Mark up sysctl node with Li, like in sysctl(7).
[netbsd-mini2440.git] / sys / kern / kern_lwp.c
blobf162c177c002eedf10a7b2ae0a823b27176553a5
1 /* $NetBSD: kern_lwp.c,v 1.128 2009/03/03 21:55:06 rmind Exp $ */
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Overview
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
46 * Execution states
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
53 * LSONPROC
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
58 * LSRUN
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
66 * LSIDL
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
72 * LSSUSPENDED:
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
86 * LSZOMB:
88 * Dead or dying: the LWP has released most of its resources
89 * and is about to switch away into oblivion, or has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
93 * LSSLEEP:
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
99 * LSSTOP:
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
112 * State transitions
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
121 * LWPs may transition states in the following ways:
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > SLEEP
125 * > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 * > IDL (special cases)
130 * STOPPED ---> RUN SUSPENDED --> RUN
131 * > SLEEP
133 * SLEEP -----> ONPROC IDL --------> RUN
134 * > RUN > SUSPENDED
135 * > STOPPED > STOPPED
136 * > ONPROC (special cases)
138 * Some state transitions are only possible with kernel threads (eg
139 * ONPROC -> IDL) and happen under tightly controlled circumstances
140 * free of unwanted side effects.
142 * Migration
144 * Migration of threads from one CPU to another could be performed
145 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
146 * functions. The universal lwp_migrate() function should be used for
147 * any other cases. Subsystems in the kernel must be aware that CPU
148 * of LWP may change, while it is not locked.
150 * Locking
152 * The majority of fields in 'struct lwp' are covered by a single,
153 * general spin lock pointed to by lwp::l_mutex. The locks covering
154 * each field are documented in sys/lwp.h.
156 * State transitions must be made with the LWP's general lock held,
157 * and may cause the LWP's lock pointer to change. Manipulation of
158 * the general lock is not performed directly, but through calls to
159 * lwp_lock(), lwp_relock() and similar.
161 * States and their associated locks:
163 * LSONPROC, LSZOMB:
165 * Always covered by spc_lwplock, which protects running LWPs.
166 * This is a per-CPU lock and matches lwp::l_cpu.
168 * LSIDL, LSRUN:
170 * Always covered by spc_mutex, which protects the run queues.
171 * This is a per-CPU lock and matches lwp::l_cpu.
173 * LSSLEEP:
175 * Covered by a lock associated with the sleep queue that the
176 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 * LSSTOP, LSSUSPENDED:
180 * If the LWP was previously sleeping (l_wchan != NULL), then
181 * l_mutex references the sleep queue lock. If the LWP was
182 * runnable or on the CPU when halted, or has been removed from
183 * the sleep queue since halted, then the lock is spc_lwplock.
185 * The lock order is as follows:
187 * spc::spc_lwplock ->
188 * sleeptab::st_mutex ->
189 * tschain_t::tc_mutex ->
190 * spc::spc_mutex
192 * Each process has an scheduler state lock (proc::p_lock), and a
193 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
194 * so on. When an LWP is to be entered into or removed from one of the
195 * following states, p_lock must be held and the process wide counters
196 * adjusted:
198 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 * (But not always for kernel threads. There are some special cases
201 * as mentioned above. See kern_softint.c.)
203 * Note that an LWP is considered running or likely to run soon if in
204 * one of the following states. This affects the value of p_nrlwps:
206 * LSRUN, LSONPROC, LSSLEEP
208 * p_lock does not need to be held when transitioning among these
209 * three states, hence p_lock is rarely taken for state transitions.
212 #include <sys/cdefs.h>
213 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.128 2009/03/03 21:55:06 rmind Exp $");
215 #include "opt_ddb.h"
216 #include "opt_lockdebug.h"
217 #include "opt_sa.h"
219 #define _LWP_API_PRIVATE
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/user.h>
233 #include <sys/lockdebug.h>
234 #include <sys/kmem.h>
235 #include <sys/pset.h>
236 #include <sys/intr.h>
237 #include <sys/lwpctl.h>
238 #include <sys/atomic.h>
240 #include <uvm/uvm_extern.h>
241 #include <uvm/uvm_object.h>
243 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
245 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
246 &pool_allocator_nointr, IPL_NONE);
248 static pool_cache_t lwp_cache;
249 static specificdata_domain_t lwp_specificdata_domain;
251 void
252 lwpinit(void)
255 lwp_specificdata_domain = specificdata_domain_create();
256 KASSERT(lwp_specificdata_domain != NULL);
257 lwp_sys_init();
258 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
259 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
263 * Set an suspended.
265 * Must be called with p_lock held, and the LWP locked. Will unlock the
266 * LWP before return.
269 lwp_suspend(struct lwp *curl, struct lwp *t)
271 int error;
273 KASSERT(mutex_owned(t->l_proc->p_lock));
274 KASSERT(lwp_locked(t, NULL));
276 KASSERT(curl != t || curl->l_stat == LSONPROC);
279 * If the current LWP has been told to exit, we must not suspend anyone
280 * else or deadlock could occur. We won't return to userspace.
282 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
283 lwp_unlock(t);
284 return (EDEADLK);
287 error = 0;
289 switch (t->l_stat) {
290 case LSRUN:
291 case LSONPROC:
292 t->l_flag |= LW_WSUSPEND;
293 lwp_need_userret(t);
294 lwp_unlock(t);
295 break;
297 case LSSLEEP:
298 t->l_flag |= LW_WSUSPEND;
301 * Kick the LWP and try to get it to the kernel boundary
302 * so that it will release any locks that it holds.
303 * setrunnable() will release the lock.
305 if ((t->l_flag & LW_SINTR) != 0)
306 setrunnable(t);
307 else
308 lwp_unlock(t);
309 break;
311 case LSSUSPENDED:
312 lwp_unlock(t);
313 break;
315 case LSSTOP:
316 t->l_flag |= LW_WSUSPEND;
317 setrunnable(t);
318 break;
320 case LSIDL:
321 case LSZOMB:
322 error = EINTR; /* It's what Solaris does..... */
323 lwp_unlock(t);
324 break;
327 return (error);
331 * Restart a suspended LWP.
333 * Must be called with p_lock held, and the LWP locked. Will unlock the
334 * LWP before return.
336 void
337 lwp_continue(struct lwp *l)
340 KASSERT(mutex_owned(l->l_proc->p_lock));
341 KASSERT(lwp_locked(l, NULL));
343 /* If rebooting or not suspended, then just bail out. */
344 if ((l->l_flag & LW_WREBOOT) != 0) {
345 lwp_unlock(l);
346 return;
349 l->l_flag &= ~LW_WSUSPEND;
351 if (l->l_stat != LSSUSPENDED) {
352 lwp_unlock(l);
353 return;
356 /* setrunnable() will release the lock. */
357 setrunnable(l);
361 * Wait for an LWP within the current process to exit. If 'lid' is
362 * non-zero, we are waiting for a specific LWP.
364 * Must be called with p->p_lock held.
367 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
369 struct proc *p = l->l_proc;
370 struct lwp *l2;
371 int nfound, error;
372 lwpid_t curlid;
373 bool exiting;
375 KASSERT(mutex_owned(p->p_lock));
377 p->p_nlwpwait++;
378 l->l_waitingfor = lid;
379 curlid = l->l_lid;
380 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
382 for (;;) {
384 * Avoid a race between exit1() and sigexit(): if the
385 * process is dumping core, then we need to bail out: call
386 * into lwp_userret() where we will be suspended until the
387 * deed is done.
389 if ((p->p_sflag & PS_WCORE) != 0) {
390 mutex_exit(p->p_lock);
391 lwp_userret(l);
392 #ifdef DIAGNOSTIC
393 panic("lwp_wait1");
394 #endif
395 /* NOTREACHED */
399 * First off, drain any detached LWP that is waiting to be
400 * reaped.
402 while ((l2 = p->p_zomblwp) != NULL) {
403 p->p_zomblwp = NULL;
404 lwp_free(l2, false, false);/* releases proc mutex */
405 mutex_enter(p->p_lock);
409 * Now look for an LWP to collect. If the whole process is
410 * exiting, count detached LWPs as eligible to be collected,
411 * but don't drain them here.
413 nfound = 0;
414 error = 0;
415 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
417 * If a specific wait and the target is waiting on
418 * us, then avoid deadlock. This also traps LWPs
419 * that try to wait on themselves.
421 * Note that this does not handle more complicated
422 * cycles, like: t1 -> t2 -> t3 -> t1. The process
423 * can still be killed so it is not a major problem.
425 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
426 error = EDEADLK;
427 break;
429 if (l2 == l)
430 continue;
431 if ((l2->l_prflag & LPR_DETACHED) != 0) {
432 nfound += exiting;
433 continue;
435 if (lid != 0) {
436 if (l2->l_lid != lid)
437 continue;
439 * Mark this LWP as the first waiter, if there
440 * is no other.
442 if (l2->l_waiter == 0)
443 l2->l_waiter = curlid;
444 } else if (l2->l_waiter != 0) {
446 * It already has a waiter - so don't
447 * collect it. If the waiter doesn't
448 * grab it we'll get another chance
449 * later.
451 nfound++;
452 continue;
454 nfound++;
456 /* No need to lock the LWP in order to see LSZOMB. */
457 if (l2->l_stat != LSZOMB)
458 continue;
461 * We're no longer waiting. Reset the "first waiter"
462 * pointer on the target, in case it was us.
464 l->l_waitingfor = 0;
465 l2->l_waiter = 0;
466 p->p_nlwpwait--;
467 if (departed)
468 *departed = l2->l_lid;
469 sched_lwp_collect(l2);
471 /* lwp_free() releases the proc lock. */
472 lwp_free(l2, false, false);
473 mutex_enter(p->p_lock);
474 return 0;
477 if (error != 0)
478 break;
479 if (nfound == 0) {
480 error = ESRCH;
481 break;
485 * The kernel is careful to ensure that it can not deadlock
486 * when exiting - just keep waiting.
488 if (exiting) {
489 KASSERT(p->p_nlwps > 1);
490 cv_wait(&p->p_lwpcv, p->p_lock);
491 continue;
495 * If all other LWPs are waiting for exits or suspends
496 * and the supply of zombies and potential zombies is
497 * exhausted, then we are about to deadlock.
499 * If the process is exiting (and this LWP is not the one
500 * that is coordinating the exit) then bail out now.
502 if ((p->p_sflag & PS_WEXIT) != 0 ||
503 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
504 error = EDEADLK;
505 break;
509 * Sit around and wait for something to happen. We'll be
510 * awoken if any of the conditions examined change: if an
511 * LWP exits, is collected, or is detached.
513 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
514 break;
518 * We didn't find any LWPs to collect, we may have received a
519 * signal, or some other condition has caused us to bail out.
521 * If waiting on a specific LWP, clear the waiters marker: some
522 * other LWP may want it. Then, kick all the remaining waiters
523 * so that they can re-check for zombies and for deadlock.
525 if (lid != 0) {
526 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
527 if (l2->l_lid == lid) {
528 if (l2->l_waiter == curlid)
529 l2->l_waiter = 0;
530 break;
534 p->p_nlwpwait--;
535 l->l_waitingfor = 0;
536 cv_broadcast(&p->p_lwpcv);
538 return error;
542 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
543 * The new LWP is created in state LSIDL and must be set running,
544 * suspended, or stopped by the caller.
547 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
548 void *stack, size_t stacksize, void (*func)(void *), void *arg,
549 lwp_t **rnewlwpp, int sclass)
551 struct lwp *l2, *isfree;
552 turnstile_t *ts;
554 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
557 * First off, reap any detached LWP waiting to be collected.
558 * We can re-use its LWP structure and turnstile.
560 isfree = NULL;
561 if (p2->p_zomblwp != NULL) {
562 mutex_enter(p2->p_lock);
563 if ((isfree = p2->p_zomblwp) != NULL) {
564 p2->p_zomblwp = NULL;
565 lwp_free(isfree, true, false);/* releases proc mutex */
566 } else
567 mutex_exit(p2->p_lock);
569 if (isfree == NULL) {
570 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
571 memset(l2, 0, sizeof(*l2));
572 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
573 SLIST_INIT(&l2->l_pi_lenders);
574 } else {
575 l2 = isfree;
576 ts = l2->l_ts;
577 KASSERT(l2->l_inheritedprio == -1);
578 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
579 memset(l2, 0, sizeof(*l2));
580 l2->l_ts = ts;
583 l2->l_stat = LSIDL;
584 l2->l_proc = p2;
585 l2->l_refcnt = 1;
586 l2->l_class = sclass;
589 * If vfork(), we want the LWP to run fast and on the same CPU
590 * as its parent, so that it can reuse the VM context and cache
591 * footprint on the local CPU.
593 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
594 l2->l_kpribase = PRI_KERNEL;
595 l2->l_priority = l1->l_priority;
596 l2->l_inheritedprio = -1;
597 l2->l_flag = inmem ? LW_INMEM : 0;
598 l2->l_pflag = LP_MPSAFE;
599 l2->l_fd = p2->p_fd;
600 TAILQ_INIT(&l2->l_ld_locks);
602 if (p2->p_flag & PK_SYSTEM) {
603 /* Mark it as a system LWP and not a candidate for swapping */
604 l2->l_flag |= LW_SYSTEM;
607 kpreempt_disable();
608 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
609 l2->l_cpu = l1->l_cpu;
610 kpreempt_enable();
612 lwp_initspecific(l2);
613 sched_lwp_fork(l1, l2);
614 lwp_update_creds(l2);
615 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
616 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
617 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
618 cv_init(&l2->l_sigcv, "sigwait");
619 l2->l_syncobj = &sched_syncobj;
621 if (rnewlwpp != NULL)
622 *rnewlwpp = l2;
624 l2->l_addr = UAREA_TO_USER(uaddr);
625 uvm_lwp_fork(l1, l2, stack, stacksize, func,
626 (arg != NULL) ? arg : l2);
628 mutex_enter(p2->p_lock);
630 if ((flags & LWP_DETACHED) != 0) {
631 l2->l_prflag = LPR_DETACHED;
632 p2->p_ndlwps++;
633 } else
634 l2->l_prflag = 0;
636 l2->l_sigmask = l1->l_sigmask;
637 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
638 sigemptyset(&l2->l_sigpend.sp_set);
640 p2->p_nlwpid++;
641 if (p2->p_nlwpid == 0)
642 p2->p_nlwpid++;
643 l2->l_lid = p2->p_nlwpid;
644 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
645 p2->p_nlwps++;
647 if ((p2->p_flag & PK_SYSTEM) == 0) {
648 /* Inherit an affinity */
649 if (l1->l_flag & LW_AFFINITY) {
651 * Note that we hold the state lock while inheriting
652 * the affinity to avoid race with sched_setaffinity().
654 lwp_lock(l1);
655 if (l1->l_flag & LW_AFFINITY) {
656 kcpuset_use(l1->l_affinity);
657 l2->l_affinity = l1->l_affinity;
658 l2->l_flag |= LW_AFFINITY;
660 lwp_unlock(l1);
662 lwp_lock(l2);
663 /* Inherit a processor-set */
664 l2->l_psid = l1->l_psid;
665 /* Look for a CPU to start */
666 l2->l_cpu = sched_takecpu(l2);
667 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
669 mutex_exit(p2->p_lock);
671 mutex_enter(proc_lock);
672 LIST_INSERT_HEAD(&alllwp, l2, l_list);
673 mutex_exit(proc_lock);
675 SYSCALL_TIME_LWP_INIT(l2);
677 if (p2->p_emul->e_lwp_fork)
678 (*p2->p_emul->e_lwp_fork)(l1, l2);
680 return (0);
684 * Called by MD code when a new LWP begins execution. Must be called
685 * with the previous LWP locked (so at splsched), or if there is no
686 * previous LWP, at splsched.
688 void
689 lwp_startup(struct lwp *prev, struct lwp *new)
692 KASSERT(kpreempt_disabled());
693 if (prev != NULL) {
695 * Normalize the count of the spin-mutexes, it was
696 * increased in mi_switch(). Unmark the state of
697 * context switch - it is finished for previous LWP.
699 curcpu()->ci_mtx_count++;
700 membar_exit();
701 prev->l_ctxswtch = 0;
703 KPREEMPT_DISABLE(new);
704 spl0();
705 pmap_activate(new);
706 LOCKDEBUG_BARRIER(NULL, 0);
707 KPREEMPT_ENABLE(new);
708 if ((new->l_pflag & LP_MPSAFE) == 0) {
709 KERNEL_LOCK(1, new);
714 * Exit an LWP.
716 void
717 lwp_exit(struct lwp *l)
719 struct proc *p = l->l_proc;
720 struct lwp *l2;
721 bool current;
723 current = (l == curlwp);
725 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
728 * Verify that we hold no locks other than the kernel lock.
730 LOCKDEBUG_BARRIER(&kernel_lock, 0);
733 * If we are the last live LWP in a process, we need to exit the
734 * entire process. We do so with an exit status of zero, because
735 * it's a "controlled" exit, and because that's what Solaris does.
737 * We are not quite a zombie yet, but for accounting purposes we
738 * must increment the count of zombies here.
740 * Note: the last LWP's specificdata will be deleted here.
742 mutex_enter(p->p_lock);
743 if (p->p_nlwps - p->p_nzlwps == 1) {
744 KASSERT(current == true);
745 /* XXXSMP kernel_lock not held */
746 exit1(l, 0);
747 /* NOTREACHED */
749 p->p_nzlwps++;
750 mutex_exit(p->p_lock);
752 if (p->p_emul->e_lwp_exit)
753 (*p->p_emul->e_lwp_exit)(l);
755 /* Delete the specificdata while it's still safe to sleep. */
756 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
759 * Release our cached credentials.
761 kauth_cred_free(l->l_cred);
762 callout_destroy(&l->l_timeout_ch);
765 * While we can still block, mark the LWP as unswappable to
766 * prevent conflicts with the with the swapper.
768 if (current)
769 uvm_lwp_hold(l);
772 * Remove the LWP from the global list.
774 mutex_enter(proc_lock);
775 LIST_REMOVE(l, l_list);
776 mutex_exit(proc_lock);
779 * Get rid of all references to the LWP that others (e.g. procfs)
780 * may have, and mark the LWP as a zombie. If the LWP is detached,
781 * mark it waiting for collection in the proc structure. Note that
782 * before we can do that, we need to free any other dead, deatched
783 * LWP waiting to meet its maker.
785 mutex_enter(p->p_lock);
786 lwp_drainrefs(l);
788 if ((l->l_prflag & LPR_DETACHED) != 0) {
789 while ((l2 = p->p_zomblwp) != NULL) {
790 p->p_zomblwp = NULL;
791 lwp_free(l2, false, false);/* releases proc mutex */
792 mutex_enter(p->p_lock);
793 l->l_refcnt++;
794 lwp_drainrefs(l);
796 p->p_zomblwp = l;
800 * If we find a pending signal for the process and we have been
801 * asked to check for signals, then we loose: arrange to have
802 * all other LWPs in the process check for signals.
804 if ((l->l_flag & LW_PENDSIG) != 0 &&
805 firstsig(&p->p_sigpend.sp_set) != 0) {
806 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
807 lwp_lock(l2);
808 l2->l_flag |= LW_PENDSIG;
809 lwp_unlock(l2);
813 lwp_lock(l);
814 l->l_stat = LSZOMB;
815 if (l->l_name != NULL)
816 strcpy(l->l_name, "(zombie)");
817 if (l->l_flag & LW_AFFINITY) {
818 l->l_flag &= ~LW_AFFINITY;
819 } else {
820 KASSERT(l->l_affinity == NULL);
822 lwp_unlock(l);
823 p->p_nrlwps--;
824 cv_broadcast(&p->p_lwpcv);
825 if (l->l_lwpctl != NULL)
826 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
827 mutex_exit(p->p_lock);
829 /* Safe without lock since LWP is in zombie state */
830 if (l->l_affinity) {
831 kcpuset_unuse(l->l_affinity, NULL);
832 l->l_affinity = NULL;
836 * We can no longer block. At this point, lwp_free() may already
837 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
839 * Free MD LWP resources.
841 #ifndef __NO_CPU_LWP_FREE
842 cpu_lwp_free(l, 0);
843 #endif
845 if (current) {
846 pmap_deactivate(l);
849 * Release the kernel lock, and switch away into
850 * oblivion.
852 #ifdef notyet
853 /* XXXSMP hold in lwp_userret() */
854 KERNEL_UNLOCK_LAST(l);
855 #else
856 KERNEL_UNLOCK_ALL(l, NULL);
857 #endif
858 lwp_exit_switchaway(l);
863 * Free a dead LWP's remaining resources.
865 * XXXLWP limits.
867 void
868 lwp_free(struct lwp *l, bool recycle, bool last)
870 struct proc *p = l->l_proc;
871 struct rusage *ru;
872 ksiginfoq_t kq;
874 KASSERT(l != curlwp);
877 * If this was not the last LWP in the process, then adjust
878 * counters and unlock.
880 if (!last) {
882 * Add the LWP's run time to the process' base value.
883 * This needs to co-incide with coming off p_lwps.
885 bintime_add(&p->p_rtime, &l->l_rtime);
886 p->p_pctcpu += l->l_pctcpu;
887 ru = &p->p_stats->p_ru;
888 ruadd(ru, &l->l_ru);
889 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
890 ru->ru_nivcsw += l->l_nivcsw;
891 LIST_REMOVE(l, l_sibling);
892 p->p_nlwps--;
893 p->p_nzlwps--;
894 if ((l->l_prflag & LPR_DETACHED) != 0)
895 p->p_ndlwps--;
898 * Have any LWPs sleeping in lwp_wait() recheck for
899 * deadlock.
901 cv_broadcast(&p->p_lwpcv);
902 mutex_exit(p->p_lock);
905 #ifdef MULTIPROCESSOR
907 * In the unlikely event that the LWP is still on the CPU,
908 * then spin until it has switched away. We need to release
909 * all locks to avoid deadlock against interrupt handlers on
910 * the target CPU.
912 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
913 int count;
914 (void)count; /* XXXgcc */
915 KERNEL_UNLOCK_ALL(curlwp, &count);
916 while ((l->l_pflag & LP_RUNNING) != 0 ||
917 l->l_cpu->ci_curlwp == l)
918 SPINLOCK_BACKOFF_HOOK;
919 KERNEL_LOCK(count, curlwp);
921 #endif
924 * Destroy the LWP's remaining signal information.
926 ksiginfo_queue_init(&kq);
927 sigclear(&l->l_sigpend, NULL, &kq);
928 ksiginfo_queue_drain(&kq);
929 cv_destroy(&l->l_sigcv);
930 mutex_destroy(&l->l_swaplock);
933 * Free the LWP's turnstile and the LWP structure itself unless the
934 * caller wants to recycle them. Also, free the scheduler specific
935 * data.
937 * We can't return turnstile0 to the pool (it didn't come from it),
938 * so if it comes up just drop it quietly and move on.
940 * We don't recycle the VM resources at this time.
942 if (l->l_lwpctl != NULL)
943 lwp_ctl_free(l);
945 if (!recycle && l->l_ts != &turnstile0)
946 pool_cache_put(turnstile_cache, l->l_ts);
947 if (l->l_name != NULL)
948 kmem_free(l->l_name, MAXCOMLEN);
949 #ifndef __NO_CPU_LWP_FREE
950 cpu_lwp_free2(l);
951 #endif
952 KASSERT((l->l_flag & LW_INMEM) != 0);
953 uvm_lwp_exit(l);
954 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
955 KASSERT(l->l_inheritedprio == -1);
956 if (!recycle)
957 pool_cache_put(lwp_cache, l);
961 * Migrate the LWP to the another CPU. Unlocks the LWP.
963 void
964 lwp_migrate(lwp_t *l, struct cpu_info *tci)
966 struct schedstate_percpu *tspc;
967 int lstat = l->l_stat;
969 KASSERT(lwp_locked(l, NULL));
970 KASSERT(tci != NULL);
972 /* If LWP is still on the CPU, it must be handled like LSONPROC */
973 if ((l->l_pflag & LP_RUNNING) != 0) {
974 lstat = LSONPROC;
978 * The destination CPU could be changed while previous migration
979 * was not finished.
981 if (l->l_target_cpu != NULL) {
982 l->l_target_cpu = tci;
983 lwp_unlock(l);
984 return;
987 /* Nothing to do if trying to migrate to the same CPU */
988 if (l->l_cpu == tci) {
989 lwp_unlock(l);
990 return;
993 KASSERT(l->l_target_cpu == NULL);
994 tspc = &tci->ci_schedstate;
995 switch (lstat) {
996 case LSRUN:
997 if (l->l_flag & LW_INMEM) {
998 l->l_target_cpu = tci;
999 lwp_unlock(l);
1000 return;
1002 case LSIDL:
1003 l->l_cpu = tci;
1004 lwp_unlock_to(l, tspc->spc_mutex);
1005 return;
1006 case LSSLEEP:
1007 l->l_cpu = tci;
1008 break;
1009 case LSSTOP:
1010 case LSSUSPENDED:
1011 l->l_cpu = tci;
1012 if (l->l_wchan == NULL) {
1013 lwp_unlock_to(l, tspc->spc_lwplock);
1014 return;
1016 break;
1017 case LSONPROC:
1018 l->l_target_cpu = tci;
1019 spc_lock(l->l_cpu);
1020 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1021 spc_unlock(l->l_cpu);
1022 break;
1024 lwp_unlock(l);
1028 * Find the LWP in the process. Arguments may be zero, in such case,
1029 * the calling process and first LWP in the list will be used.
1030 * On success - returns proc locked.
1032 struct lwp *
1033 lwp_find2(pid_t pid, lwpid_t lid)
1035 proc_t *p;
1036 lwp_t *l;
1038 /* Find the process */
1039 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1040 if (p == NULL)
1041 return NULL;
1042 mutex_enter(p->p_lock);
1043 if (pid != 0) {
1044 /* Case of p_find */
1045 mutex_exit(proc_lock);
1048 /* Find the thread */
1049 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1050 if (l == NULL) {
1051 mutex_exit(p->p_lock);
1054 return l;
1058 * Look up a live LWP within the speicifed process, and return it locked.
1060 * Must be called with p->p_lock held.
1062 struct lwp *
1063 lwp_find(struct proc *p, int id)
1065 struct lwp *l;
1067 KASSERT(mutex_owned(p->p_lock));
1069 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1070 if (l->l_lid == id)
1071 break;
1075 * No need to lock - all of these conditions will
1076 * be visible with the process level mutex held.
1078 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1079 l = NULL;
1081 return l;
1085 * Update an LWP's cached credentials to mirror the process' master copy.
1087 * This happens early in the syscall path, on user trap, and on LWP
1088 * creation. A long-running LWP can also voluntarily choose to update
1089 * it's credentials by calling this routine. This may be called from
1090 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1092 void
1093 lwp_update_creds(struct lwp *l)
1095 kauth_cred_t oc;
1096 struct proc *p;
1098 p = l->l_proc;
1099 oc = l->l_cred;
1101 mutex_enter(p->p_lock);
1102 kauth_cred_hold(p->p_cred);
1103 l->l_cred = p->p_cred;
1104 l->l_prflag &= ~LPR_CRMOD;
1105 mutex_exit(p->p_lock);
1106 if (oc != NULL)
1107 kauth_cred_free(oc);
1111 * Verify that an LWP is locked, and optionally verify that the lock matches
1112 * one we specify.
1115 lwp_locked(struct lwp *l, kmutex_t *mtx)
1117 kmutex_t *cur = l->l_mutex;
1119 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1123 * Lock an LWP.
1125 kmutex_t *
1126 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1130 * XXXgcc ignoring kmutex_t * volatile on i386
1132 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1134 #if 1
1135 while (l->l_mutex != old) {
1136 #else
1137 for (;;) {
1138 #endif
1139 mutex_spin_exit(old);
1140 old = l->l_mutex;
1141 mutex_spin_enter(old);
1144 * mutex_enter() will have posted a read barrier. Re-test
1145 * l->l_mutex. If it has changed, we need to try again.
1147 #if 1
1149 #else
1150 } while (__predict_false(l->l_mutex != old));
1151 #endif
1153 return old;
1157 * Lend a new mutex to an LWP. The old mutex must be held.
1159 void
1160 lwp_setlock(struct lwp *l, kmutex_t *new)
1163 KASSERT(mutex_owned(l->l_mutex));
1165 membar_exit();
1166 l->l_mutex = new;
1170 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1171 * must be held.
1173 void
1174 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1176 kmutex_t *old;
1178 KASSERT(mutex_owned(l->l_mutex));
1180 old = l->l_mutex;
1181 membar_exit();
1182 l->l_mutex = new;
1183 mutex_spin_exit(old);
1187 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1188 * locked.
1190 void
1191 lwp_relock(struct lwp *l, kmutex_t *new)
1193 kmutex_t *old;
1195 KASSERT(mutex_owned(l->l_mutex));
1197 old = l->l_mutex;
1198 if (old != new) {
1199 mutex_spin_enter(new);
1200 l->l_mutex = new;
1201 mutex_spin_exit(old);
1206 lwp_trylock(struct lwp *l)
1208 kmutex_t *old;
1210 for (;;) {
1211 if (!mutex_tryenter(old = l->l_mutex))
1212 return 0;
1213 if (__predict_true(l->l_mutex == old))
1214 return 1;
1215 mutex_spin_exit(old);
1219 u_int
1220 lwp_unsleep(lwp_t *l, bool cleanup)
1223 KASSERT(mutex_owned(l->l_mutex));
1225 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1230 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1231 * set.
1233 void
1234 lwp_userret(struct lwp *l)
1236 struct proc *p;
1237 void (*hook)(void);
1238 int sig;
1240 KASSERT(l == curlwp);
1241 KASSERT(l->l_stat == LSONPROC);
1242 p = l->l_proc;
1244 #ifndef __HAVE_FAST_SOFTINTS
1245 /* Run pending soft interrupts. */
1246 if (l->l_cpu->ci_data.cpu_softints != 0)
1247 softint_overlay();
1248 #endif
1250 #ifdef KERN_SA
1251 /* Generate UNBLOCKED upcall if needed */
1252 if (l->l_flag & LW_SA_BLOCKING) {
1253 sa_unblock_userret(l);
1254 /* NOTREACHED */
1256 #endif
1259 * It should be safe to do this read unlocked on a multiprocessor
1260 * system..
1262 * LW_SA_UPCALL will be handled after the while() loop, so don't
1263 * consider it now.
1265 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1267 * Process pending signals first, unless the process
1268 * is dumping core or exiting, where we will instead
1269 * enter the LW_WSUSPEND case below.
1271 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1272 LW_PENDSIG) {
1273 mutex_enter(p->p_lock);
1274 while ((sig = issignal(l)) != 0)
1275 postsig(sig);
1276 mutex_exit(p->p_lock);
1280 * Core-dump or suspend pending.
1282 * In case of core dump, suspend ourselves, so that the
1283 * kernel stack and therefore the userland registers saved
1284 * in the trapframe are around for coredump() to write them
1285 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1286 * will write the core file out once all other LWPs are
1287 * suspended.
1289 if ((l->l_flag & LW_WSUSPEND) != 0) {
1290 mutex_enter(p->p_lock);
1291 p->p_nrlwps--;
1292 cv_broadcast(&p->p_lwpcv);
1293 lwp_lock(l);
1294 l->l_stat = LSSUSPENDED;
1295 lwp_unlock(l);
1296 mutex_exit(p->p_lock);
1297 lwp_lock(l);
1298 mi_switch(l);
1301 /* Process is exiting. */
1302 if ((l->l_flag & LW_WEXIT) != 0) {
1303 lwp_exit(l);
1304 KASSERT(0);
1305 /* NOTREACHED */
1308 /* Call userret hook; used by Linux emulation. */
1309 if ((l->l_flag & LW_WUSERRET) != 0) {
1310 lwp_lock(l);
1311 l->l_flag &= ~LW_WUSERRET;
1312 lwp_unlock(l);
1313 hook = p->p_userret;
1314 p->p_userret = NULL;
1315 (*hook)();
1319 #ifdef KERN_SA
1321 * Timer events are handled specially. We only try once to deliver
1322 * pending timer upcalls; if if fails, we can try again on the next
1323 * loop around. If we need to re-enter lwp_userret(), MD code will
1324 * bounce us back here through the trap path after we return.
1326 if (p->p_timerpend)
1327 timerupcall(l);
1328 if (l->l_flag & LW_SA_UPCALL)
1329 sa_upcall_userret(l);
1330 #endif /* KERN_SA */
1334 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1336 void
1337 lwp_need_userret(struct lwp *l)
1339 KASSERT(lwp_locked(l, NULL));
1342 * Since the tests in lwp_userret() are done unlocked, make sure
1343 * that the condition will be seen before forcing the LWP to enter
1344 * kernel mode.
1346 membar_producer();
1347 cpu_signotify(l);
1351 * Add one reference to an LWP. This will prevent the LWP from
1352 * exiting, thus keep the lwp structure and PCB around to inspect.
1354 void
1355 lwp_addref(struct lwp *l)
1358 KASSERT(mutex_owned(l->l_proc->p_lock));
1359 KASSERT(l->l_stat != LSZOMB);
1360 KASSERT(l->l_refcnt != 0);
1362 l->l_refcnt++;
1366 * Remove one reference to an LWP. If this is the last reference,
1367 * then we must finalize the LWP's death.
1369 void
1370 lwp_delref(struct lwp *l)
1372 struct proc *p = l->l_proc;
1374 mutex_enter(p->p_lock);
1375 KASSERT(l->l_stat != LSZOMB);
1376 KASSERT(l->l_refcnt > 0);
1377 if (--l->l_refcnt == 0)
1378 cv_broadcast(&p->p_lwpcv);
1379 mutex_exit(p->p_lock);
1383 * Drain all references to the current LWP.
1385 void
1386 lwp_drainrefs(struct lwp *l)
1388 struct proc *p = l->l_proc;
1390 KASSERT(mutex_owned(p->p_lock));
1391 KASSERT(l->l_refcnt != 0);
1393 l->l_refcnt--;
1394 while (l->l_refcnt != 0)
1395 cv_wait(&p->p_lwpcv, p->p_lock);
1399 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1400 * be held.
1402 bool
1403 lwp_alive(lwp_t *l)
1406 KASSERT(mutex_owned(l->l_proc->p_lock));
1408 switch (l->l_stat) {
1409 case LSSLEEP:
1410 case LSRUN:
1411 case LSONPROC:
1412 case LSSTOP:
1413 case LSSUSPENDED:
1414 return true;
1415 default:
1416 return false;
1421 * Return first live LWP in the process.
1423 lwp_t *
1424 lwp_find_first(proc_t *p)
1426 lwp_t *l;
1428 KASSERT(mutex_owned(p->p_lock));
1430 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1431 if (lwp_alive(l)) {
1432 return l;
1436 return NULL;
1440 * lwp_specific_key_create --
1441 * Create a key for subsystem lwp-specific data.
1444 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1447 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1451 * lwp_specific_key_delete --
1452 * Delete a key for subsystem lwp-specific data.
1454 void
1455 lwp_specific_key_delete(specificdata_key_t key)
1458 specificdata_key_delete(lwp_specificdata_domain, key);
1462 * lwp_initspecific --
1463 * Initialize an LWP's specificdata container.
1465 void
1466 lwp_initspecific(struct lwp *l)
1468 int error;
1470 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1471 KASSERT(error == 0);
1475 * lwp_finispecific --
1476 * Finalize an LWP's specificdata container.
1478 void
1479 lwp_finispecific(struct lwp *l)
1482 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1486 * lwp_getspecific --
1487 * Return lwp-specific data corresponding to the specified key.
1489 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1490 * only its OWN SPECIFIC DATA. If it is necessary to access another
1491 * LWP's specifc data, care must be taken to ensure that doing so
1492 * would not cause internal data structure inconsistency (i.e. caller
1493 * can guarantee that the target LWP is not inside an lwp_getspecific()
1494 * or lwp_setspecific() call).
1496 void *
1497 lwp_getspecific(specificdata_key_t key)
1500 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1501 &curlwp->l_specdataref, key));
1504 void *
1505 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1508 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1509 &l->l_specdataref, key));
1513 * lwp_setspecific --
1514 * Set lwp-specific data corresponding to the specified key.
1516 void
1517 lwp_setspecific(specificdata_key_t key, void *data)
1520 specificdata_setspecific(lwp_specificdata_domain,
1521 &curlwp->l_specdataref, key, data);
1525 * Allocate a new lwpctl structure for a user LWP.
1528 lwp_ctl_alloc(vaddr_t *uaddr)
1530 lcproc_t *lp;
1531 u_int bit, i, offset;
1532 struct uvm_object *uao;
1533 int error;
1534 lcpage_t *lcp;
1535 proc_t *p;
1536 lwp_t *l;
1538 l = curlwp;
1539 p = l->l_proc;
1541 if (l->l_lcpage != NULL) {
1542 lcp = l->l_lcpage;
1543 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1544 return (EINVAL);
1547 /* First time around, allocate header structure for the process. */
1548 if ((lp = p->p_lwpctl) == NULL) {
1549 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1550 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1551 lp->lp_uao = NULL;
1552 TAILQ_INIT(&lp->lp_pages);
1553 mutex_enter(p->p_lock);
1554 if (p->p_lwpctl == NULL) {
1555 p->p_lwpctl = lp;
1556 mutex_exit(p->p_lock);
1557 } else {
1558 mutex_exit(p->p_lock);
1559 mutex_destroy(&lp->lp_lock);
1560 kmem_free(lp, sizeof(*lp));
1561 lp = p->p_lwpctl;
1566 * Set up an anonymous memory region to hold the shared pages.
1567 * Map them into the process' address space. The user vmspace
1568 * gets the first reference on the UAO.
1570 mutex_enter(&lp->lp_lock);
1571 if (lp->lp_uao == NULL) {
1572 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1573 lp->lp_cur = 0;
1574 lp->lp_max = LWPCTL_UAREA_SZ;
1575 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1576 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1577 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1578 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1579 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1580 if (error != 0) {
1581 uao_detach(lp->lp_uao);
1582 lp->lp_uao = NULL;
1583 mutex_exit(&lp->lp_lock);
1584 return error;
1588 /* Get a free block and allocate for this LWP. */
1589 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1590 if (lcp->lcp_nfree != 0)
1591 break;
1593 if (lcp == NULL) {
1594 /* Nothing available - try to set up a free page. */
1595 if (lp->lp_cur == lp->lp_max) {
1596 mutex_exit(&lp->lp_lock);
1597 return ENOMEM;
1599 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1600 if (lcp == NULL) {
1601 mutex_exit(&lp->lp_lock);
1602 return ENOMEM;
1605 * Wire the next page down in kernel space. Since this
1606 * is a new mapping, we must add a reference.
1608 uao = lp->lp_uao;
1609 (*uao->pgops->pgo_reference)(uao);
1610 lcp->lcp_kaddr = vm_map_min(kernel_map);
1611 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1612 uao, lp->lp_cur, PAGE_SIZE,
1613 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1614 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1615 if (error != 0) {
1616 mutex_exit(&lp->lp_lock);
1617 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1618 (*uao->pgops->pgo_detach)(uao);
1619 return error;
1621 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1622 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1623 if (error != 0) {
1624 mutex_exit(&lp->lp_lock);
1625 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1626 lcp->lcp_kaddr + PAGE_SIZE);
1627 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1628 return error;
1630 /* Prepare the page descriptor and link into the list. */
1631 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1632 lp->lp_cur += PAGE_SIZE;
1633 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1634 lcp->lcp_rotor = 0;
1635 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1636 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1638 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1639 if (++i >= LWPCTL_BITMAP_ENTRIES)
1640 i = 0;
1642 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1643 lcp->lcp_bitmap[i] ^= (1 << bit);
1644 lcp->lcp_rotor = i;
1645 lcp->lcp_nfree--;
1646 l->l_lcpage = lcp;
1647 offset = (i << 5) + bit;
1648 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1649 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1650 mutex_exit(&lp->lp_lock);
1652 KPREEMPT_DISABLE(l);
1653 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1654 KPREEMPT_ENABLE(l);
1656 return 0;
1660 * Free an lwpctl structure back to the per-process list.
1662 void
1663 lwp_ctl_free(lwp_t *l)
1665 lcproc_t *lp;
1666 lcpage_t *lcp;
1667 u_int map, offset;
1669 lp = l->l_proc->p_lwpctl;
1670 KASSERT(lp != NULL);
1672 lcp = l->l_lcpage;
1673 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1674 KASSERT(offset < LWPCTL_PER_PAGE);
1676 mutex_enter(&lp->lp_lock);
1677 lcp->lcp_nfree++;
1678 map = offset >> 5;
1679 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1680 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1681 lcp->lcp_rotor = map;
1682 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1683 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1684 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1686 mutex_exit(&lp->lp_lock);
1690 * Process is exiting; tear down lwpctl state. This can only be safely
1691 * called by the last LWP in the process.
1693 void
1694 lwp_ctl_exit(void)
1696 lcpage_t *lcp, *next;
1697 lcproc_t *lp;
1698 proc_t *p;
1699 lwp_t *l;
1701 l = curlwp;
1702 l->l_lwpctl = NULL;
1703 l->l_lcpage = NULL;
1704 p = l->l_proc;
1705 lp = p->p_lwpctl;
1707 KASSERT(lp != NULL);
1708 KASSERT(p->p_nlwps == 1);
1710 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1711 next = TAILQ_NEXT(lcp, lcp_chain);
1712 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1713 lcp->lcp_kaddr + PAGE_SIZE);
1714 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1717 if (lp->lp_uao != NULL) {
1718 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1719 lp->lp_uva + LWPCTL_UAREA_SZ);
1722 mutex_destroy(&lp->lp_lock);
1723 kmem_free(lp, sizeof(*lp));
1724 p->p_lwpctl = NULL;
1727 #if defined(DDB)
1728 void
1729 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1731 lwp_t *l;
1733 LIST_FOREACH(l, &alllwp, l_list) {
1734 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1736 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1737 continue;
1739 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1740 (void *)addr, (void *)stack,
1741 (size_t)(addr - stack), l);
1744 #endif /* defined(DDB) */