we crash.
2337 * So, block here if a superblock write is in progress.
2339 mutex_enter(&lfs_lock
);
2341 while (fs
->lfs_sbactive
) {
2342 mtsleep(&fs
->lfs_sbactive
, PRIBIO
+1, "lfs sb", 0,
2345 fs
->lfs_sbactive
= daddr
;
2347 mutex_exit(&lfs_lock
);
2349 /* Set timestamp of this version of the superblock */
2350 if (fs
->lfs_version
== 1)
2351 fs
->lfs_otstamp
= time_second
;
2352 fs
->lfs_tstamp
= time_second
;
2354 /* Checksum the superblock and copy it into a buffer. */
2355 fs
->lfs_cksum
= lfs_sb_cksum(&(fs
->lfs_dlfs
));
2356 bp
= lfs_newbuf(fs
, devvp
,
2357 fsbtodb(fs
, daddr
), LFS_SBPAD
, LFS_NB_SBLOCK
);
2358 memset((char *)bp
->b_data
+ sizeof(struct dlfs
), 0,
2359 LFS_SBPAD
- sizeof(struct dlfs
));
2360 *(struct dlfs
*)bp
->b_data
= fs
->lfs_dlfs
;
2362 bp
->b_cflags
|= BC_BUSY
;
2363 bp
->b_flags
= (bp
->b_flags
& ~B_READ
) | B_ASYNC
;
2364 bp
->b_oflags
&= ~(BO_DONE
| BO_DELWRI
);
2366 bp
->b_iodone
= lfs_supercallback
;
2368 if (fs
->lfs_sp
!= NULL
&& fs
->lfs_sp
->seg_flags
& SEGM_SYNC
)
2369 BIO_SETPRIO(bp
, BPRIO_TIMECRITICAL
);
2371 BIO_SETPRIO(bp
, BPRIO_TIMELIMITED
);
2372 curlwp
->l_ru
.ru_oublock
++;
2374 mutex_enter(&devvp
->v_interlock
);
2375 devvp
->v_numoutput
++;
2376 mutex_exit(&devvp
->v_interlock
);
2378 mutex_enter(&lfs_lock
);
2380 mutex_exit(&lfs_lock
);
2381 VOP_STRATEGY(devvp
, bp
);
2385 * Logical block number match routines used when traversing the dirty block
2389 lfs_match_fake(struct lfs
*fs
, struct buf
*bp
)
2393 return LFS_IS_MALLOC_BUF(bp
);
2398 lfs_match_real(struct lfs
*fs
, struct buf
*bp
)
2402 return (lfs_match_data(fs
, bp
) && !lfs_match_fake(fs
, bp
));
2407 lfs_match_data(struct lfs
*fs
, struct buf
*bp
)
2411 return (bp
->b_lblkno
>= 0);
2415 lfs_match_indir(struct lfs
*fs
, struct buf
*bp
)
2421 return (lbn
< 0 && (-lbn
- NDADDR
) % NINDIR(fs
) == 0);
2425 lfs_match_dindir(struct lfs
*fs
, struct buf
*bp
)
2431 return (lbn
< 0 && (-lbn
- NDADDR
) % NINDIR(fs
) == 1);
2435 lfs_match_tindir(struct lfs
*fs
, struct buf
*bp
)
2441 return (lbn
< 0 && (-lbn
- NDADDR
) % NINDIR(fs
) == 2);
2445 lfs_free_aiodone(struct buf
*bp
)
2449 KERNEL_LOCK(1, curlwp
);
2451 ASSERT_NO_SEGLOCK(fs
);
2452 lfs_freebuf(fs
, bp
);
2453 KERNEL_UNLOCK_LAST(curlwp
);
2457 lfs_super_aiodone(struct buf
*bp
)
2461 KERNEL_LOCK(1, curlwp
);
2463 ASSERT_NO_SEGLOCK(fs
);
2464 mutex_enter(&lfs_lock
);
2465 fs
->lfs_sbactive
= 0;
2466 if (--fs
->lfs_iocount
<= 1)
2467 wakeup(&fs
->lfs_iocount
);
2468 wakeup(&fs
->lfs_sbactive
);
2469 mutex_exit(&lfs_lock
);
2470 lfs_freebuf(fs
, bp
);
2471 KERNEL_UNLOCK_LAST(curlwp
);
2475 lfs_cluster_aiodone(struct buf
*bp
)
2477 struct lfs_cluster
*cl
;
2479 struct buf
*tbp
, *fbp
;
2480 struct vnode
*vp
, *devvp
, *ovp
;
2484 KERNEL_LOCK(1, curlwp
);
2486 error
= bp
->b_error
;
2489 devvp
= VTOI(fs
->lfs_ivnode
)->i_devvp
;
2490 ASSERT_NO_SEGLOCK(fs
);
2492 /* Put the pages back, and release the buffer */
2493 while (cl
->bufcount
--) {
2494 tbp
= cl
->bpp
[cl
->bufcount
];
2495 KASSERT(tbp
->b_cflags
& BC_BUSY
);
2497 tbp
->b_error
= error
;
2501 * We're done with tbp. If it has not been re-dirtied since
2502 * the cluster was written, free it. Otherwise, keep it on
2503 * the locked list to be written again.
2507 tbp
->b_flags
&= ~B_GATHERED
;
2509 LFS_BCLEAN_LOG(fs
, tbp
);
2511 mutex_enter(&bufcache_lock
);
2512 if (tbp
->b_iodone
== NULL
) {
2513 KASSERT(tbp
->b_flags
& B_LOCKED
);
2516 mutex_enter(&vp
->v_interlock
);
2517 reassignbuf(tbp
, vp
);
2518 mutex_exit(&vp
->v_interlock
);
2520 tbp
->b_flags
|= B_ASYNC
; /* for biodone */
2523 if (((tbp
->b_flags
| tbp
->b_oflags
) &
2524 (B_LOCKED
| BO_DELWRI
)) == B_LOCKED
)
2525 LFS_UNLOCK_BUF(tbp
);
2527 if (tbp
->b_oflags
& BO_DONE
) {
2528 DLOG((DLOG_SEG
, "blk %d biodone already (flags %lx)\n",
2529 cl
->bufcount
, (long)tbp
->b_flags
));
2532 if (tbp
->b_iodone
!= NULL
&& !LFS_IS_MALLOC_BUF(tbp
)) {
2534 * A buffer from the page daemon.
2535 * We use the same iodone as it does,
2536 * so we must manually disassociate its
2537 * buffers from the vp.
2539 if ((ovp
= tbp
->b_vp
) != NULL
) {
2540 /* This is just silly */
2541 mutex_enter(&ovp
->v_interlock
);
2543 mutex_exit(&ovp
->v_interlock
);
2545 tbp
->b_objlock
= &vp
->v_interlock
;
2547 /* Put it back the way it was */
2548 tbp
->b_flags
|= B_ASYNC
;
2549 /* Master buffers have BC_AGE */
2550 if (tbp
->b_private
== tbp
)
2551 tbp
->b_flags
|= BC_AGE
;
2553 mutex_exit(&bufcache_lock
);
2558 * If this is the last block for this vnode, but
2559 * there are other blocks on its dirty list,
2560 * set IN_MODIFIED/IN_CLEANING depending on what
2561 * sort of block. Only do this for our mount point,
2562 * not for, e.g., inode blocks that are attached to
2564 * XXX KS - Shouldn't we set *both* if both types
2565 * of blocks are present (traverse the dirty list?)
2567 mutex_enter(&lfs_lock
);
2568 mutex_enter(&vp
->v_interlock
);
2569 if (vp
!= devvp
&& vp
->v_numoutput
== 0 &&
2570 (fbp
= LIST_FIRST(&vp
->v_dirtyblkhd
)) != NULL
) {
2572 DLOG((DLOG_SEG
, "lfs_cluster_aiodone: mark ino %d\n",
2574 if (LFS_IS_MALLOC_BUF(fbp
))
2575 LFS_SET_UINO(ip
, IN_CLEANING
);
2577 LFS_SET_UINO(ip
, IN_MODIFIED
);
2579 cv_broadcast(&vp
->v_cv
);
2580 mutex_exit(&vp
->v_interlock
);
2581 mutex_exit(&lfs_lock
);
2584 /* Fix up the cluster buffer, and release it */
2585 if (cl
->flags
& LFS_CL_MALLOC
)
2586 lfs_free(fs
, bp
->b_data
, LFS_NB_CLUSTER
);
2590 if (cl
->flags
& LFS_CL_SYNC
) {
2591 if (--cl
->seg
->seg_iocount
== 0)
2592 wakeup(&cl
->seg
->seg_iocount
);
2594 mutex_enter(&lfs_lock
);
2596 if (fs
->lfs_iocount
== 0)
2597 panic("lfs_cluster_aiodone: zero iocount");
2599 if (--fs
->lfs_iocount
<= 1)
2600 wakeup(&fs
->lfs_iocount
);
2601 mutex_exit(&lfs_lock
);
2603 KERNEL_UNLOCK_LAST(curlwp
);
2605 pool_put(&fs
->lfs_bpppool
, cl
->bpp
);
2607 pool_put(&fs
->lfs_clpool
, cl
);
2611 lfs_generic_callback(struct buf
*bp
, void (*aiodone
)(struct buf
*))
2613 /* reset b_iodone for when this is a single-buf i/o. */
2614 bp
->b_iodone
= aiodone
;
2616 workqueue_enqueue(uvm
.aiodone_queue
, &bp
->b_work
, NULL
);
2620 lfs_cluster_callback(struct buf
*bp
)
2623 lfs_generic_callback(bp
, lfs_cluster_aiodone
);
2627 lfs_supercallback(struct buf
*bp
)
2630 lfs_generic_callback(bp
, lfs_super_aiodone
);
2634 * The only buffers that are going to hit these functions are the
2635 * segment write blocks, or the segment summaries, or the superblocks.
2637 * All of the above are created by lfs_newbuf, and so do not need to be
2638 * released via brelse.
2641 lfs_callback(struct buf
*bp
)
2644 lfs_generic_callback(bp
, lfs_free_aiodone
);
2648 * Shellsort (diminishing increment sort) from Data Structures and
2649 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2650 * see also Knuth Vol. 3, page 84. The increments are selected from
2651 * formula (8), page 95. Roughly O(N^3/2).
2654 * This is our own private copy of shellsort because we want to sort
2655 * two parallel arrays (the array of buffer pointers and the array of
2656 * logical block numbers) simultaneously. Note that we cast the array
2657 * of logical block numbers to a unsigned in this routine so that the
2658 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2662 lfs_shellsort(struct buf
**bp_array
, int32_t *lb_array
, int nmemb
, int size
)
2664 static int __rsshell_increments
[] = { 4, 1, 0 };
2665 int incr
, *incrp
, t1
, t2
;
2666 struct buf
*bp_temp
;
2670 for (t1
= 0; t1
< nmemb
; t1
++) {
2671 for (t2
= 0; t2
* size
< bp_array
[t1
]->b_bcount
; t2
++) {
2672 if (lb_array
[incr
++] != bp_array
[t1
]->b_lblkno
+ t2
) {
2673 /* dump before panic */
2674 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2677 for (t1
= 0; t1
< nmemb
; t1
++) {
2678 const struct buf
*bp
= bp_array
[t1
];
2680 printf("bp[%d]: lbn=%" PRIu64
", size=%"
2682 (uint64_t)bp
->b_bcount
,
2683 (uint64_t)bp
->b_lblkno
);
2685 for (t2
= 0; t2
* size
< bp
->b_bcount
;
2692 panic("lfs_shellsort: inconsistent input");
2698 for (incrp
= __rsshell_increments
; (incr
= *incrp
++) != 0;)
2699 for (t1
= incr
; t1
< nmemb
; ++t1
)
2700 for (t2
= t1
- incr
; t2
>= 0;)
2701 if ((u_int32_t
)bp_array
[t2
]->b_lblkno
>
2702 (u_int32_t
)bp_array
[t2
+ incr
]->b_lblkno
) {
2703 bp_temp
= bp_array
[t2
];
2704 bp_array
[t2
] = bp_array
[t2
+ incr
];
2705 bp_array
[t2
+ incr
] = bp_temp
;
2710 /* Reform the list of logical blocks */
2712 for (t1
= 0; t1
< nmemb
; t1
++) {
2713 for (t2
= 0; t2
* size
< bp_array
[t1
]->b_bcount
; t2
++) {
2714 lb_array
[incr
++] = bp_array
[t1
]->b_lblkno
+ t2
;
2720 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK,
2721 * however, we must press on. Just fake success in that case.
2724 lfs_vref(struct vnode
*vp
)
2729 KASSERT(mutex_owned(&vp
->v_interlock
));
2731 fs
= VTOI(vp
)->i_lfs
;
2733 ASSERT_MAYBE_SEGLOCK(fs
);
2736 * If we return 1 here during a flush, we risk vinvalbuf() not
2737 * being able to flush all of the pages from this vnode, which
2738 * will cause it to panic. So, return 0 if a flush is in progress.
2740 error
= vget(vp
, LK_NOWAIT
| LK_INTERLOCK
);
2741 if (error
== EBUSY
&& IS_FLUSHING(VTOI(vp
)->i_lfs
, vp
)) {
2742 ++fs
->lfs_flushvp_fakevref
;
2749 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2750 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2753 lfs_vunref(struct vnode
*vp
)
2757 fs
= VTOI(vp
)->i_lfs
;
2758 ASSERT_MAYBE_SEGLOCK(fs
);
2761 * Analogous to lfs_vref, if the node is flushing, fake it.
2763 if (IS_FLUSHING(fs
, vp
) && fs
->lfs_flushvp_fakevref
) {
2764 --fs
->lfs_flushvp_fakevref
;
2768 /* does not call inactive */
2769 mutex_enter(&vp
->v_interlock
);
2770 vrelel(vp
, VRELEL_NOINACTIVE
);
2774 * We use this when we have vnodes that were loaded in solely for cleaning.
2775 * There is no reason to believe that these vnodes will be referenced again
2776 * soon, since the cleaning process is unrelated to normal filesystem
2777 * activity. Putting cleaned vnodes at the tail of the list has the effect
2778 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2779 * cleaning at the head of the list, instead.
2782 lfs_vunref_head(struct vnode
*vp
)
2785 ASSERT_SEGLOCK(VTOI(vp
)->i_lfs
);
2787 /* does not call inactive, inserts non-held vnode at head of freelist */
2788 mutex_enter(&vp
->v_interlock
);
2789 vrelel(vp
, VRELEL_NOINACTIVE
| VRELEL_ONHEAD
);
2794 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2795 * point at uninitialized space.
2798 lfs_acquire_finfo(struct lfs
*fs
, ino_t ino
, int vers
)
2800 struct segment
*sp
= fs
->lfs_sp
;
2804 if (sp
->seg_bytes_left
< fs
->lfs_bsize
||
2805 sp
->sum_bytes_left
< sizeof(struct finfo
))
2806 (void) lfs_writeseg(fs
, fs
->lfs_sp
);
2808 sp
->sum_bytes_left
-= FINFOSIZE
;
2809 ++((SEGSUM
*)(sp
->segsum
))->ss_nfinfo
;
2810 sp
->fip
->fi_nblocks
= 0;
2811 sp
->fip
->fi_ino
= ino
;
2812 sp
->fip
->fi_version
= vers
;
2816 * Release the FINFO entry, either clearing out an unused entry or
2817 * advancing us to the next available entry.
2820 lfs_release_finfo(struct lfs
*fs
)
2822 struct segment
*sp
= fs
->lfs_sp
;
2824 if (sp
->fip
->fi_nblocks
!= 0) {
2825 sp
->fip
= (FINFO
*)((char *)sp
->fip
+ FINFOSIZE
+
2826 sizeof(int32_t) * sp
->fip
->fi_nblocks
);
2827 sp
->start_lbp
= &sp
->fip
->fi_blocks
[0];
2829 sp
->sum_bytes_left
+= FINFOSIZE
;
2830 --((SEGSUM
*)(sp
->segsum
))->ss_nfinfo
;