1 /* -*- Mode: c; tab-width: 8; indent-tabs-mode: 1; c-basic-offset: 8; -*- */
3 * Copyright (c) 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the Computer Systems
17 * Engineering Group at Lawrence Berkeley Laboratory.
18 * 4. Neither the name of the University nor of the Laboratory may be used
19 * to endorse or promote products derived from this software without
20 * specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 static const char rcsid
[] _U_
=
37 "@(#) $Header: /pub/NetBSD/misc/repositories/cvsroot/src/dist/libpcap/fad-gifc.c,v 1.1.1.1 2006/02/27 15:45:44 drochner Exp $ (LBL)";
44 #include <sys/param.h>
46 #include <sys/ioctl.h>
47 #include <sys/socket.h>
48 #ifdef HAVE_SYS_SOCKIO_H
49 #include <sys/sockio.h>
51 #include <sys/time.h> /* concession to AIX */
53 struct mbuf
; /* Squelch compiler warnings on some platforms for */
54 struct rtentry
; /* declarations in <net/if.h> */
56 #include <netinet/in.h>
68 #ifdef HAVE_OS_PROTO_H
75 * In older BSD systems, socket addresses were fixed-length, and
76 * "sizeof (struct sockaddr)" gave the size of the structure.
77 * All addresses fit within a "struct sockaddr".
79 * In newer BSD systems, the socket address is variable-length, and
80 * there's an "sa_len" field giving the length of the structure;
81 * this allows socket addresses to be longer than 2 bytes of family
82 * and 14 bytes of data.
84 * Some commercial UNIXes use the old BSD scheme, some use the RFC 2553
85 * variant of the old BSD scheme (with "struct sockaddr_storage" rather
86 * than "struct sockaddr"), and some use the new BSD scheme.
88 * Some versions of GNU libc use neither scheme, but has an "SA_LEN()"
89 * macro that determines the size based on the address family. Other
90 * versions don't have "SA_LEN()" (as it was in drafts of RFC 2553
91 * but not in the final version).
93 * We assume that a UNIX that doesn't have "getifaddrs()" and doesn't have
94 * SIOCGLIFCONF, but has SIOCGIFCONF, uses "struct sockaddr" for the
95 * address in an entry returned by SIOCGIFCONF.
98 #ifdef HAVE_SOCKADDR_SA_LEN
99 #define SA_LEN(addr) ((addr)->sa_len)
100 #else /* HAVE_SOCKADDR_SA_LEN */
101 #define SA_LEN(addr) (sizeof (struct sockaddr))
102 #endif /* HAVE_SOCKADDR_SA_LEN */
108 * There is no ioctl that returns the amount of space required for all
109 * the data that SIOCGIFCONF could return, and if a buffer is supplied
110 * that's not large enough for all the data SIOCGIFCONF could return,
111 * on at least some platforms it just returns the data that'd fit with
112 * no indication that there wasn't enough room for all the data, much
113 * less an indication of how much more room is required.
115 * The only way to ensure that we got all the data is to pass a buffer
116 * large enough that the amount of space in the buffer *not* filled in
117 * is greater than the largest possible entry.
119 * We assume that's "sizeof(ifreq.ifr_name)" plus 255, under the assumption
120 * that no address is more than 255 bytes (on systems where the "sa_len"
121 * field in a "struct sockaddr" is 1 byte, e.g. newer BSDs, that's the
122 * case, and addresses are unlikely to be bigger than that in any case).
124 #define MAX_SA_LEN 255
126 #ifdef HAVE_PROC_NET_DEV
128 * Get from "/proc/net/dev" all interfaces listed there; if they're
129 * already in the list of interfaces we have, that won't add another
130 * instance, but if they're not, that'll add them.
132 * We don't bother getting any addresses for them; it appears you can't
133 * use SIOCGIFADDR on Linux to get IPv6 addresses for interfaces, and,
134 * although some other types of addresses can be fetched with SIOCGIFADDR,
135 * we don't bother with them for now.
137 * We also don't fail if we couldn't open "/proc/net/dev"; we just leave
138 * the list of interfaces as is.
141 scan_proc_net_dev(pcap_if_t
**devlistp
, int fd
, char *errbuf
)
147 char name
[512]; /* XXX - pick a size */
149 struct ifreq ifrflags
;
152 proc_net_f
= fopen("/proc/net/dev", "r");
153 if (proc_net_f
== NULL
)
157 fgets(linebuf
, sizeof linebuf
, proc_net_f
) != NULL
; linenum
++) {
159 * Skip the first two lines - they're headers.
167 * Skip leading white space.
169 while (*p
!= '\0' && isspace(*p
))
171 if (*p
== '\0' || *p
== '\n')
172 continue; /* blank line */
175 * Get the interface name.
178 while (*p
!= '\0' && !isspace(*p
)) {
181 * This could be the separator between a
182 * name and an alias number, or it could be
183 * the separator between a name with no
184 * alias number and the next field.
186 * If there's a colon after digits, it
187 * separates the name and the alias number,
188 * otherwise it separates the name and the
196 * That was the next field,
197 * not the alias number.
208 * Get the flags for this interface, and skip it if
211 strncpy(ifrflags
.ifr_name
, name
, sizeof(ifrflags
.ifr_name
));
212 if (ioctl(fd
, SIOCGIFFLAGS
, (char *)&ifrflags
) < 0) {
215 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
216 "SIOCGIFFLAGS: %.*s: %s",
217 (int)sizeof(ifrflags
.ifr_name
),
219 pcap_strerror(errno
));
223 if (!(ifrflags
.ifr_flags
& IFF_UP
))
227 * Add an entry for this interface, with no addresses.
229 if (pcap_add_if(devlistp
, name
, ifrflags
.ifr_flags
, NULL
,
240 * Well, we didn't fail for any other reason; did we
241 * fail due to an error reading the file?
243 if (ferror(proc_net_f
)) {
244 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
245 "Error reading /proc/net/dev: %s",
246 pcap_strerror(errno
));
251 (void)fclose(proc_net_f
);
254 #endif /* HAVE_PROC_NET_DEV */
257 * Get a list of all interfaces that are up and that we can open.
258 * Returns -1 on error, 0 otherwise.
259 * The list, as returned through "alldevsp", may be null if no interfaces
260 * were up and could be opened.
262 * This is the implementation used on platforms that have SIOCGIFCONF but
263 * don't have any other mechanism for getting a list of interfaces.
265 * XXX - or platforms that have other, better mechanisms but for which
266 * we don't yet have code to use that mechanism; I think there's a better
267 * way on Linux, for example.
270 pcap_findalldevs(pcap_if_t
**alldevsp
, char *errbuf
)
272 pcap_if_t
*devlist
= NULL
;
274 register struct ifreq
*ifrp
, *ifend
, *ifnext
;
279 #if defined (HAVE_SOLARIS) || defined (HAVE_HPUX10_20_OR_LATER)
282 struct ifreq ifrflags
, ifrnetmask
, ifrbroadaddr
, ifrdstaddr
;
283 struct sockaddr
*netmask
, *broadaddr
, *dstaddr
;
284 size_t netmask_size
, broadaddr_size
, dstaddr_size
;
288 * Create a socket from which to fetch the list of interfaces.
290 fd
= socket(AF_INET
, SOCK_DGRAM
, 0);
292 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
293 "socket: %s", pcap_strerror(errno
));
298 * Start with an 8K buffer, and keep growing the buffer until
299 * we have more than "sizeof(ifrp->ifr_name) + MAX_SA_LEN"
300 * bytes left over in the buffer or we fail to get the
301 * interface list for some reason other than EINVAL (which is
302 * presumed here to mean "buffer is too small").
306 buf
= malloc(buf_size
);
308 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
309 "malloc: %s", pcap_strerror(errno
));
314 ifc
.ifc_len
= buf_size
;
316 memset(buf
, 0, buf_size
);
317 if (ioctl(fd
, SIOCGIFCONF
, (char *)&ifc
) < 0
318 && errno
!= EINVAL
) {
319 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
320 "SIOCGIFCONF: %s", pcap_strerror(errno
));
325 if (ifc
.ifc_len
< buf_size
&&
326 (buf_size
- ifc
.ifc_len
) > sizeof(ifrp
->ifr_name
) + MAX_SA_LEN
)
332 ifrp
= (struct ifreq
*)buf
;
333 ifend
= (struct ifreq
*)(buf
+ ifc
.ifc_len
);
335 for (; ifrp
< ifend
; ifrp
= ifnext
) {
337 * XXX - what if this isn't an IPv4 address? Can
338 * we still get the netmask, etc. with ioctls on
341 * The answer is probably platform-dependent, and
342 * if the answer is "no" on more than one platform,
343 * the way you work around it is probably platform-
346 n
= SA_LEN(&ifrp
->ifr_addr
) + sizeof(ifrp
->ifr_name
);
347 if (n
< sizeof(*ifrp
))
350 ifnext
= (struct ifreq
*)((char *)ifrp
+ n
);
353 * XXX - The 32-bit compatibility layer for Linux on IA-64
354 * is slightly broken. It correctly converts the structures
355 * to and from kernel land from 64 bit to 32 bit but
356 * doesn't update ifc.ifc_len, leaving it larger than the
357 * amount really used. This means we read off the end
358 * of the buffer and encounter an interface with an
359 * "empty" name. Since this is highly unlikely to ever
360 * occur in a valid case we can just finish looking for
361 * interfaces if we see an empty name.
363 if (!(*ifrp
->ifr_name
))
367 * Skip entries that begin with "dummy".
368 * XXX - what are these? Is this Linux-specific?
369 * Are there platforms on which we shouldn't do this?
371 if (strncmp(ifrp
->ifr_name
, "dummy", 5) == 0)
375 * Get the flags for this interface, and skip it if it's
378 strncpy(ifrflags
.ifr_name
, ifrp
->ifr_name
,
379 sizeof(ifrflags
.ifr_name
));
380 if (ioctl(fd
, SIOCGIFFLAGS
, (char *)&ifrflags
) < 0) {
383 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
384 "SIOCGIFFLAGS: %.*s: %s",
385 (int)sizeof(ifrflags
.ifr_name
),
387 pcap_strerror(errno
));
391 if (!(ifrflags
.ifr_flags
& IFF_UP
))
395 * Get the netmask for this address on this interface.
397 strncpy(ifrnetmask
.ifr_name
, ifrp
->ifr_name
,
398 sizeof(ifrnetmask
.ifr_name
));
399 memcpy(&ifrnetmask
.ifr_addr
, &ifrp
->ifr_addr
,
400 sizeof(ifrnetmask
.ifr_addr
));
401 if (ioctl(fd
, SIOCGIFNETMASK
, (char *)&ifrnetmask
) < 0) {
402 if (errno
== EADDRNOTAVAIL
) {
409 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
410 "SIOCGIFNETMASK: %.*s: %s",
411 (int)sizeof(ifrnetmask
.ifr_name
),
413 pcap_strerror(errno
));
418 netmask
= &ifrnetmask
.ifr_addr
;
419 netmask_size
= SA_LEN(netmask
);
423 * Get the broadcast address for this address on this
424 * interface (if any).
426 if (ifrflags
.ifr_flags
& IFF_BROADCAST
) {
427 strncpy(ifrbroadaddr
.ifr_name
, ifrp
->ifr_name
,
428 sizeof(ifrbroadaddr
.ifr_name
));
429 memcpy(&ifrbroadaddr
.ifr_addr
, &ifrp
->ifr_addr
,
430 sizeof(ifrbroadaddr
.ifr_addr
));
431 if (ioctl(fd
, SIOCGIFBRDADDR
,
432 (char *)&ifrbroadaddr
) < 0) {
433 if (errno
== EADDRNOTAVAIL
) {
440 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
441 "SIOCGIFBRDADDR: %.*s: %s",
442 (int)sizeof(ifrbroadaddr
.ifr_name
),
443 ifrbroadaddr
.ifr_name
,
444 pcap_strerror(errno
));
449 broadaddr
= &ifrbroadaddr
.ifr_broadaddr
;
450 broadaddr_size
= SA_LEN(broadaddr
);
454 * Not a broadcast interface, so no broadcast
462 * Get the destination address for this address on this
463 * interface (if any).
465 if (ifrflags
.ifr_flags
& IFF_POINTOPOINT
) {
466 strncpy(ifrdstaddr
.ifr_name
, ifrp
->ifr_name
,
467 sizeof(ifrdstaddr
.ifr_name
));
468 memcpy(&ifrdstaddr
.ifr_addr
, &ifrp
->ifr_addr
,
469 sizeof(ifrdstaddr
.ifr_addr
));
470 if (ioctl(fd
, SIOCGIFDSTADDR
,
471 (char *)&ifrdstaddr
) < 0) {
472 if (errno
== EADDRNOTAVAIL
) {
479 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
480 "SIOCGIFDSTADDR: %.*s: %s",
481 (int)sizeof(ifrdstaddr
.ifr_name
),
483 pcap_strerror(errno
));
488 dstaddr
= &ifrdstaddr
.ifr_dstaddr
;
489 dstaddr_size
= SA_LEN(dstaddr
);
493 * Not a point-to-point interface, so no destination
500 #if defined (HAVE_SOLARIS) || defined (HAVE_HPUX10_20_OR_LATER)
502 * If this entry has a colon followed by a number at
503 * the end, it's a logical interface. Those are just
504 * the way you assign multiple IP addresses to a real
505 * interface, so an entry for a logical interface should
506 * be treated like the entry for the real interface;
507 * we do that by stripping off the ":" and the number.
509 p
= strchr(ifrp
->ifr_name
, ':');
512 * We have a ":"; is it followed by a number?
515 while (isdigit((unsigned char)*q
))
519 * All digits after the ":" until the end.
520 * Strip off the ":" and everything after
529 * Add information for this address to the list.
531 if (add_addr_to_iflist(&devlist
, ifrp
->ifr_name
,
532 ifrflags
.ifr_flags
, &ifrp
->ifr_addr
,
533 SA_LEN(&ifrp
->ifr_addr
), netmask
, netmask_size
,
534 broadaddr
, broadaddr_size
, dstaddr
, dstaddr_size
,
542 #ifdef HAVE_PROC_NET_DEV
545 * We haven't had any errors yet; now read "/proc/net/dev",
546 * and add to the list of interfaces all interfaces listed
547 * there that we don't already have, because, on Linux,
548 * SIOCGIFCONF reports only interfaces with IPv4 addresses,
549 * so you need to read "/proc/net/dev" to get the names of
550 * the rest of the interfaces.
552 ret
= scan_proc_net_dev(&devlist
, fd
, errbuf
);
559 * We haven't had any errors yet; do any platform-specific
560 * operations to add devices.
562 if (pcap_platform_finddevs(&devlist
, errbuf
) < 0)
568 * We had an error; free the list we've been constructing.
570 if (devlist
!= NULL
) {
571 pcap_freealldevs(devlist
);