1 /* disasm.c where all the _work_ gets done in the Netwide Disassembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * initial version 27/iii/95 by Simon Tatham
26 * Flags that go into the `segment' field of `insn' structures
29 #define SEG_RELATIVE 1
36 #define SEG_SIGNED 128
43 uint8_t osize
; /* Operand size */
44 uint8_t asize
; /* Address size */
45 uint8_t osp
; /* Operand size prefix present */
46 uint8_t asp
; /* Address size prefix present */
47 uint8_t rep
; /* Rep prefix present */
48 uint8_t seg
; /* Segment override prefix present */
49 uint8_t lock
; /* Lock prefix present */
50 uint8_t vex
[3]; /* VEX prefix present */
51 uint8_t vex_m
; /* VEX.M field */
53 uint8_t vex_lp
; /* VEX.LP fields */
54 uint32_t rex
; /* REX prefix present */
57 #define getu8(x) (*(uint8_t *)(x))
59 /* Littleendian CPU which can handle unaligned references */
60 #define getu16(x) (*(uint16_t *)(x))
61 #define getu32(x) (*(uint32_t *)(x))
62 #define getu64(x) (*(uint64_t *)(x))
64 static uint16_t getu16(uint8_t *data
)
66 return (uint16_t)data
[0] + ((uint16_t)data
[1] << 8);
68 static uint32_t getu32(uint8_t *data
)
70 return (uint32_t)getu16(data
) + ((uint32_t)getu16(data
+2) << 16);
72 static uint64_t getu64(uint8_t *data
)
74 return (uint64_t)getu32(data
) + ((uint64_t)getu32(data
+4) << 32);
78 #define gets8(x) ((int8_t)getu8(x))
79 #define gets16(x) ((int16_t)getu16(x))
80 #define gets32(x) ((int32_t)getu32(x))
81 #define gets64(x) ((int64_t)getu64(x))
83 /* Important: regval must already have been adjusted for rex extensions */
84 static enum reg_enum
whichreg(int32_t regflags
, int regval
, int rex
)
86 if (!(regflags
& (REGISTER
|REGMEM
)))
87 return 0; /* Registers not permissible?! */
91 if (!(REG_AL
& ~regflags
))
93 if (!(REG_AX
& ~regflags
))
95 if (!(REG_EAX
& ~regflags
))
97 if (!(REG_RAX
& ~regflags
))
99 if (!(REG_DL
& ~regflags
))
101 if (!(REG_DX
& ~regflags
))
103 if (!(REG_EDX
& ~regflags
))
105 if (!(REG_RDX
& ~regflags
))
107 if (!(REG_CL
& ~regflags
))
109 if (!(REG_CX
& ~regflags
))
111 if (!(REG_ECX
& ~regflags
))
113 if (!(REG_RCX
& ~regflags
))
115 if (!(FPU0
& ~regflags
))
117 if (!(XMM0
& ~regflags
))
119 if (!(YMM0
& ~regflags
))
121 if (!(REG_CS
& ~regflags
))
122 return (regval
== 1) ? R_CS
: 0;
123 if (!(REG_DESS
& ~regflags
))
124 return (regval
== 0 || regval
== 2
125 || regval
== 3 ? nasm_rd_sreg
[regval
] : 0);
126 if (!(REG_FSGS
& ~regflags
))
127 return (regval
== 4 || regval
== 5 ? nasm_rd_sreg
[regval
] : 0);
128 if (!(REG_SEG67
& ~regflags
))
129 return (regval
== 6 || regval
== 7 ? nasm_rd_sreg
[regval
] : 0);
131 /* All the entries below look up regval in an 16-entry array */
132 if (regval
< 0 || regval
> 15)
135 if (!(REG8
& ~regflags
)) {
137 return nasm_rd_reg8_rex
[regval
];
139 return nasm_rd_reg8
[regval
];
141 if (!(REG16
& ~regflags
))
142 return nasm_rd_reg16
[regval
];
143 if (!(REG32
& ~regflags
))
144 return nasm_rd_reg32
[regval
];
145 if (!(REG64
& ~regflags
))
146 return nasm_rd_reg64
[regval
];
147 if (!(REG_SREG
& ~regflags
))
148 return nasm_rd_sreg
[regval
& 7]; /* Ignore REX */
149 if (!(REG_CREG
& ~regflags
))
150 return nasm_rd_creg
[regval
];
151 if (!(REG_DREG
& ~regflags
))
152 return nasm_rd_dreg
[regval
];
153 if (!(REG_TREG
& ~regflags
)) {
155 return 0; /* TR registers are ill-defined with rex */
156 return nasm_rd_treg
[regval
];
158 if (!(FPUREG
& ~regflags
))
159 return nasm_rd_fpureg
[regval
& 7]; /* Ignore REX */
160 if (!(MMXREG
& ~regflags
))
161 return nasm_rd_mmxreg
[regval
& 7]; /* Ignore REX */
162 if (!(XMMREG
& ~regflags
))
163 return nasm_rd_xmmreg
[regval
];
164 if (!(YMMREG
& ~regflags
))
165 return nasm_rd_ymmreg
[regval
];
171 * Process a DREX suffix
173 static uint8_t *do_drex(uint8_t *data
, insn
*ins
)
175 uint8_t drex
= *data
++;
176 operand
*dst
= &ins
->oprs
[ins
->drexdst
];
178 if ((drex
& 8) != ((ins
->rex
& REX_OC
) ? 8 : 0))
179 return NULL
; /* OC0 mismatch */
180 ins
->rex
= (ins
->rex
& ~7) | (drex
& 7);
182 dst
->segment
= SEG_RMREG
;
183 dst
->basereg
= drex
>> 4;
189 * Process an effective address (ModRM) specification.
191 static uint8_t *do_ea(uint8_t *data
, int modrm
, int asize
,
192 int segsize
, operand
* op
, insn
*ins
)
194 int mod
, rm
, scale
, index
, base
;
198 mod
= (modrm
>> 6) & 03;
201 if (mod
!= 3 && rm
== 4 && asize
!= 16)
204 if (ins
->rex
& REX_D
) {
205 data
= do_drex(data
, ins
);
211 if (mod
== 3) { /* pure register version */
212 op
->basereg
= rm
+(rex
& REX_B
? 8 : 0);
213 op
->segment
|= SEG_RMREG
;
222 * <mod> specifies the displacement size (none, byte or
223 * word), and <rm> specifies the register combination.
224 * Exception: mod=0,rm=6 does not specify [BP] as one might
225 * expect, but instead specifies [disp16].
227 op
->indexreg
= op
->basereg
= -1;
228 op
->scale
= 1; /* always, in 16 bits */
259 if (rm
== 6 && mod
== 0) { /* special case */
263 mod
= 2; /* fake disp16 */
267 op
->segment
|= SEG_NODISP
;
270 op
->segment
|= SEG_DISP8
;
271 op
->offset
= (int8_t)*data
++;
274 op
->segment
|= SEG_DISP16
;
275 op
->offset
= *data
++;
276 op
->offset
|= ((unsigned)*data
++) << 8;
282 * Once again, <mod> specifies displacement size (this time
283 * none, byte or *dword*), while <rm> specifies the base
284 * register. Again, [EBP] is missing, replaced by a pure
285 * disp32 (this time that's mod=0,rm=*5*) in 32-bit mode,
286 * and RIP-relative addressing in 64-bit mode.
289 * indicates not a single base register, but instead the
290 * presence of a SIB byte...
292 int a64
= asize
== 64;
297 op
->basereg
= nasm_rd_reg64
[rm
| ((rex
& REX_B
) ? 8 : 0)];
299 op
->basereg
= nasm_rd_reg32
[rm
| ((rex
& REX_B
) ? 8 : 0)];
301 if (rm
== 5 && mod
== 0) {
303 op
->eaflags
|= EAF_REL
;
304 op
->segment
|= SEG_RELATIVE
;
305 mod
= 2; /* fake disp32 */
309 op
->disp_size
= asize
;
312 mod
= 2; /* fake disp32 */
315 if (rm
== 4) { /* process SIB */
316 scale
= (sib
>> 6) & 03;
317 index
= (sib
>> 3) & 07;
320 op
->scale
= 1 << scale
;
322 if (index
== 4 && !(rex
& REX_X
))
323 op
->indexreg
= -1; /* ESP/RSP cannot be an index */
325 op
->indexreg
= nasm_rd_reg64
[index
| ((rex
& REX_X
) ? 8 : 0)];
327 op
->indexreg
= nasm_rd_reg32
[index
| ((rex
& REX_X
) ? 8 : 0)];
329 if (base
== 5 && mod
== 0) {
331 mod
= 2; /* Fake disp32 */
333 op
->basereg
= nasm_rd_reg64
[base
| ((rex
& REX_B
) ? 8 : 0)];
335 op
->basereg
= nasm_rd_reg32
[base
| ((rex
& REX_B
) ? 8 : 0)];
343 op
->segment
|= SEG_NODISP
;
346 op
->segment
|= SEG_DISP8
;
347 op
->offset
= gets8(data
);
351 op
->segment
|= SEG_DISP32
;
352 op
->offset
= gets32(data
);
361 * Determine whether the instruction template in t corresponds to the data
362 * stream in data. Return the number of bytes matched if so.
364 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
366 static int matches(const struct itemplate
*t
, uint8_t *data
,
367 const struct prefix_info
*prefix
, int segsize
, insn
*ins
)
369 uint8_t *r
= (uint8_t *)(t
->code
);
370 uint8_t *origdata
= data
;
371 bool a_used
= false, o_used
= false;
372 enum prefixes drep
= 0;
373 uint8_t lock
= prefix
->lock
;
374 int osize
= prefix
->osize
;
375 int asize
= prefix
->asize
;
378 struct operand
*opx
, *opy
;
380 int s_field_for
= -1; /* No 144/154 series code encountered */
382 int regmask
= (segsize
== 64) ? 15 : 7;
384 for (i
= 0; i
< MAX_OPERANDS
; i
++) {
385 ins
->oprs
[i
].segment
= ins
->oprs
[i
].disp_size
=
386 (segsize
== 64 ? SEG_64BIT
: segsize
== 32 ? SEG_32BIT
: 0);
389 ins
->rex
= prefix
->rex
;
390 memset(ins
->prefixes
, 0, sizeof ins
->prefixes
);
392 if (t
->flags
& (segsize
== 64 ? IF_NOLONG
: IF_LONG
))
395 if (prefix
->rep
== 0xF2)
397 else if (prefix
->rep
== 0xF3)
400 while ((c
= *r
++) != 0) {
401 op1
= (c
& 3) + ((opex
& 1) << 2);
402 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
403 opx
= &ins
->oprs
[op1
];
404 opy
= &ins
->oprs
[op2
];
425 int t
= *r
++, d
= *data
++;
426 if (d
< t
|| d
> t
+ 7)
429 opx
->basereg
= (d
-t
)+
430 (ins
->rex
& REX_B
? 8 : 0);
431 opx
->segment
|= SEG_RMREG
;
438 opx
->offset
= (int8_t)*data
++;
439 opx
->segment
|= SEG_SIGNED
;
443 opx
->offset
= *data
++;
447 opx
->offset
= *data
++;
451 opx
->offset
= getu16(data
);
457 opx
->offset
= getu32(data
);
460 opx
->offset
= getu16(data
);
463 if (segsize
!= asize
)
464 opx
->disp_size
= asize
;
469 opx
->offset
= getu32(data
);
476 opx
->offset
= getu16(data
);
482 opx
->offset
= getu32(data
);
488 opx
->offset
= getu64(data
);
496 opx
->offset
= gets8(data
++);
497 opx
->segment
|= SEG_RELATIVE
;
501 opx
->offset
= getu64(data
);
506 opx
->offset
= gets16(data
);
508 opx
->segment
|= SEG_RELATIVE
;
509 opx
->segment
&= ~SEG_32BIT
;
513 opx
->segment
|= SEG_RELATIVE
;
515 opx
->offset
= gets16(data
);
517 opx
->segment
&= ~(SEG_32BIT
|SEG_64BIT
);
518 } else if (osize
== 32) {
519 opx
->offset
= gets32(data
);
521 opx
->segment
&= ~SEG_64BIT
;
522 opx
->segment
|= SEG_32BIT
;
524 if (segsize
!= osize
) {
526 (opx
->type
& ~SIZE_MASK
)
527 | ((osize
== 16) ? BITS16
: BITS32
);
532 opx
->offset
= gets32(data
);
534 opx
->segment
|= SEG_32BIT
| SEG_RELATIVE
;
543 opx
->segment
|= SEG_RMREG
;
544 data
= do_ea(data
, modrm
, asize
, segsize
, opy
, ins
);
547 opx
->basereg
= ((modrm
>> 3) & 7) + (ins
->rex
& REX_R
? 8 : 0);
552 if (s_field_for
== op1
) {
553 opx
->offset
= gets8(data
);
556 opx
->offset
= getu16(data
);
563 s_field_for
= (*data
& 0x02) ? op1
: -1;
564 if ((*data
++ & ~0x02) != *r
++)
569 if (s_field_for
== op1
) {
570 opx
->offset
= gets8(data
);
573 opx
->offset
= getu32(data
);
584 ins
->rex
|= REX_D
|REX_OC
;
589 data
= do_drex(data
, ins
);
596 uint8_t ximm
= *data
++;
598 ins
->oprs
[c
>> 3].basereg
= (ximm
>> 4) & regmask
;
599 ins
->oprs
[c
>> 3].segment
|= SEG_RMREG
;
600 ins
->oprs
[c
& 7].offset
= ximm
& 15;
606 uint8_t ximm
= *data
++;
612 ins
->oprs
[c
>> 4].basereg
= (ximm
>> 4) & regmask
;
613 ins
->oprs
[c
>> 4].segment
|= SEG_RMREG
;
619 uint8_t ximm
= *data
++;
622 ins
->oprs
[c
].basereg
= (ximm
>> 4) & regmask
;
623 ins
->oprs
[c
].segment
|= SEG_RMREG
;
637 if (((modrm
>> 3) & 07) != (c
& 07))
638 return false; /* spare field doesn't match up */
639 data
= do_ea(data
, modrm
, asize
, segsize
, opy
, ins
);
650 if ((prefix
->rex
& (REX_V
|REX_D
|REX_P
)) != REX_V
)
653 if ((vexm
& 0x1f) != prefix
->vex_m
)
656 switch (vexwlp
& 030) {
658 if (prefix
->rex
& REX_W
)
662 if (!(prefix
->rex
& REX_W
))
666 case 020: /* VEX.W is a don't care */
673 if ((vexwlp
& 007) != prefix
->vex_lp
)
676 opx
->segment
|= SEG_RMREG
;
677 opx
->basereg
= prefix
->vex_v
;
687 if ((prefix
->rex
& (REX_V
|REX_D
|REX_P
)) != REX_V
)
690 if ((vexm
& 0x1f) != prefix
->vex_m
)
693 switch (vexwlp
& 030) {
695 if (ins
->rex
& REX_W
)
699 if (!(ins
->rex
& REX_W
))
703 break; /* Need to do anything special here? */
706 if ((vexwlp
& 007) != prefix
->vex_lp
)
709 if (prefix
->vex_v
!= 0)
731 if (asize
!= segsize
)
745 if (prefix
->rex
& REX_B
)
750 if (prefix
->rex
& REX_X
)
755 if (prefix
->rex
& REX_R
)
760 if (prefix
->rex
& REX_W
)
779 if (osize
!= (segsize
== 16) ? 16 : 32)
786 ins
->rex
|= REX_W
; /* 64-bit only instruction */
792 if (!(ins
->rex
& (REX_P
|REX_W
)) || osize
!= 64)
799 int t
= *r
++, d
= *data
++;
800 if (d
< t
|| d
> t
+ 15)
803 ins
->condition
= d
- t
;
813 if (prefix
->rep
!= 0xF2)
819 if (prefix
->rep
!= 0xF3)
844 ins
->oprs
[0].basereg
= (*data
++ >> 3) & 7;
848 if (prefix
->osp
|| prefix
->rep
)
853 if (!prefix
->osp
|| prefix
->rep
)
859 if (prefix
->osp
|| prefix
->rep
!= 0xf2)
865 if (prefix
->osp
|| prefix
->rep
!= 0xf3)
893 return false; /* Unknown code */
897 if (!vex_ok
&& (ins
->rex
& REX_V
))
900 /* REX cannot be combined with DREX or VEX */
901 if ((ins
->rex
& (REX_D
|REX_V
)) && (prefix
->rex
& REX_P
))
905 * Check for unused rep or a/o prefixes.
907 for (i
= 0; i
< t
->operands
; i
++) {
908 if (ins
->oprs
[i
].segment
!= SEG_RMREG
)
913 if (ins
->prefixes
[PPS_LREP
])
915 ins
->prefixes
[PPS_LREP
] = P_LOCK
;
918 if (ins
->prefixes
[PPS_LREP
])
920 ins
->prefixes
[PPS_LREP
] = drep
;
923 if (osize
!= ((segsize
== 16) ? 16 : 32)) {
924 enum prefixes pfx
= 0;
938 if (ins
->prefixes
[PPS_OSIZE
])
940 ins
->prefixes
[PPS_OSIZE
] = pfx
;
943 if (!a_used
&& asize
!= segsize
) {
944 if (ins
->prefixes
[PPS_ASIZE
])
946 ins
->prefixes
[PPS_ASIZE
] = asize
== 16 ? P_A16
: P_A32
;
949 /* Fix: check for redundant REX prefixes */
951 return data
- origdata
;
954 /* Condition names for disassembly, sorted by x86 code */
955 static const char * const condition_name
[16] = {
956 "o", "no", "c", "nc", "z", "nz", "na", "a",
957 "s", "ns", "pe", "po", "l", "nl", "ng", "g"
960 int32_t disasm(uint8_t *data
, char *output
, int outbufsize
, int segsize
,
961 int32_t offset
, int autosync
, uint32_t prefer
)
963 const struct itemplate
* const *p
, * const *best_p
;
964 const struct disasm_index
*ix
;
966 int length
, best_length
= 0;
968 int i
, slen
, colon
, n
;
972 uint32_t goodness
, best
;
974 struct prefix_info prefix
;
977 memset(&ins
, 0, sizeof ins
);
982 memset(&prefix
, 0, sizeof prefix
);
983 prefix
.asize
= segsize
;
984 prefix
.osize
= (segsize
== 64) ? 32 : segsize
;
991 while (!end_prefix
) {
995 prefix
.rep
= *data
++;
999 prefix
.lock
= *data
++;
1003 segover
= "cs", prefix
.seg
= *data
++;
1006 segover
= "ss", prefix
.seg
= *data
++;
1009 segover
= "ds", prefix
.seg
= *data
++;
1012 segover
= "es", prefix
.seg
= *data
++;
1015 segover
= "fs", prefix
.seg
= *data
++;
1018 segover
= "gs", prefix
.seg
= *data
++;
1022 prefix
.osize
= (segsize
== 16) ? 32 : 16;
1023 prefix
.osp
= *data
++;
1026 prefix
.asize
= (segsize
== 32) ? 16 : 32;
1027 prefix
.asp
= *data
++;
1032 if (segsize
== 64 || (data
[1] & 0xc0) == 0xc0) {
1033 prefix
.vex
[0] = *data
++;
1034 prefix
.vex
[1] = *data
++;
1038 if (prefix
.vex
[0] == 0xc4) {
1039 prefix
.vex
[2] = *data
++;
1040 prefix
.rex
|= (~prefix
.vex
[1] >> 5) & 7; /* REX_RXB */
1041 prefix
.rex
|= (prefix
.vex
[2] >> (7-3)) & REX_W
;
1042 prefix
.vex_m
= prefix
.vex
[1] & 0x1f;
1043 prefix
.vex_v
= (~prefix
.vex
[2] >> 3) & 15;
1044 prefix
.vex_lp
= prefix
.vex
[2] & 7;
1046 prefix
.rex
|= (~prefix
.vex
[1] >> (7-2)) & REX_R
;
1048 prefix
.vex_v
= (~prefix
.vex
[1] >> 3) & 15;
1049 prefix
.vex_lp
= prefix
.vex
[1] & 7;
1052 ix
= itable_VEX
[prefix
.vex_m
][prefix
.vex_lp
];
1073 if (segsize
== 64) {
1074 prefix
.rex
= *data
++;
1075 if (prefix
.rex
& REX_W
)
1087 best
= -1; /* Worst possible */
1089 best_pref
= INT_MAX
;
1092 return 0; /* No instruction table at all... */
1096 while (ix
->n
== -1) {
1097 ix
= (const struct disasm_index
*)ix
->p
+ *dp
++;
1100 p
= (const struct itemplate
* const *)ix
->p
;
1101 for (n
= ix
->n
; n
; n
--, p
++) {
1102 if ((length
= matches(*p
, data
, &prefix
, segsize
, &tmp_ins
))) {
1105 * Final check to make sure the types of r/m match up.
1106 * XXX: Need to make sure this is actually correct.
1108 for (i
= 0; i
< (*p
)->operands
; i
++) {
1109 if (!((*p
)->opd
[i
] & SAME_AS
) &&
1111 /* If it's a mem-only EA but we have a
1113 ((tmp_ins
.oprs
[i
].segment
& SEG_RMREG
) &&
1114 !(MEMORY
& ~(*p
)->opd
[i
])) ||
1115 /* If it's a reg-only EA but we have a memory
1117 (!(tmp_ins
.oprs
[i
].segment
& SEG_RMREG
) &&
1118 !(REG_EA
& ~(*p
)->opd
[i
]) &&
1119 !((*p
)->opd
[i
] & REG_SMASK
)) ||
1120 /* Register type mismatch (eg FS vs REG_DESS):
1122 ((((*p
)->opd
[i
] & (REGISTER
| FPUREG
)) ||
1123 (tmp_ins
.oprs
[i
].segment
& SEG_RMREG
)) &&
1124 !whichreg((*p
)->opd
[i
],
1125 tmp_ins
.oprs
[i
].basereg
, tmp_ins
.rex
))
1133 * Note: we always prefer instructions which incorporate
1134 * prefixes in the instructions themselves. This is to allow
1135 * e.g. PAUSE to be preferred to REP NOP, and deal with
1136 * MMX/SSE instructions where prefixes are used to select
1137 * between MMX and SSE register sets or outright opcode
1142 goodness
= ((*p
)->flags
& IF_PFMASK
) ^ prefer
;
1144 for (i
= 0; i
< MAXPREFIX
; i
++)
1145 if (tmp_ins
.prefixes
[i
])
1147 if (nprefix
< best_pref
||
1148 (nprefix
== best_pref
&& goodness
< best
)) {
1149 /* This is the best one found so far */
1152 best_pref
= nprefix
;
1153 best_length
= length
;
1161 return 0; /* no instruction was matched */
1163 /* Pick the best match */
1165 length
= best_length
;
1169 /* TODO: snprintf returns the value that the string would have if
1170 * the buffer were long enough, and not the actual length of
1171 * the returned string, so each instance of using the return
1172 * value of snprintf should actually be checked to assure that
1173 * the return value is "sane." Maybe a macro wrapper could
1174 * be used for that purpose.
1176 for (i
= 0; i
< MAXPREFIX
; i
++)
1177 switch (ins
.prefixes
[i
]) {
1179 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "lock ");
1182 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "rep ");
1185 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "repe ");
1188 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "repne ");
1191 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "a16 ");
1194 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "a32 ");
1197 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "a64 ");
1200 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "o16 ");
1203 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "o32 ");
1206 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "o64 ");
1213 if (i
>= FIRST_COND_OPCODE
)
1214 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s%s",
1215 nasm_insn_names
[i
], condition_name
[ins
.condition
]);
1217 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1218 nasm_insn_names
[i
]);
1221 length
+= data
- origdata
; /* fix up for prefixes */
1222 for (i
= 0; i
< (*p
)->operands
; i
++) {
1223 opflags_t t
= (*p
)->opd
[i
];
1224 const operand
*o
= &ins
.oprs
[i
];
1228 o
= &ins
.oprs
[t
& ~SAME_AS
];
1229 t
= (*p
)->opd
[t
& ~SAME_AS
];
1232 output
[slen
++] = (colon
? ':' : i
== 0 ? ' ' : ',');
1235 if (o
->segment
& SEG_RELATIVE
) {
1236 offs
+= offset
+ length
;
1238 * sort out wraparound
1240 if (!(o
->segment
& (SEG_32BIT
|SEG_64BIT
)))
1242 else if (segsize
!= 64)
1246 * add sync marker, if autosync is on
1257 if ((t
& (REGISTER
| FPUREG
)) ||
1258 (o
->segment
& SEG_RMREG
)) {
1260 reg
= whichreg(t
, o
->basereg
, ins
.rex
);
1262 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "to ");
1263 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1264 nasm_reg_names
[reg
-EXPR_REG_START
]);
1265 } else if (!(UNITY
& ~t
)) {
1266 output
[slen
++] = '1';
1267 } else if (t
& IMMEDIATE
) {
1270 snprintf(output
+ slen
, outbufsize
- slen
, "byte ");
1271 if (o
->segment
& SEG_SIGNED
) {
1274 output
[slen
++] = '-';
1276 output
[slen
++] = '+';
1278 } else if (t
& BITS16
) {
1280 snprintf(output
+ slen
, outbufsize
- slen
, "word ");
1281 } else if (t
& BITS32
) {
1283 snprintf(output
+ slen
, outbufsize
- slen
, "dword ");
1284 } else if (t
& BITS64
) {
1286 snprintf(output
+ slen
, outbufsize
- slen
, "qword ");
1287 } else if (t
& NEAR
) {
1289 snprintf(output
+ slen
, outbufsize
- slen
, "near ");
1290 } else if (t
& SHORT
) {
1292 snprintf(output
+ slen
, outbufsize
- slen
, "short ");
1295 snprintf(output
+ slen
, outbufsize
- slen
, "0x%"PRIx64
"",
1297 } else if (!(MEM_OFFS
& ~t
)) {
1299 snprintf(output
+ slen
, outbufsize
- slen
,
1300 "[%s%s%s0x%"PRIx64
"]",
1301 (segover
? segover
: ""),
1302 (segover
? ":" : ""),
1303 (o
->disp_size
== 64 ? "qword " :
1304 o
->disp_size
== 32 ? "dword " :
1305 o
->disp_size
== 16 ? "word " : ""), offs
);
1307 } else if (!(REGMEM
& ~t
)) {
1308 int started
= false;
1311 snprintf(output
+ slen
, outbufsize
- slen
, "byte ");
1314 snprintf(output
+ slen
, outbufsize
- slen
, "word ");
1317 snprintf(output
+ slen
, outbufsize
- slen
, "dword ");
1320 snprintf(output
+ slen
, outbufsize
- slen
, "qword ");
1323 snprintf(output
+ slen
, outbufsize
- slen
, "tword ");
1326 snprintf(output
+ slen
, outbufsize
- slen
, "oword ");
1329 snprintf(output
+ slen
, outbufsize
- slen
, "yword ");
1331 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "far ");
1334 snprintf(output
+ slen
, outbufsize
- slen
, "near ");
1335 output
[slen
++] = '[';
1337 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1338 (o
->disp_size
== 64 ? "qword " :
1339 o
->disp_size
== 32 ? "dword " :
1340 o
->disp_size
== 16 ? "word " :
1342 if (o
->eaflags
& EAF_REL
)
1343 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "rel ");
1346 snprintf(output
+ slen
, outbufsize
- slen
, "%s:",
1350 if (o
->basereg
!= -1) {
1351 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1352 nasm_reg_names
[(o
->basereg
-EXPR_REG_START
)]);
1355 if (o
->indexreg
!= -1) {
1357 output
[slen
++] = '+';
1358 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1359 nasm_reg_names
[(o
->indexreg
-EXPR_REG_START
)]);
1362 snprintf(output
+ slen
, outbufsize
- slen
, "*%d",
1368 if (o
->segment
& SEG_DISP8
) {
1370 uint8_t offset
= offs
;
1371 if ((int8_t)offset
< 0) {
1378 snprintf(output
+ slen
, outbufsize
- slen
, "%s0x%"PRIx8
"",
1380 } else if (o
->segment
& SEG_DISP16
) {
1382 uint16_t offset
= offs
;
1383 if ((int16_t)offset
< 0 && started
) {
1387 prefix
= started
? "+" : "";
1390 snprintf(output
+ slen
, outbufsize
- slen
,
1391 "%s0x%"PRIx16
"", prefix
, offset
);
1392 } else if (o
->segment
& SEG_DISP32
) {
1393 if (prefix
.asize
== 64) {
1395 uint64_t offset
= (int64_t)(int32_t)offs
;
1396 if ((int32_t)offs
< 0 && started
) {
1400 prefix
= started
? "+" : "";
1403 snprintf(output
+ slen
, outbufsize
- slen
,
1404 "%s0x%"PRIx64
"", prefix
, offset
);
1407 uint32_t offset
= offs
;
1408 if ((int32_t) offset
< 0 && started
) {
1412 prefix
= started
? "+" : "";
1415 snprintf(output
+ slen
, outbufsize
- slen
,
1416 "%s0x%"PRIx32
"", prefix
, offset
);
1419 output
[slen
++] = ']';
1422 snprintf(output
+ slen
, outbufsize
- slen
, "<operand%d>",
1426 output
[slen
] = '\0';
1427 if (segover
) { /* unused segment override */
1429 int count
= slen
+ 1;
1431 p
[count
+ 3] = p
[count
];
1432 strncpy(output
, segover
, 2);
1438 int32_t eatbyte(uint8_t *data
, char *output
, int outbufsize
)
1440 snprintf(output
, outbufsize
, "db 0x%02X", *data
);