1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * assemble.c code generation for the Netwide Assembler
37 * the actual codes (C syntax, i.e. octal):
38 * \0 - terminates the code. (Unless it's a literal of course.)
39 * \1..\4 - that many literal bytes follow in the code stream
40 * \5 - add 4 to the primary operand number (b, low octdigit)
41 * \6 - add 4 to the secondary operand number (a, middle octdigit)
42 * \7 - add 4 to both the primary and the secondary operand number
43 * \10..\13 - a literal byte follows in the code stream, to be added
44 * to the register value of operand 0..3
45 * \14..\17 - a signed byte immediate operand, from operand 0..3
46 * \20..\23 - a byte immediate operand, from operand 0..3
47 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
48 * \30..\33 - a word immediate operand, from operand 0..3
49 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
50 * assembly mode or the operand-size override on the operand
51 * \40..\43 - a long immediate operand, from operand 0..3
52 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
53 * depending on the address size of the instruction.
54 * \50..\53 - a byte relative operand, from operand 0..3
55 * \54..\57 - a qword immediate operand, from operand 0..3
56 * \60..\63 - a word relative operand, from operand 0..3
57 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
58 * assembly mode or the operand-size override on the operand
59 * \70..\73 - a long relative operand, from operand 0..3
60 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
61 * \1ab - a ModRM, calculated on EA in operand a, with the spare
62 * field the register value of operand b.
63 * \140..\143 - an immediate word or signed byte for operand 0..3
64 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
65 * is a signed byte rather than a word. Opcode byte follows.
66 * \150..\153 - an immediate dword or signed byte for operand 0..3
67 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
68 * is a signed byte rather than a dword. Opcode byte follows.
69 * \160..\163 - this instruction uses DREX rather than REX, with the
70 * OC0 field set to 0, and the dest field taken from
72 * \164..\167 - this instruction uses DREX rather than REX, with the
73 * OC0 field set to 1, and the dest field taken from
75 * \171 - placement of DREX suffix in the absence of an EA
76 * \172\ab - the register number from operand a in bits 7..4, with
77 * the 4-bit immediate from operand b in bits 3..0.
78 * \173\xab - the register number from operand a in bits 7..4, with
79 * the value b in bits 3..0.
80 * \174\a - the register number from operand a in bits 7..4, and
81 * an arbitrary value in bits 3..0 (assembled as zero.)
82 * \2ab - a ModRM, calculated on EA in operand a, with the spare
83 * field equal to digit b.
84 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
85 * is not equal to the truncated and sign-extended 32-bit
86 * operand; used for 32-bit immediates in 64-bit mode.
87 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
88 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
89 * V field taken from operand 0..3.
90 * \270 - this instruction uses VEX/XOP rather than REX, with the
91 * V field set to 1111b.
93 * VEX/XOP prefixes are followed by the sequence:
94 * \tmm\wlp where mm is the M field; and wlp is:
96 * [w0] ww = 0 for W = 0
97 * [w1] ww = 1 for W = 1
98 * [wx] ww = 2 for W don't care (always assembled as 0)
99 * [ww] ww = 3 for W used as REX.W
101 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
103 * \274..\277 - a signed byte immediate operand, from operand 0..3,
104 * which is to be extended to the operand size.
105 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
106 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
107 * \312 - (disassembler only) invalid with non-default address size.
108 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
109 * \314 - (disassembler only) invalid with REX.B
110 * \315 - (disassembler only) invalid with REX.X
111 * \316 - (disassembler only) invalid with REX.R
112 * \317 - (disassembler only) invalid with REX.W
113 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
114 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
115 * \322 - indicates that this instruction is only valid when the
116 * operand size is the default (instruction to disassembler,
117 * generates no code in the assembler)
118 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
119 * \324 - indicates 64-bit operand size requiring REX prefix.
120 * \325 - instruction which always uses spl/bpl/sil/dil
121 * \330 - a literal byte follows in the code stream, to be added
122 * to the condition code value of the instruction.
123 * \331 - instruction not valid with REP prefix. Hint for
124 * disassembler only; for SSE instructions.
125 * \332 - REP prefix (0xF2 byte) used as opcode extension.
126 * \333 - REP prefix (0xF3 byte) used as opcode extension.
127 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
128 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
129 * \336 - force a REP(E) prefix (0xF2) even if not specified.
130 * \337 - force a REPNE prefix (0xF3) even if not specified.
131 * \336-\337 are still listed as prefixes in the disassembler.
132 * \340 - reserve <operand 0> bytes of uninitialized storage.
133 * Operand 0 had better be a segmentless constant.
134 * \341 - this instruction needs a WAIT "prefix"
135 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
136 * (POP is never used for CS) depending on operand 0
137 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
139 * \360 - no SSE prefix (== \364\331)
140 * \361 - 66 SSE prefix (== \366\331)
141 * \362 - F2 SSE prefix (== \364\332)
142 * \363 - F3 SSE prefix (== \364\333)
143 * \364 - operand-size prefix (0x66) not permitted
144 * \365 - address-size prefix (0x67) not permitted
145 * \366 - operand-size prefix (0x66) used as opcode extension
146 * \367 - address-size prefix (0x67) used as opcode extension
147 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
148 * 370 is used for Jcc, 371 is used for JMP.
149 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
150 * used for conditional jump over longer jump
153 #include "compiler.h"
157 #include <inttypes.h>
161 #include "assemble.h"
167 * Matching errors. These should be sorted so that more specific
168 * errors come later in the sequence.
176 * Matching success; the conditional ones first
178 MOK_JUMP
, /* Matching OK but needs jmp_match() */
179 MOK_GOOD
/* Matching unconditionally OK */
183 int sib_present
; /* is a SIB byte necessary? */
184 int bytes
; /* # of bytes of offset needed */
185 int size
; /* lazy - this is sib+bytes+1 */
186 uint8_t modrm
, sib
, rex
, rip
; /* the bytes themselves */
189 static uint32_t cpu
; /* cpu level received from nasm.c */
190 static efunc errfunc
;
191 static struct ofmt
*outfmt
;
192 static ListGen
*list
;
194 static int64_t calcsize(int32_t, int64_t, int, insn
*, const uint8_t *);
195 static void gencode(int32_t segment
, int64_t offset
, int bits
,
196 insn
* ins
, const struct itemplate
*temp
,
198 static enum match_result
find_match(const struct itemplate
**tempp
,
200 int32_t segment
, int64_t offset
, int bits
);
201 static enum match_result
matches(const struct itemplate
*, insn
*, int bits
);
202 static opflags_t
regflag(const operand
*);
203 static int32_t regval(const operand
*);
204 static int rexflags(int, opflags_t
, int);
205 static int op_rexflags(const operand
*, int);
206 static ea
*process_ea(operand
*, ea
*, int, int, int, opflags_t
);
207 static void add_asp(insn
*, int);
209 static int has_prefix(insn
* ins
, enum prefix_pos pos
, enum prefixes prefix
)
211 return ins
->prefixes
[pos
] == prefix
;
214 static void assert_no_prefix(insn
* ins
, enum prefix_pos pos
)
216 if (ins
->prefixes
[pos
])
217 errfunc(ERR_NONFATAL
, "invalid %s prefix",
218 prefix_name(ins
->prefixes
[pos
]));
221 static const char *size_name(int size
)
243 static void warn_overflow(int pass
, int size
)
245 errfunc(ERR_WARNING
| pass
| ERR_WARN_NOV
,
246 "%s data exceeds bounds", size_name(size
));
249 static void warn_overflow_const(int64_t data
, int size
)
251 if (overflow_general(data
, size
))
252 warn_overflow(ERR_PASS1
, size
);
255 static void warn_overflow_opd(const struct operand
*o
, int size
)
257 if (size
< 8 && o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
) {
258 if (overflow_general(o
->offset
, size
))
259 warn_overflow(ERR_PASS2
, size
);
264 * This routine wrappers the real output format's output routine,
265 * in order to pass a copy of the data off to the listing file
266 * generator at the same time.
268 static void out(int64_t offset
, int32_t segto
, const void *data
,
269 enum out_type type
, uint64_t size
,
270 int32_t segment
, int32_t wrt
)
272 static int32_t lineno
= 0; /* static!!! */
273 static char *lnfname
= NULL
;
276 if (type
== OUT_ADDRESS
&& segment
== NO_SEG
&& wrt
== NO_SEG
) {
278 * This is a non-relocated address, and we're going to
279 * convert it into RAWDATA format.
284 errfunc(ERR_PANIC
, "OUT_ADDRESS with size > 8");
288 WRITEADDR(q
, *(int64_t *)data
, size
);
293 list
->output(offset
, data
, type
, size
);
296 * this call to src_get determines when we call the
297 * debug-format-specific "linenum" function
298 * it updates lineno and lnfname to the current values
299 * returning 0 if "same as last time", -2 if lnfname
300 * changed, and the amount by which lineno changed,
301 * if it did. thus, these variables must be static
304 if (src_get(&lineno
, &lnfname
)) {
305 outfmt
->current_dfmt
->linenum(lnfname
, lineno
, segto
);
308 outfmt
->output(segto
, data
, type
, size
, segment
, wrt
);
311 static bool jmp_match(int32_t segment
, int64_t offset
, int bits
,
312 insn
* ins
, const uint8_t *code
)
317 if ((c
!= 0370 && c
!= 0371) || (ins
->oprs
[0].type
& STRICT
))
321 if (optimizing
< 0 && c
== 0371)
324 isize
= calcsize(segment
, offset
, bits
, ins
, code
);
326 if (ins
->oprs
[0].opflags
& OPFLAG_UNKNOWN
)
327 /* Be optimistic in pass 1 */
330 if (ins
->oprs
[0].segment
!= segment
)
333 isize
= ins
->oprs
[0].offset
- offset
- isize
; /* isize is delta */
334 return (isize
>= -128 && isize
<= 127); /* is it byte size? */
337 int64_t assemble(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
338 insn
* instruction
, struct ofmt
*output
, efunc error
,
341 const struct itemplate
*temp
;
346 int64_t start
= offset
;
347 int64_t wsize
; /* size for DB etc. */
349 errfunc
= error
; /* to pass to other functions */
351 outfmt
= output
; /* likewise */
352 list
= listgen
; /* and again */
354 wsize
= idata_bytes(instruction
->opcode
);
360 int32_t t
= instruction
->times
;
363 "instruction->times < 0 (%ld) in assemble()", t
);
365 while (t
--) { /* repeat TIMES times */
366 list_for_each(e
, instruction
->eops
) {
367 if (e
->type
== EOT_DB_NUMBER
) {
369 if (e
->segment
!= NO_SEG
)
370 errfunc(ERR_NONFATAL
,
371 "one-byte relocation attempted");
373 uint8_t out_byte
= e
->offset
;
374 out(offset
, segment
, &out_byte
,
375 OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
377 } else if (wsize
> 8) {
378 errfunc(ERR_NONFATAL
,
379 "integer supplied to a DT, DO or DY"
382 out(offset
, segment
, &e
->offset
,
383 OUT_ADDRESS
, wsize
, e
->segment
, e
->wrt
);
385 } else if (e
->type
== EOT_DB_STRING
||
386 e
->type
== EOT_DB_STRING_FREE
) {
389 out(offset
, segment
, e
->stringval
,
390 OUT_RAWDATA
, e
->stringlen
, NO_SEG
, NO_SEG
);
391 align
= e
->stringlen
% wsize
;
394 align
= wsize
- align
;
395 out(offset
, segment
, zero_buffer
,
396 OUT_RAWDATA
, align
, NO_SEG
, NO_SEG
);
398 offset
+= e
->stringlen
+ align
;
401 if (t
> 0 && t
== instruction
->times
- 1) {
403 * Dummy call to list->output to give the offset to the
406 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
407 list
->uplevel(LIST_TIMES
);
410 if (instruction
->times
> 1)
411 list
->downlevel(LIST_TIMES
);
412 return offset
- start
;
415 if (instruction
->opcode
== I_INCBIN
) {
416 const char *fname
= instruction
->eops
->stringval
;
419 fp
= fopen(fname
, "rb");
421 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
423 } else if (fseek(fp
, 0L, SEEK_END
) < 0) {
424 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
427 static char buf
[4096];
428 size_t t
= instruction
->times
;
433 if (instruction
->eops
->next
) {
434 base
= instruction
->eops
->next
->offset
;
436 if (instruction
->eops
->next
->next
&&
437 len
> (size_t)instruction
->eops
->next
->next
->offset
)
438 len
= (size_t)instruction
->eops
->next
->next
->offset
;
441 * Dummy call to list->output to give the offset to the
444 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
445 list
->uplevel(LIST_INCBIN
);
449 fseek(fp
, base
, SEEK_SET
);
453 m
= fread(buf
, 1, l
> sizeof(buf
) ? sizeof(buf
) : l
, fp
);
456 * This shouldn't happen unless the file
457 * actually changes while we are reading
461 "`incbin': unexpected EOF while"
462 " reading file `%s'", fname
);
463 t
= 0; /* Try to exit cleanly */
466 out(offset
, segment
, buf
, OUT_RAWDATA
, m
,
471 list
->downlevel(LIST_INCBIN
);
472 if (instruction
->times
> 1) {
474 * Dummy call to list->output to give the offset to the
477 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
478 list
->uplevel(LIST_TIMES
);
479 list
->downlevel(LIST_TIMES
);
482 return instruction
->times
* len
;
484 return 0; /* if we're here, there's an error */
487 /* Check to see if we need an address-size prefix */
488 add_asp(instruction
, bits
);
490 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
494 int64_t insn_size
= calcsize(segment
, offset
, bits
,
495 instruction
, temp
->code
);
496 itimes
= instruction
->times
;
497 if (insn_size
< 0) /* shouldn't be, on pass two */
498 error(ERR_PANIC
, "errors made it through from pass one");
501 for (j
= 0; j
< MAXPREFIX
; j
++) {
503 switch (instruction
->prefixes
[j
]) {
521 error(ERR_WARNING
| ERR_PASS2
,
522 "cs segment base generated, but will be ignored in 64-bit mode");
528 error(ERR_WARNING
| ERR_PASS2
,
529 "ds segment base generated, but will be ignored in 64-bit mode");
535 error(ERR_WARNING
| ERR_PASS2
,
536 "es segment base generated, but will be ignored in 64-bit mode");
548 error(ERR_WARNING
| ERR_PASS2
,
549 "ss segment base generated, but will be ignored in 64-bit mode");
556 "segr6 and segr7 cannot be used as prefixes");
561 "16-bit addressing is not supported "
563 } else if (bits
!= 16)
573 "64-bit addressing is only supported "
597 error(ERR_PANIC
, "invalid instruction prefix");
600 out(offset
, segment
, &c
, OUT_RAWDATA
, 1,
605 insn_end
= offset
+ insn_size
;
606 gencode(segment
, offset
, bits
, instruction
,
609 if (itimes
> 0 && itimes
== instruction
->times
- 1) {
611 * Dummy call to list->output to give the offset to the
614 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
615 list
->uplevel(LIST_TIMES
);
618 if (instruction
->times
> 1)
619 list
->downlevel(LIST_TIMES
);
620 return offset
- start
;
624 case MERR_OPSIZEMISSING
:
625 error(ERR_NONFATAL
, "operation size not specified");
627 case MERR_OPSIZEMISMATCH
:
628 error(ERR_NONFATAL
, "mismatch in operand sizes");
631 error(ERR_NONFATAL
, "no instruction for this cpu level");
634 error(ERR_NONFATAL
, "instruction not supported in %d-bit mode",
639 "invalid combination of opcode and operands");
646 int64_t insn_size(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
647 insn
* instruction
, efunc error
)
649 const struct itemplate
*temp
;
652 errfunc
= error
; /* to pass to other functions */
655 if (instruction
->opcode
== I_none
)
658 if (instruction
->opcode
== I_DB
|| instruction
->opcode
== I_DW
||
659 instruction
->opcode
== I_DD
|| instruction
->opcode
== I_DQ
||
660 instruction
->opcode
== I_DT
|| instruction
->opcode
== I_DO
||
661 instruction
->opcode
== I_DY
) {
663 int32_t isize
, osize
, wsize
;
666 wsize
= idata_bytes(instruction
->opcode
);
668 list_for_each(e
, instruction
->eops
) {
672 if (e
->type
== EOT_DB_NUMBER
) {
674 warn_overflow_const(e
->offset
, wsize
);
675 } else if (e
->type
== EOT_DB_STRING
||
676 e
->type
== EOT_DB_STRING_FREE
)
677 osize
= e
->stringlen
;
679 align
= (-osize
) % wsize
;
682 isize
+= osize
+ align
;
684 return isize
* instruction
->times
;
687 if (instruction
->opcode
== I_INCBIN
) {
688 const char *fname
= instruction
->eops
->stringval
;
692 fp
= fopen(fname
, "rb");
694 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
696 else if (fseek(fp
, 0L, SEEK_END
) < 0)
697 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
702 if (instruction
->eops
->next
) {
703 len
-= instruction
->eops
->next
->offset
;
704 if (instruction
->eops
->next
->next
&&
705 len
> (size_t)instruction
->eops
->next
->next
->offset
) {
706 len
= (size_t)instruction
->eops
->next
->next
->offset
;
709 return instruction
->times
* len
;
711 return 0; /* if we're here, there's an error */
714 /* Check to see if we need an address-size prefix */
715 add_asp(instruction
, bits
);
717 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
719 /* we've matched an instruction. */
721 const uint8_t *codes
= temp
->code
;
724 isize
= calcsize(segment
, offset
, bits
, instruction
, codes
);
727 for (j
= 0; j
< MAXPREFIX
; j
++) {
728 switch (instruction
->prefixes
[j
]) {
754 return isize
* instruction
->times
;
756 return -1; /* didn't match any instruction */
760 static bool possible_sbyte(operand
*o
)
762 return o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
&&
763 !(o
->opflags
& OPFLAG_UNKNOWN
) &&
764 optimizing
>= 0 && !(o
->type
& STRICT
);
767 /* check that opn[op] is a signed byte of size 16 or 32 */
768 static bool is_sbyte16(operand
*o
)
772 if (!possible_sbyte(o
))
776 return v
>= -128 && v
<= 127;
779 static bool is_sbyte32(operand
*o
)
783 if (!possible_sbyte(o
))
787 return v
>= -128 && v
<= 127;
790 /* Common construct */
791 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
793 static int64_t calcsize(int32_t segment
, int64_t offset
, int bits
,
794 insn
* ins
, const uint8_t *codes
)
803 ins
->rex
= 0; /* Ensure REX is reset */
805 if (ins
->prefixes
[PPS_OSIZE
] == P_O64
)
808 (void)segment
; /* Don't warn that this parameter is unused */
809 (void)offset
; /* Don't warn that this parameter is unused */
813 op1
= (c
& 3) + ((opex
& 1) << 2);
814 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
815 opx
= &ins
->oprs
[op1
];
816 opex
= 0; /* For the next iteration */
823 codes
+= c
, length
+= c
;
834 op_rexflags(opx
, REX_B
|REX_H
|REX_P
|REX_W
);
849 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
850 length
+= (opx
->type
& BITS16
) ? 2 : 4;
852 length
+= (bits
== 16) ? 2 : 4;
860 length
+= ins
->addr_size
>> 3;
868 length
+= 8; /* MOV reg64/imm */
876 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
877 length
+= (opx
->type
& BITS16
) ? 2 : 4;
879 length
+= (bits
== 16) ? 2 : 4;
891 length
+= is_sbyte16(opx
) ? 1 : 2;
900 length
+= is_sbyte32(opx
) ? 1 : 4;
911 ins
->drexdst
= regval(opx
);
916 ins
->rex
|= REX_D
|REX_OC
;
917 ins
->drexdst
= regval(opx
);
931 length
+= is_sbyte32(opx
) ? 1 : 4;
940 ins
->drexdst
= regval(opx
);
941 ins
->vex_cm
= *codes
++;
942 ins
->vex_wlp
= *codes
++;
948 ins
->vex_cm
= *codes
++;
949 ins
->vex_wlp
= *codes
++;
962 length
+= (bits
!= 16) && !has_prefix(ins
, PPS_ASIZE
, P_A16
);
966 length
+= (bits
!= 32) && !has_prefix(ins
, PPS_ASIZE
, P_A32
);
973 if (bits
!= 64 || has_prefix(ins
, PPS_ASIZE
, P_A16
) ||
974 has_prefix(ins
, PPS_ASIZE
, P_A32
))
982 length
+= (bits
!= 16);
986 length
+= (bits
== 16);
1024 if (!ins
->prefixes
[PPS_LREP
])
1025 ins
->prefixes
[PPS_LREP
] = P_REP
;
1029 if (!ins
->prefixes
[PPS_LREP
])
1030 ins
->prefixes
[PPS_LREP
] = P_REPNE
;
1034 if (ins
->oprs
[0].segment
!= NO_SEG
)
1035 errfunc(ERR_NONFATAL
, "attempt to reserve non-constant"
1036 " quantity of BSS space");
1038 length
+= ins
->oprs
[0].offset
;
1042 if (!ins
->prefixes
[PPS_WAIT
])
1043 ins
->prefixes
[PPS_WAIT
] = P_WAIT
;
1093 struct operand
*opy
= &ins
->oprs
[op2
];
1095 ea_data
.rex
= 0; /* Ensure ea.REX is initially 0 */
1098 /* pick rfield from operand b (opx) */
1099 rflags
= regflag(opx
);
1100 rfield
= nasm_regvals
[opx
->basereg
];
1105 if (!process_ea(opy
, &ea_data
, bits
,
1106 ins
->addr_size
, rfield
, rflags
)) {
1107 errfunc(ERR_NONFATAL
, "invalid effective address");
1110 ins
->rex
|= ea_data
.rex
;
1111 length
+= ea_data
.size
;
1117 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1118 ": instruction code \\%o (0x%02X) given", c
, c
);
1123 ins
->rex
&= rex_mask
;
1125 if (ins
->rex
& REX_NH
) {
1126 if (ins
->rex
& REX_H
) {
1127 errfunc(ERR_NONFATAL
, "instruction cannot use high registers");
1130 ins
->rex
&= ~REX_P
; /* Don't force REX prefix due to high reg */
1133 if (ins
->rex
& REX_V
) {
1134 int bad32
= REX_R
|REX_W
|REX_X
|REX_B
;
1136 if (ins
->rex
& REX_H
) {
1137 errfunc(ERR_NONFATAL
, "cannot use high register in vex instruction");
1140 switch (ins
->vex_wlp
& 030) {
1154 if (bits
!= 64 && ((ins
->rex
& bad32
) || ins
->drexdst
> 7)) {
1155 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1158 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_R
|REX_B
)))
1162 } else if (ins
->rex
& REX_D
) {
1163 if (ins
->rex
& REX_H
) {
1164 errfunc(ERR_NONFATAL
, "cannot use high register in drex instruction");
1167 if (bits
!= 64 && ((ins
->rex
& (REX_R
|REX_W
|REX_X
|REX_B
)) ||
1168 ins
->drexdst
> 7)) {
1169 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1173 } else if (ins
->rex
& REX_REAL
) {
1174 if (ins
->rex
& REX_H
) {
1175 errfunc(ERR_NONFATAL
, "cannot use high register in rex instruction");
1177 } else if (bits
== 64) {
1179 } else if ((ins
->rex
& REX_L
) &&
1180 !(ins
->rex
& (REX_P
|REX_W
|REX_X
|REX_B
)) &&
1183 assert_no_prefix(ins
, PPS_LREP
);
1186 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1194 #define EMIT_REX() \
1195 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1196 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1197 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1202 static void gencode(int32_t segment
, int64_t offset
, int bits
,
1203 insn
* ins
, const struct itemplate
*temp
,
1206 static char condval
[] = { /* conditional opcodes */
1207 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1208 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1209 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1216 struct operand
*opx
;
1217 const uint8_t *codes
= temp
->code
;
1222 op1
= (c
& 3) + ((opex
& 1) << 2);
1223 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
1224 opx
= &ins
->oprs
[op1
];
1225 opex
= 0; /* For the next iteration */
1233 out(offset
, segment
, codes
, OUT_RAWDATA
, c
, NO_SEG
, NO_SEG
);
1246 bytes
[0] = *codes
++ + (regval(opx
) & 7);
1247 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1252 /* The test for BITS8 and SBYTE here is intended to avoid
1253 warning on optimizer actions due to SBYTE, while still
1254 warn on explicit BYTE directives. Also warn, obviously,
1255 if the optimizer isn't enabled. */
1256 if (((opx
->type
& BITS8
) ||
1257 !(opx
->type
& temp
->opd
[op1
] & BYTENESS
)) &&
1258 (opx
->offset
< -128 || opx
->offset
> 127)) {
1259 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1260 "signed byte value exceeds bounds");
1262 if (opx
->segment
!= NO_SEG
) {
1264 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1265 opx
->segment
, opx
->wrt
);
1267 bytes
[0] = opx
->offset
;
1268 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1275 if (opx
->offset
< -256 || opx
->offset
> 255) {
1276 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1277 "byte value exceeds bounds");
1279 if (opx
->segment
!= NO_SEG
) {
1281 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1282 opx
->segment
, opx
->wrt
);
1284 bytes
[0] = opx
->offset
;
1285 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1292 if (opx
->offset
< 0 || opx
->offset
> 255)
1293 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1294 "unsigned byte value exceeds bounds");
1295 if (opx
->segment
!= NO_SEG
) {
1297 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1298 opx
->segment
, opx
->wrt
);
1300 bytes
[0] = opx
->offset
;
1301 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1308 warn_overflow_opd(opx
, 2);
1310 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1311 opx
->segment
, opx
->wrt
);
1316 if (opx
->type
& (BITS16
| BITS32
))
1317 size
= (opx
->type
& BITS16
) ? 2 : 4;
1319 size
= (bits
== 16) ? 2 : 4;
1320 warn_overflow_opd(opx
, size
);
1322 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1323 opx
->segment
, opx
->wrt
);
1328 warn_overflow_opd(opx
, 4);
1330 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1331 opx
->segment
, opx
->wrt
);
1337 size
= ins
->addr_size
>> 3;
1338 warn_overflow_opd(opx
, size
);
1339 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1340 opx
->segment
, opx
->wrt
);
1345 if (opx
->segment
!= segment
)
1346 errfunc(ERR_NONFATAL
,
1347 "short relative jump outside segment");
1348 data
= opx
->offset
- insn_end
;
1349 if (data
> 127 || data
< -128)
1350 errfunc(ERR_NONFATAL
, "short jump is out of range");
1352 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1357 data
= (int64_t)opx
->offset
;
1358 out(offset
, segment
, &data
, OUT_ADDRESS
, 8,
1359 opx
->segment
, opx
->wrt
);
1364 if (opx
->segment
!= segment
) {
1366 out(offset
, segment
, &data
,
1367 OUT_REL2ADR
, insn_end
- offset
,
1368 opx
->segment
, opx
->wrt
);
1370 data
= opx
->offset
- insn_end
;
1371 out(offset
, segment
, &data
,
1372 OUT_ADDRESS
, 2, NO_SEG
, NO_SEG
);
1378 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
1379 size
= (opx
->type
& BITS16
) ? 2 : 4;
1381 size
= (bits
== 16) ? 2 : 4;
1382 if (opx
->segment
!= segment
) {
1384 out(offset
, segment
, &data
,
1385 size
== 2 ? OUT_REL2ADR
: OUT_REL4ADR
,
1386 insn_end
- offset
, opx
->segment
, opx
->wrt
);
1388 data
= opx
->offset
- insn_end
;
1389 out(offset
, segment
, &data
,
1390 OUT_ADDRESS
, size
, NO_SEG
, NO_SEG
);
1396 if (opx
->segment
!= segment
) {
1398 out(offset
, segment
, &data
,
1399 OUT_REL4ADR
, insn_end
- offset
,
1400 opx
->segment
, opx
->wrt
);
1402 data
= opx
->offset
- insn_end
;
1403 out(offset
, segment
, &data
,
1404 OUT_ADDRESS
, 4, NO_SEG
, NO_SEG
);
1410 if (opx
->segment
== NO_SEG
)
1411 errfunc(ERR_NONFATAL
, "value referenced by FAR is not"
1414 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1415 outfmt
->segbase(1 + opx
->segment
),
1422 warn_overflow_opd(opx
, 2);
1423 if (is_sbyte16(opx
)) {
1425 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1429 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1430 opx
->segment
, opx
->wrt
);
1437 bytes
[0] = *codes
++;
1438 if (is_sbyte16(opx
))
1439 bytes
[0] |= 2; /* s-bit */
1440 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1446 warn_overflow_opd(opx
, 4);
1447 if (is_sbyte32(opx
)) {
1449 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1453 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1454 opx
->segment
, opx
->wrt
);
1461 bytes
[0] = *codes
++;
1462 if (is_sbyte32(opx
))
1463 bytes
[0] |= 2; /* s-bit */
1464 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1474 (ins
->drexdst
<< 4) |
1475 (ins
->rex
& REX_OC
? 0x08 : 0) |
1476 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1478 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1484 opx
= &ins
->oprs
[c
>> 3];
1485 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1486 opx
= &ins
->oprs
[c
& 7];
1487 if (opx
->segment
!= NO_SEG
|| opx
->wrt
!= NO_SEG
) {
1488 errfunc(ERR_NONFATAL
,
1489 "non-absolute expression not permitted as argument %d",
1492 if (opx
->offset
& ~15) {
1493 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1494 "four-bit argument exceeds bounds");
1496 bytes
[0] |= opx
->offset
& 15;
1498 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1504 opx
= &ins
->oprs
[c
>> 4];
1505 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1507 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1513 opx
= &ins
->oprs
[c
];
1514 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1515 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1521 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1522 (int32_t)data
!= (int64_t)data
) {
1523 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1524 "signed dword immediate exceeds bounds");
1526 if (is_sbyte32(opx
)) {
1528 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1532 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1533 opx
->segment
, opx
->wrt
);
1540 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1541 (int32_t)data
!= (int64_t)data
) {
1542 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1543 "signed dword immediate exceeds bounds");
1545 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1546 opx
->segment
, opx
->wrt
);
1553 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
))) {
1554 bytes
[0] = (ins
->vex_cm
>> 6) ? 0x8f : 0xc4;
1555 bytes
[1] = (ins
->vex_cm
& 31) | ((~ins
->rex
& 7) << 5);
1556 bytes
[2] = ((ins
->rex
& REX_W
) << (7-3)) |
1557 ((~ins
->drexdst
& 15)<< 3) | (ins
->vex_wlp
& 07);
1558 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 3, NO_SEG
, NO_SEG
);
1562 bytes
[1] = ((~ins
->rex
& REX_R
) << (7-2)) |
1563 ((~ins
->drexdst
& 15) << 3) | (ins
->vex_wlp
& 07);
1564 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 2, NO_SEG
, NO_SEG
);
1574 if (ins
->rex
& REX_W
)
1576 else if (ins
->prefixes
[PPS_OSIZE
] == P_O16
)
1578 else if (ins
->prefixes
[PPS_OSIZE
] == P_O32
)
1583 um
= (uint64_t)2 << (s
-1);
1586 if (uv
> 127 && uv
< (uint64_t)-128 &&
1587 (uv
< um
-128 || uv
> um
-1)) {
1588 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1589 "signed byte value exceeds bounds");
1591 if (opx
->segment
!= NO_SEG
) {
1593 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1594 opx
->segment
, opx
->wrt
);
1597 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1608 if (bits
== 32 && !has_prefix(ins
, PPS_ASIZE
, P_A16
)) {
1610 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1617 if (bits
!= 32 && !has_prefix(ins
, PPS_ASIZE
, P_A32
)) {
1619 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1638 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1647 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1665 *bytes
= *codes
++ ^ condval
[ins
->condition
];
1666 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1675 *bytes
= c
- 0332 + 0xF2;
1676 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1681 if (ins
->rex
& REX_R
) {
1683 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1686 ins
->rex
&= ~(REX_L
|REX_R
);
1697 if (ins
->oprs
[0].segment
!= NO_SEG
)
1698 errfunc(ERR_PANIC
, "non-constant BSS size in pass two");
1700 int64_t size
= ins
->oprs
[0].offset
;
1702 out(offset
, segment
, NULL
,
1703 OUT_RESERVE
, size
, NO_SEG
, NO_SEG
);
1714 switch (ins
->oprs
[0].basereg
) {
1729 "bizarre 8086 segment register received");
1731 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1738 switch (ins
->oprs
[0].basereg
) {
1747 "bizarre 386 segment register received");
1749 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1758 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1764 bytes
[0] = c
- 0362 + 0xf2;
1765 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1775 *bytes
= c
- 0366 + 0x66;
1776 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1786 *bytes
= bits
== 16 ? 3 : 5;
1787 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1810 struct operand
*opy
= &ins
->oprs
[op2
];
1813 /* pick rfield from operand b (opx) */
1814 rflags
= regflag(opx
);
1815 rfield
= nasm_regvals
[opx
->basereg
];
1817 /* rfield is constant */
1822 if (!process_ea(opy
, &ea_data
, bits
, ins
->addr_size
,
1824 errfunc(ERR_NONFATAL
, "invalid effective address");
1829 *p
++ = ea_data
.modrm
;
1830 if (ea_data
.sib_present
)
1833 /* DREX suffixes come between the SIB and the displacement */
1834 if (ins
->rex
& REX_D
) {
1835 *p
++ = (ins
->drexdst
<< 4) |
1836 (ins
->rex
& REX_OC
? 0x08 : 0) |
1837 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1842 out(offset
, segment
, bytes
, OUT_RAWDATA
, s
, NO_SEG
, NO_SEG
);
1845 * Make sure the address gets the right offset in case
1846 * the line breaks in the .lst file (BR 1197827)
1851 switch (ea_data
.bytes
) {
1859 warn_overflow_opd(opy
, ea_data
.bytes
);
1862 if (opy
->segment
== segment
) {
1864 out(offset
, segment
, &data
, OUT_ADDRESS
,
1865 ea_data
.bytes
, NO_SEG
, NO_SEG
);
1867 out(offset
, segment
, &data
, OUT_REL4ADR
,
1868 insn_end
- offset
, opy
->segment
, opy
->wrt
);
1872 out(offset
, segment
, &data
, OUT_ADDRESS
,
1873 ea_data
.bytes
, opy
->segment
, opy
->wrt
);
1879 "Invalid amount of bytes (%d) for offset?!",
1888 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1889 ": instruction code \\%o (0x%02X) given", c
, c
);
1895 static opflags_t
regflag(const operand
* o
)
1897 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1898 errfunc(ERR_PANIC
, "invalid operand passed to regflag()");
1900 return nasm_reg_flags
[o
->basereg
];
1903 static int32_t regval(const operand
* o
)
1905 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1906 errfunc(ERR_PANIC
, "invalid operand passed to regval()");
1908 return nasm_regvals
[o
->basereg
];
1911 static int op_rexflags(const operand
* o
, int mask
)
1916 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1917 errfunc(ERR_PANIC
, "invalid operand passed to op_rexflags()");
1920 flags
= nasm_reg_flags
[o
->basereg
];
1921 val
= nasm_regvals
[o
->basereg
];
1923 return rexflags(val
, flags
, mask
);
1926 static int rexflags(int val
, opflags_t flags
, int mask
)
1931 rex
|= REX_B
|REX_X
|REX_R
;
1934 if (!(REG_HIGH
& ~flags
)) /* AH, CH, DH, BH */
1936 else if (!(REG8
& ~flags
) && val
>= 4) /* SPL, BPL, SIL, DIL */
1942 static enum match_result
find_match(const struct itemplate
**tempp
,
1944 int32_t segment
, int64_t offset
, int bits
)
1946 const struct itemplate
*temp
;
1947 enum match_result m
, merr
;
1948 opflags_t xsizeflags
[MAX_OPERANDS
];
1949 bool opsizemissing
= false;
1952 for (i
= 0; i
< instruction
->operands
; i
++)
1953 xsizeflags
[i
] = instruction
->oprs
[i
].type
& SIZE_MASK
;
1955 merr
= MERR_INVALOP
;
1957 for (temp
= nasm_instructions
[instruction
->opcode
];
1958 temp
->opcode
!= I_none
; temp
++) {
1959 m
= matches(temp
, instruction
, bits
);
1960 if (m
== MOK_JUMP
) {
1961 if (jmp_match(segment
, offset
, bits
, instruction
, temp
->code
))
1965 } else if (m
== MERR_OPSIZEMISSING
&&
1966 (temp
->flags
& IF_SMASK
) != IF_SX
) {
1968 * Missing operand size and a candidate for fuzzy matching...
1970 for (i
= 0; i
< temp
->operands
; i
++) {
1971 if ((temp
->opd
[i
] & SAME_AS
) == 0)
1972 xsizeflags
[i
] |= temp
->opd
[i
] & SIZE_MASK
;
1974 opsizemissing
= true;
1978 if (merr
== MOK_GOOD
)
1982 /* No match, but see if we can get a fuzzy operand size match... */
1986 for (i
= 0; i
< instruction
->operands
; i
++) {
1988 * We ignore extrinsic operand sizes on registers, so we should
1989 * never try to fuzzy-match on them. This also resolves the case
1990 * when we have e.g. "xmmrm128" in two different positions.
1992 if (is_class(REGISTER
, instruction
->oprs
[i
].type
))
1995 /* This tests if xsizeflags[i] has more than one bit set */
1996 if ((xsizeflags
[i
] & (xsizeflags
[i
]-1)))
1997 goto done
; /* No luck */
1999 instruction
->oprs
[i
].type
|= xsizeflags
[i
]; /* Set the size */
2002 /* Try matching again... */
2003 for (temp
= nasm_instructions
[instruction
->opcode
];
2004 temp
->opcode
!= I_none
; temp
++) {
2005 m
= matches(temp
, instruction
, bits
);
2006 if (m
== MOK_JUMP
) {
2007 if (jmp_match(segment
, offset
, bits
, instruction
, temp
->code
))
2014 if (merr
== MOK_GOOD
)
2023 static enum match_result
matches(const struct itemplate
*itemp
,
2024 insn
*instruction
, int bits
)
2026 int i
, size
[MAX_OPERANDS
], asize
, oprs
;
2027 bool opsizemissing
= false;
2032 if (itemp
->opcode
!= instruction
->opcode
)
2033 return MERR_INVALOP
;
2036 * Count the operands
2038 if (itemp
->operands
!= instruction
->operands
)
2039 return MERR_INVALOP
;
2042 * Check that no spurious colons or TOs are present
2044 for (i
= 0; i
< itemp
->operands
; i
++)
2045 if (instruction
->oprs
[i
].type
& ~itemp
->opd
[i
] & (COLON
| TO
))
2046 return MERR_INVALOP
;
2049 * Process size flags
2051 switch (itemp
->flags
& IF_SMASK
) {
2091 if (itemp
->flags
& IF_ARMASK
) {
2092 /* S- flags only apply to a specific operand */
2093 i
= ((itemp
->flags
& IF_ARMASK
) >> IF_ARSHFT
) - 1;
2094 memset(size
, 0, sizeof size
);
2097 /* S- flags apply to all operands */
2098 for (i
= 0; i
< MAX_OPERANDS
; i
++)
2103 * Check that the operand flags all match up
2105 for (i
= 0; i
< itemp
->operands
; i
++) {
2106 opflags_t type
= instruction
->oprs
[i
].type
;
2107 if (!(type
& SIZE_MASK
))
2110 if (itemp
->opd
[i
] & SAME_AS
) {
2111 int j
= itemp
->opd
[i
] & ~SAME_AS
;
2112 if (type
!= instruction
->oprs
[j
].type
||
2113 instruction
->oprs
[i
].basereg
!= instruction
->oprs
[j
].basereg
)
2114 return MERR_INVALOP
;
2115 } else if (itemp
->opd
[i
] & ~type
||
2116 ((itemp
->opd
[i
] & SIZE_MASK
) &&
2117 ((itemp
->opd
[i
] ^ type
) & SIZE_MASK
))) {
2118 if ((itemp
->opd
[i
] & ~type
& ~SIZE_MASK
) || (type
& SIZE_MASK
)) {
2119 return MERR_INVALOP
;
2120 } else if (!is_class(REGISTER
, type
)) {
2122 * Note: we don't honor extrinsic operand sizes for registers,
2123 * so "missing operand size" for a register should be
2124 * considered a wildcard match rather than an error.
2126 opsizemissing
= true;
2132 return MERR_OPSIZEMISSING
;
2135 * Check operand sizes
2137 if (itemp
->flags
& (IF_SM
| IF_SM2
)) {
2138 oprs
= (itemp
->flags
& IF_SM2
? 2 : itemp
->operands
);
2139 for (i
= 0; i
< oprs
; i
++) {
2140 asize
= itemp
->opd
[i
] & SIZE_MASK
;
2142 for (i
= 0; i
< oprs
; i
++)
2148 oprs
= itemp
->operands
;
2151 for (i
= 0; i
< itemp
->operands
; i
++) {
2152 if (!(itemp
->opd
[i
] & SIZE_MASK
) &&
2153 (instruction
->oprs
[i
].type
& SIZE_MASK
& ~size
[i
]))
2154 return MERR_OPSIZEMISMATCH
;
2158 * Check template is okay at the set cpu level
2160 if (((itemp
->flags
& IF_PLEVEL
) > cpu
))
2164 * Verify the appropriate long mode flag.
2166 if ((itemp
->flags
& (bits
== 64 ? IF_NOLONG
: IF_LONG
)))
2167 return MERR_BADMODE
;
2170 * Check if special handling needed for Jumps
2172 if ((itemp
->code
[0] & 0374) == 0370)
2178 static ea
*process_ea(operand
* input
, ea
* output
, int bits
,
2179 int addrbits
, int rfield
, opflags_t rflags
)
2181 bool forw_ref
= !!(input
->opflags
& OPFLAG_UNKNOWN
);
2183 output
->rip
= false;
2185 /* REX flags for the rfield operand */
2186 output
->rex
|= rexflags(rfield
, rflags
, REX_R
|REX_P
|REX_W
|REX_H
);
2188 if (is_class(REGISTER
, input
->type
)) { /* register direct */
2192 if (input
->basereg
< EXPR_REG_START
/* Verify as Register */
2193 || input
->basereg
>= REG_ENUM_LIMIT
)
2196 i
= nasm_regvals
[input
->basereg
];
2199 return NULL
; /* Invalid EA register */
2201 output
->rex
|= op_rexflags(input
, REX_B
|REX_P
|REX_W
|REX_H
);
2203 output
->sib_present
= false; /* no SIB necessary */
2204 output
->bytes
= 0; /* no offset necessary either */
2205 output
->modrm
= 0xC0 | ((rfield
& 7) << 3) | (i
& 7);
2206 } else { /* it's a memory reference */
2207 if (input
->basereg
== -1
2208 && (input
->indexreg
== -1 || input
->scale
== 0)) {
2209 /* it's a pure offset */
2210 if (bits
== 64 && (~input
->type
& IP_REL
)) {
2211 int scale
, index
, base
;
2212 output
->sib_present
= true;
2216 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2218 output
->modrm
= 4 | ((rfield
& 7) << 3);
2219 output
->rip
= false;
2221 output
->sib_present
= false;
2222 output
->bytes
= (addrbits
!= 16 ? 4 : 2);
2223 output
->modrm
= (addrbits
!= 16 ? 5 : 6) | ((rfield
& 7) << 3);
2224 output
->rip
= bits
== 64;
2226 } else { /* it's an indirection */
2227 int i
= input
->indexreg
, b
= input
->basereg
, s
= input
->scale
;
2228 int32_t o
= input
->offset
, seg
= input
->segment
;
2229 int hb
= input
->hintbase
, ht
= input
->hinttype
;
2230 int t
, it
, bt
; /* register numbers */
2231 opflags_t x
, ix
, bx
; /* register flags */
2234 i
= -1; /* make this easy, at least */
2236 if (i
>= EXPR_REG_START
&& i
< REG_ENUM_LIMIT
) {
2237 it
= nasm_regvals
[i
];
2238 ix
= nasm_reg_flags
[i
];
2244 if (b
>= EXPR_REG_START
&& b
< REG_ENUM_LIMIT
) {
2245 bt
= nasm_regvals
[b
];
2246 bx
= nasm_reg_flags
[b
];
2252 /* check for a 32/64-bit memory reference... */
2253 if ((ix
|bx
) & (BITS32
|BITS64
)) {
2254 /* it must be a 32/64-bit memory reference. Firstly we have
2255 * to check that all registers involved are type E/Rxx. */
2256 int32_t sok
= BITS32
|BITS64
;
2259 if (!(REG64
& ~ix
) || !(REG32
& ~ix
))
2267 return NULL
; /* Invalid register */
2268 if (~sok
& bx
& SIZE_MASK
)
2269 return NULL
; /* Invalid size */
2273 /* While we're here, ensure the user didn't specify
2275 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2278 if (addrbits
== 16 ||
2279 (addrbits
== 32 && !(sok
& BITS32
)) ||
2280 (addrbits
== 64 && !(sok
& BITS64
)))
2283 /* now reorganize base/index */
2284 if (s
== 1 && bt
!= it
&& bt
!= -1 && it
!= -1 &&
2285 ((hb
== b
&& ht
== EAH_NOTBASE
)
2286 || (hb
== i
&& ht
== EAH_MAKEBASE
))) {
2287 /* swap if hints say so */
2288 t
= bt
, bt
= it
, it
= t
;
2289 x
= bx
, bx
= ix
, ix
= x
;
2291 if (bt
== it
) /* convert EAX+2*EAX to 3*EAX */
2292 bt
= -1, bx
= 0, s
++;
2293 if (bt
== -1 && s
== 1 && !(hb
== it
&& ht
== EAH_NOTBASE
)) {
2294 /* make single reg base, unless hint */
2295 bt
= it
, bx
= ix
, it
= -1, ix
= 0;
2297 if (((s
== 2 && it
!= REG_NUM_ESP
2298 && !(input
->eaflags
& EAF_TIMESTWO
)) || s
== 3
2299 || s
== 5 || s
== 9) && bt
== -1)
2300 bt
= it
, bx
= ix
, s
--; /* convert 3*EAX to EAX+2*EAX */
2301 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
2302 && (input
->eaflags
& EAF_TIMESTWO
))
2303 it
= bt
, ix
= bx
, bt
= -1, bx
= 0, s
= 1;
2304 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2305 if (s
== 1 && it
== REG_NUM_ESP
) {
2306 /* swap ESP into base if scale is 1 */
2307 t
= it
, it
= bt
, bt
= t
;
2308 x
= ix
, ix
= bx
, bx
= x
;
2310 if (it
== REG_NUM_ESP
2311 || (s
!= 1 && s
!= 2 && s
!= 4 && s
!= 8 && it
!= -1))
2312 return NULL
; /* wrong, for various reasons */
2314 output
->rex
|= rexflags(it
, ix
, REX_X
);
2315 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2317 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
) {
2326 if (rm
!= REG_NUM_EBP
&& o
== 0 &&
2327 seg
== NO_SEG
&& !forw_ref
&&
2329 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2331 else if (input
->eaflags
& EAF_BYTEOFFS
||
2332 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2334 && !(input
->eaflags
& EAF_WORDOFFS
)))
2340 output
->sib_present
= false;
2341 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2342 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2345 int mod
, scale
, index
, base
;
2365 default: /* then what the smeg is it? */
2366 return NULL
; /* panic */
2374 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2375 seg
== NO_SEG
&& !forw_ref
&&
2377 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2379 else if (input
->eaflags
& EAF_BYTEOFFS
||
2380 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2382 && !(input
->eaflags
& EAF_WORDOFFS
)))
2388 output
->sib_present
= true;
2389 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2390 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | 4;
2391 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2393 } else { /* it's 16-bit */
2396 /* check for 64-bit long mode */
2400 /* check all registers are BX, BP, SI or DI */
2401 if ((b
!= -1 && b
!= R_BP
&& b
!= R_BX
&& b
!= R_SI
2402 && b
!= R_DI
) || (i
!= -1 && i
!= R_BP
&& i
!= R_BX
2403 && i
!= R_SI
&& i
!= R_DI
))
2406 /* ensure the user didn't specify DWORD/QWORD */
2407 if (input
->disp_size
== 32 || input
->disp_size
== 64)
2410 if (s
!= 1 && i
!= -1)
2411 return NULL
; /* no can do, in 16-bit EA */
2412 if (b
== -1 && i
!= -1) {
2417 if ((b
== R_SI
|| b
== R_DI
) && i
!= -1) {
2422 /* have BX/BP as base, SI/DI index */
2424 return NULL
; /* shouldn't ever happen, in theory */
2425 if (i
!= -1 && b
!= -1 &&
2426 (i
== R_BP
|| i
== R_BX
|| b
== R_SI
|| b
== R_DI
))
2427 return NULL
; /* invalid combinations */
2428 if (b
== -1) /* pure offset: handled above */
2429 return NULL
; /* so if it gets to here, panic! */
2433 switch (i
* 256 + b
) {
2434 case R_SI
* 256 + R_BX
:
2437 case R_DI
* 256 + R_BX
:
2440 case R_SI
* 256 + R_BP
:
2443 case R_DI
* 256 + R_BP
:
2461 if (rm
== -1) /* can't happen, in theory */
2462 return NULL
; /* so panic if it does */
2464 if (o
== 0 && seg
== NO_SEG
&& !forw_ref
&& rm
!= 6 &&
2465 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2467 else if (input
->eaflags
& EAF_BYTEOFFS
||
2468 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2470 && !(input
->eaflags
& EAF_WORDOFFS
)))
2475 output
->sib_present
= false; /* no SIB - it's 16-bit */
2476 output
->bytes
= mod
; /* bytes of offset needed */
2477 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2482 output
->size
= 1 + output
->sib_present
+ output
->bytes
;
2486 static void add_asp(insn
*ins
, int addrbits
)
2491 valid
= (addrbits
== 64) ? 64|32 : 32|16;
2493 switch (ins
->prefixes
[PPS_ASIZE
]) {
2504 valid
&= (addrbits
== 32) ? 16 : 32;
2510 for (j
= 0; j
< ins
->operands
; j
++) {
2511 if (is_class(MEMORY
, ins
->oprs
[j
].type
)) {
2514 /* Verify as Register */
2515 if (ins
->oprs
[j
].indexreg
< EXPR_REG_START
2516 || ins
->oprs
[j
].indexreg
>= REG_ENUM_LIMIT
)
2519 i
= nasm_reg_flags
[ins
->oprs
[j
].indexreg
];
2521 /* Verify as Register */
2522 if (ins
->oprs
[j
].basereg
< EXPR_REG_START
2523 || ins
->oprs
[j
].basereg
>= REG_ENUM_LIMIT
)
2526 b
= nasm_reg_flags
[ins
->oprs
[j
].basereg
];
2528 if (ins
->oprs
[j
].scale
== 0)
2532 int ds
= ins
->oprs
[j
].disp_size
;
2533 if ((addrbits
!= 64 && ds
> 8) ||
2534 (addrbits
== 64 && ds
== 16))
2554 if (valid
& addrbits
) {
2555 ins
->addr_size
= addrbits
;
2556 } else if (valid
& ((addrbits
== 32) ? 16 : 32)) {
2557 /* Add an address size prefix */
2558 enum prefixes pref
= (addrbits
== 32) ? P_A16
: P_A32
;
2559 ins
->prefixes
[PPS_ASIZE
] = pref
;
2560 ins
->addr_size
= (addrbits
== 32) ? 16 : 32;
2563 errfunc(ERR_NONFATAL
, "impossible combination of address sizes");
2564 ins
->addr_size
= addrbits
; /* Error recovery */
2567 defdisp
= ins
->addr_size
== 16 ? 16 : 32;
2569 for (j
= 0; j
< ins
->operands
; j
++) {
2570 if (!(MEM_OFFS
& ~ins
->oprs
[j
].type
) &&
2571 (ins
->oprs
[j
].disp_size
? ins
->oprs
[j
].disp_size
: defdisp
)
2572 != ins
->addr_size
) {
2573 /* mem_offs sizes must match the address size; if not,
2574 strip the MEM_OFFS bit and match only EA instructions */
2575 ins
->oprs
[j
].type
&= ~(MEM_OFFS
& ~MEMORY
);