1 /* assemble.c code generation for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * the actual codes (C syntax, i.e. octal):
9 * \0 - terminates the code. (Unless it's a literal of course.)
10 * \1..\4 - that many literal bytes follow in the code stream
11 * \5 - add 4 to the primary operand number (b, low octdigit)
12 * \6 - add 4 to the secondary operand number (a, middle octdigit)
13 * \7 - add 4 to both the primary and the secondary operand number
14 * \10..\13 - a literal byte follows in the code stream, to be added
15 * to the register value of operand 0..3
16 * \14..\17 - a signed byte immediate operand, from operand 0..3
17 * \20..\23 - a byte immediate operand, from operand 0..3
18 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
19 * \30..\33 - a word immediate operand, from operand 0..3
20 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
21 * assembly mode or the operand-size override on the operand
22 * \40..\43 - a long immediate operand, from operand 0..3
23 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
24 * depending on the address size of the instruction.
25 * \50..\53 - a byte relative operand, from operand 0..3
26 * \54..\57 - a qword immediate operand, from operand 0..3
27 * \60..\63 - a word relative operand, from operand 0..3
28 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
29 * assembly mode or the operand-size override on the operand
30 * \70..\73 - a long relative operand, from operand 0..3
31 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
32 * \1ab - a ModRM, calculated on EA in operand a, with the spare
33 * field the register value of operand b.
34 * \140..\143 - an immediate word or signed byte for operand 0..3
35 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
36 * is a signed byte rather than a word. Opcode byte follows.
37 * \150..\153 - an immediate dword or signed byte for operand 0..3
38 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
39 * is a signed byte rather than a dword. Opcode byte follows.
40 * \160..\163 - this instruction uses DREX rather than REX, with the
41 * OC0 field set to 0, and the dest field taken from
43 * \164..\167 - this instruction uses DREX rather than REX, with the
44 * OC0 field set to 1, and the dest field taken from
46 * \171 - placement of DREX suffix in the absence of an EA
47 * \172\ab - the register number from operand a in bits 7..4, with
48 * the 4-bit immediate from operand b in bits 3..0.
49 * \173\xab - the register number from operand a in bits 7..4, with
50 * the value b in bits 3..0.
51 * \174\a - the register number from operand a in bits 7..4, and
52 * an arbitrary value in bits 3..0 (assembled as zero.)
53 * \2ab - a ModRM, calculated on EA in operand a, with the spare
54 * field equal to digit b.
55 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
56 * is not equal to the truncated and sign-extended 32-bit
57 * operand; used for 32-bit immediates in 64-bit mode.
58 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
59 * \260..\263 - this instruction uses VEX rather than REX, with the
60 * V field taken from operand 0..3.
61 * \270 - this instruction uses VEX rather than REX, with the
62 * V field set to 1111b.
64 * VEX prefixes are followed by the sequence:
65 * \mm\wlp where mm is the M field; and wlp is:
67 * [w0] ww = 0 for W = 0
68 * [w1] ww = 1 for W = 1
69 * [wx] ww = 2 for W don't care (always assembled as 0)
70 * [ww] ww = 3 for W used as REX.W
73 * \274..\277 - a signed byte immediate operand, from operand 0..3,
74 * which is to be extended to the operand size.
75 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
76 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
77 * \312 - (disassembler only) marker on LOOP, LOOPxx instructions.
78 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
79 * \314 - (disassembler only) invalid with REX.B
80 * \315 - (disassembler only) invalid with REX.X
81 * \316 - (disassembler only) invalid with REX.R
82 * \317 - (disassembler only) invalid with REX.W
83 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
84 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
85 * \322 - indicates that this instruction is only valid when the
86 * operand size is the default (instruction to disassembler,
87 * generates no code in the assembler)
88 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
89 * \324 - indicates 64-bit operand size requiring REX prefix.
90 * \330 - a literal byte follows in the code stream, to be added
91 * to the condition code value of the instruction.
92 * \331 - instruction not valid with REP prefix. Hint for
93 * disassembler only; for SSE instructions.
94 * \332 - REP prefix (0xF2 byte) used as opcode extension.
95 * \333 - REP prefix (0xF3 byte) used as opcode extension.
96 * \334 - LOCK prefix used instead of REX.R
97 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
98 * \336 - force a REP(E) prefix (0xF2) even if not specified.
99 * \337 - force a REPNE prefix (0xF3) even if not specified.
100 * \336-\337 are still listed as prefixes in the disassembler.
101 * \340 - reserve <operand 0> bytes of uninitialized storage.
102 * Operand 0 had better be a segmentless constant.
103 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
104 * (POP is never used for CS) depending on operand 0
105 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
107 * \360 - no SSE prefix (== \364\331)
108 * \361 - 66 SSE prefix (== \366\331)
109 * \362 - F2 SSE prefix (== \364\332)
110 * \363 - F3 SSE prefix (== \364\333)
111 * \364 - operand-size prefix (0x66) not permitted
112 * \365 - address-size prefix (0x67) not permitted
113 * \366 - operand-size prefix (0x66) used as opcode extension
114 * \367 - address-size prefix (0x67) used as opcode extension
115 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
116 * 370 is used for Jcc, 371 is used for JMP.
117 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
118 * used for conditional jump over longer jump
121 #include "compiler.h"
125 #include <inttypes.h>
129 #include "assemble.h"
133 /* Initialized to zero by the C standard */
134 static const uint8_t const_zero_buf
[256];
137 int sib_present
; /* is a SIB byte necessary? */
138 int bytes
; /* # of bytes of offset needed */
139 int size
; /* lazy - this is sib+bytes+1 */
140 uint8_t modrm
, sib
, rex
, rip
; /* the bytes themselves */
143 static uint32_t cpu
; /* cpu level received from nasm.c */
144 static efunc errfunc
;
145 static struct ofmt
*outfmt
;
146 static ListGen
*list
;
148 static int64_t calcsize(int32_t, int64_t, int, insn
*, const uint8_t *);
149 static void gencode(int32_t segment
, int64_t offset
, int bits
,
150 insn
* ins
, const struct itemplate
*temp
,
152 static int matches(const struct itemplate
*, insn
*, int bits
);
153 static int32_t regflag(const operand
*);
154 static int32_t regval(const operand
*);
155 static int rexflags(int, int32_t, int);
156 static int op_rexflags(const operand
*, int);
157 static ea
*process_ea(operand
*, ea
*, int, int, int, int32_t);
158 static void add_asp(insn
*, int);
160 static int has_prefix(insn
* ins
, enum prefix_pos pos
, enum prefixes prefix
)
162 return ins
->prefixes
[pos
] == prefix
;
165 static void assert_no_prefix(insn
* ins
, enum prefix_pos pos
)
167 if (ins
->prefixes
[pos
])
168 errfunc(ERR_NONFATAL
, "invalid %s prefix",
169 prefix_name(ins
->prefixes
[pos
]));
172 static const char *size_name(int size
)
194 static void warn_overflow(int size
, const struct operand
*o
)
196 if (size
< 8 && o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
) {
197 int64_t lim
= ((int64_t)1 << (size
*8))-1;
198 int64_t data
= o
->offset
;
200 if (data
< ~lim
|| data
> lim
)
201 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
202 "%s data exceeds bounds", size_name(size
));
206 * This routine wrappers the real output format's output routine,
207 * in order to pass a copy of the data off to the listing file
208 * generator at the same time.
210 static void out(int64_t offset
, int32_t segto
, const void *data
,
211 enum out_type type
, uint64_t size
,
212 int32_t segment
, int32_t wrt
)
214 static int32_t lineno
= 0; /* static!!! */
215 static char *lnfname
= NULL
;
218 if (type
== OUT_ADDRESS
&& segment
== NO_SEG
&& wrt
== NO_SEG
) {
220 * This is a non-relocated address, and we're going to
221 * convert it into RAWDATA format.
226 errfunc(ERR_PANIC
, "OUT_ADDRESS with size > 8");
230 WRITEADDR(q
, *(int64_t *)data
, size
);
235 list
->output(offset
, data
, type
, size
);
238 * this call to src_get determines when we call the
239 * debug-format-specific "linenum" function
240 * it updates lineno and lnfname to the current values
241 * returning 0 if "same as last time", -2 if lnfname
242 * changed, and the amount by which lineno changed,
243 * if it did. thus, these variables must be static
246 if (src_get(&lineno
, &lnfname
)) {
247 outfmt
->current_dfmt
->linenum(lnfname
, lineno
, segto
);
250 outfmt
->output(segto
, data
, type
, size
, segment
, wrt
);
253 static bool jmp_match(int32_t segment
, int64_t offset
, int bits
,
254 insn
* ins
, const uint8_t *code
)
259 if ((c
!= 0370 && c
!= 0371) || (ins
->oprs
[0].type
& STRICT
))
263 if (optimizing
< 0 && c
== 0371)
266 isize
= calcsize(segment
, offset
, bits
, ins
, code
);
267 if (ins
->oprs
[0].segment
!= segment
)
270 isize
= ins
->oprs
[0].offset
- offset
- isize
; /* isize is delta */
271 return (isize
>= -128 && isize
<= 127); /* is it byte size? */
274 int64_t assemble(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
275 insn
* instruction
, struct ofmt
*output
, efunc error
,
278 const struct itemplate
*temp
;
283 int64_t start
= offset
;
284 int64_t wsize
= 0; /* size for DB etc. */
286 errfunc
= error
; /* to pass to other functions */
288 outfmt
= output
; /* likewise */
289 list
= listgen
; /* and again */
291 switch (instruction
->opcode
) {
321 int32_t t
= instruction
->times
;
324 "instruction->times < 0 (%ld) in assemble()", t
);
326 while (t
--) { /* repeat TIMES times */
327 for (e
= instruction
->eops
; e
; e
= e
->next
) {
328 if (e
->type
== EOT_DB_NUMBER
) {
330 if (e
->segment
!= NO_SEG
)
331 errfunc(ERR_NONFATAL
,
332 "one-byte relocation attempted");
334 uint8_t out_byte
= e
->offset
;
335 out(offset
, segment
, &out_byte
,
336 OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
338 } else if (wsize
> 8) {
339 errfunc(ERR_NONFATAL
,
340 "integer supplied to a DT, DO or DY"
343 out(offset
, segment
, &e
->offset
,
344 OUT_ADDRESS
, wsize
, e
->segment
, e
->wrt
);
346 } else if (e
->type
== EOT_DB_STRING
||
347 e
->type
== EOT_DB_STRING_FREE
) {
350 out(offset
, segment
, e
->stringval
,
351 OUT_RAWDATA
, e
->stringlen
, NO_SEG
, NO_SEG
);
352 align
= e
->stringlen
% wsize
;
355 align
= wsize
- align
;
356 out(offset
, segment
, const_zero_buf
,
357 OUT_RAWDATA
, align
, NO_SEG
, NO_SEG
);
359 offset
+= e
->stringlen
+ align
;
362 if (t
> 0 && t
== instruction
->times
- 1) {
364 * Dummy call to list->output to give the offset to the
367 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
368 list
->uplevel(LIST_TIMES
);
371 if (instruction
->times
> 1)
372 list
->downlevel(LIST_TIMES
);
373 return offset
- start
;
376 if (instruction
->opcode
== I_INCBIN
) {
377 const char *fname
= instruction
->eops
->stringval
;
380 fp
= fopen(fname
, "rb");
382 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
384 } else if (fseek(fp
, 0L, SEEK_END
) < 0) {
385 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
388 static char buf
[4096];
389 size_t t
= instruction
->times
;
394 if (instruction
->eops
->next
) {
395 base
= instruction
->eops
->next
->offset
;
397 if (instruction
->eops
->next
->next
&&
398 len
> (size_t)instruction
->eops
->next
->next
->offset
)
399 len
= (size_t)instruction
->eops
->next
->next
->offset
;
402 * Dummy call to list->output to give the offset to the
405 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
406 list
->uplevel(LIST_INCBIN
);
410 fseek(fp
, base
, SEEK_SET
);
414 fread(buf
, 1, (l
> (int32_t) sizeof(buf
) ? (int32_t) sizeof(buf
) : l
),
418 * This shouldn't happen unless the file
419 * actually changes while we are reading
423 "`incbin': unexpected EOF while"
424 " reading file `%s'", fname
);
425 t
= 0; /* Try to exit cleanly */
428 out(offset
, segment
, buf
, OUT_RAWDATA
, m
,
433 list
->downlevel(LIST_INCBIN
);
434 if (instruction
->times
> 1) {
436 * Dummy call to list->output to give the offset to the
439 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
440 list
->uplevel(LIST_TIMES
);
441 list
->downlevel(LIST_TIMES
);
444 return instruction
->times
* len
;
446 return 0; /* if we're here, there's an error */
449 /* Check to see if we need an address-size prefix */
450 add_asp(instruction
, bits
);
454 for (temp
= nasm_instructions
[instruction
->opcode
]; temp
->opcode
!= -1; temp
++){
455 int m
= matches(temp
, instruction
, bits
);
457 (m
== 99 && jmp_match(segment
, offset
, bits
,
458 instruction
, temp
->code
))) {
460 int64_t insn_size
= calcsize(segment
, offset
, bits
,
461 instruction
, temp
->code
);
462 itimes
= instruction
->times
;
463 if (insn_size
< 0) /* shouldn't be, on pass two */
464 error(ERR_PANIC
, "errors made it through from pass one");
467 for (j
= 0; j
< MAXPREFIX
; j
++) {
469 switch (instruction
->prefixes
[j
]) {
484 error(ERR_WARNING
| ERR_PASS2
,
485 "cs segment base generated, but will be ignored in 64-bit mode");
491 error(ERR_WARNING
| ERR_PASS2
,
492 "ds segment base generated, but will be ignored in 64-bit mode");
498 error(ERR_WARNING
| ERR_PASS2
,
499 "es segment base generated, but will be ignored in 64-bit mode");
511 error(ERR_WARNING
| ERR_PASS2
,
512 "ss segment base generated, but will be ignored in 64-bit mode");
519 "segr6 and segr7 cannot be used as prefixes");
524 "16-bit addressing is not supported "
526 } else if (bits
!= 16)
536 "64-bit addressing is only supported "
560 error(ERR_PANIC
, "invalid instruction prefix");
563 out(offset
, segment
, &c
, OUT_RAWDATA
, 1,
568 insn_end
= offset
+ insn_size
;
569 gencode(segment
, offset
, bits
, instruction
,
572 if (itimes
> 0 && itimes
== instruction
->times
- 1) {
574 * Dummy call to list->output to give the offset to the
577 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
578 list
->uplevel(LIST_TIMES
);
581 if (instruction
->times
> 1)
582 list
->downlevel(LIST_TIMES
);
583 return offset
- start
;
584 } else if (m
> 0 && m
> size_prob
) {
589 if (temp
->opcode
== -1) { /* didn't match any instruction */
592 error(ERR_NONFATAL
, "operation size not specified");
595 error(ERR_NONFATAL
, "mismatch in operand sizes");
598 error(ERR_NONFATAL
, "no instruction for this cpu level");
601 error(ERR_NONFATAL
, "instruction not supported in 64-bit mode");
605 "invalid combination of opcode and operands");
612 int64_t insn_size(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
613 insn
* instruction
, efunc error
)
615 const struct itemplate
*temp
;
617 errfunc
= error
; /* to pass to other functions */
620 if (instruction
->opcode
== -1)
623 if (instruction
->opcode
== I_DB
|| instruction
->opcode
== I_DW
||
624 instruction
->opcode
== I_DD
|| instruction
->opcode
== I_DQ
||
625 instruction
->opcode
== I_DT
|| instruction
->opcode
== I_DO
||
626 instruction
->opcode
== I_DY
) {
628 int32_t isize
, osize
, wsize
= 0; /* placate gcc */
631 switch (instruction
->opcode
) {
657 for (e
= instruction
->eops
; e
; e
= e
->next
) {
661 if (e
->type
== EOT_DB_NUMBER
)
663 else if (e
->type
== EOT_DB_STRING
||
664 e
->type
== EOT_DB_STRING_FREE
)
665 osize
= e
->stringlen
;
667 align
= (-osize
) % wsize
;
670 isize
+= osize
+ align
;
672 return isize
* instruction
->times
;
675 if (instruction
->opcode
== I_INCBIN
) {
676 const char *fname
= instruction
->eops
->stringval
;
680 fp
= fopen(fname
, "rb");
682 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
684 else if (fseek(fp
, 0L, SEEK_END
) < 0)
685 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
690 if (instruction
->eops
->next
) {
691 len
-= instruction
->eops
->next
->offset
;
692 if (instruction
->eops
->next
->next
&&
693 len
> (size_t)instruction
->eops
->next
->next
->offset
) {
694 len
= (size_t)instruction
->eops
->next
->next
->offset
;
697 return instruction
->times
* len
;
699 return 0; /* if we're here, there's an error */
702 /* Check to see if we need an address-size prefix */
703 add_asp(instruction
, bits
);
705 for (temp
= nasm_instructions
[instruction
->opcode
]; temp
->opcode
!= -1; temp
++) {
706 int m
= matches(temp
, instruction
, bits
);
708 (m
== 99 && jmp_match(segment
, offset
, bits
,
709 instruction
, temp
->code
))) {
710 /* we've matched an instruction. */
712 const uint8_t *codes
= temp
->code
;
715 isize
= calcsize(segment
, offset
, bits
, instruction
, codes
);
718 for (j
= 0; j
< MAXPREFIX
; j
++) {
719 switch (instruction
->prefixes
[j
]) {
745 return isize
* instruction
->times
;
748 return -1; /* didn't match any instruction */
751 static bool possible_sbyte(operand
*o
)
753 return o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
&&
754 !(o
->opflags
& OPFLAG_FORWARD
) &&
755 optimizing
>= 0 && !(o
->type
& STRICT
);
758 /* check that opn[op] is a signed byte of size 16 or 32 */
759 static bool is_sbyte16(operand
*o
)
763 if (!possible_sbyte(o
))
767 return v
>= -128 && v
<= 127;
770 static bool is_sbyte32(operand
*o
)
774 if (!possible_sbyte(o
))
778 return v
>= -128 && v
<= 127;
781 /* Common construct */
782 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
784 static int64_t calcsize(int32_t segment
, int64_t offset
, int bits
,
785 insn
* ins
, const uint8_t *codes
)
794 ins
->rex
= 0; /* Ensure REX is reset */
796 if (ins
->prefixes
[PPS_OSIZE
] == P_O64
)
799 (void)segment
; /* Don't warn that this parameter is unused */
800 (void)offset
; /* Don't warn that this parameter is unused */
804 op1
= (c
& 3) + ((opex
& 1) << 2);
805 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
806 opx
= &ins
->oprs
[op1
];
807 opex
= 0; /* For the next iteration */
814 codes
+= c
, length
+= c
;
825 op_rexflags(opx
, REX_B
|REX_H
|REX_P
|REX_W
);
840 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
841 length
+= (opx
->type
& BITS16
) ? 2 : 4;
843 length
+= (bits
== 16) ? 2 : 4;
851 length
+= ins
->addr_size
>> 3;
859 length
+= 8; /* MOV reg64/imm */
867 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
868 length
+= (opx
->type
& BITS16
) ? 2 : 4;
870 length
+= (bits
== 16) ? 2 : 4;
882 length
+= is_sbyte16(opx
) ? 1 : 2;
891 length
+= is_sbyte32(opx
) ? 1 : 4;
902 ins
->drexdst
= regval(opx
);
907 ins
->rex
|= REX_D
|REX_OC
;
908 ins
->drexdst
= regval(opx
);
922 length
+= is_sbyte32(opx
) ? 1 : 4;
931 ins
->drexdst
= regval(opx
);
932 ins
->vex_m
= *codes
++;
933 ins
->vex_wlp
= *codes
++;
939 ins
->vex_m
= *codes
++;
940 ins
->vex_wlp
= *codes
++;
953 length
+= (bits
!= 16) && !has_prefix(ins
, PPS_ASIZE
, P_A16
);
957 length
+= (bits
!= 32) && !has_prefix(ins
, PPS_ASIZE
, P_A32
);
964 if (bits
!= 64 || has_prefix(ins
, PPS_ASIZE
, P_A16
) ||
965 has_prefix(ins
, PPS_ASIZE
, P_A32
))
973 length
+= (bits
!= 16);
977 length
+= (bits
== 16);
1011 if (!ins
->prefixes
[PPS_LREP
])
1012 ins
->prefixes
[PPS_LREP
] = P_REP
;
1016 if (!ins
->prefixes
[PPS_LREP
])
1017 ins
->prefixes
[PPS_LREP
] = P_REPNE
;
1021 if (ins
->oprs
[0].segment
!= NO_SEG
)
1022 errfunc(ERR_NONFATAL
, "attempt to reserve non-constant"
1023 " quantity of BSS space");
1025 length
+= ins
->oprs
[0].offset
;
1075 struct operand
*opy
= &ins
->oprs
[op2
];
1077 ea_data
.rex
= 0; /* Ensure ea.REX is initially 0 */
1080 /* pick rfield from operand b (opx) */
1081 rflags
= regflag(opx
);
1082 rfield
= nasm_regvals
[opx
->basereg
];
1087 if (!process_ea(opy
, &ea_data
, bits
,
1088 ins
->addr_size
, rfield
, rflags
)) {
1089 errfunc(ERR_NONFATAL
, "invalid effective address");
1092 ins
->rex
|= ea_data
.rex
;
1093 length
+= ea_data
.size
;
1099 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1100 ": instruction code 0x%02X given", c
);
1105 ins
->rex
&= rex_mask
;
1107 if (ins
->rex
& REX_V
) {
1108 int bad32
= REX_R
|REX_W
|REX_X
|REX_B
;
1110 if (ins
->rex
& REX_H
) {
1111 errfunc(ERR_NONFATAL
, "cannot use high register in vex instruction");
1114 switch (ins
->vex_wlp
& 030) {
1128 if (bits
!= 64 && ((ins
->rex
& bad32
) || ins
->drexdst
> 7)) {
1129 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1132 if (ins
->vex_m
!= 1 || (ins
->rex
& (REX_W
|REX_R
|REX_B
)))
1136 } else if (ins
->rex
& REX_D
) {
1137 if (ins
->rex
& REX_H
) {
1138 errfunc(ERR_NONFATAL
, "cannot use high register in drex instruction");
1141 if (bits
!= 64 && ((ins
->rex
& (REX_R
|REX_W
|REX_X
|REX_B
)) ||
1142 ins
->drexdst
> 7)) {
1143 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1147 } else if (ins
->rex
& REX_REAL
) {
1148 if (ins
->rex
& REX_H
) {
1149 errfunc(ERR_NONFATAL
, "cannot use high register in rex instruction");
1151 } else if (bits
== 64) {
1153 } else if ((ins
->rex
& REX_L
) &&
1154 !(ins
->rex
& (REX_P
|REX_W
|REX_X
|REX_B
)) &&
1157 assert_no_prefix(ins
, PPS_LREP
);
1160 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1168 #define EMIT_REX() \
1169 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1170 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1171 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1176 static void gencode(int32_t segment
, int64_t offset
, int bits
,
1177 insn
* ins
, const struct itemplate
*temp
,
1180 static char condval
[] = { /* conditional opcodes */
1181 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1182 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1183 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1190 struct operand
*opx
;
1191 const uint8_t *codes
= temp
->code
;
1196 op1
= (c
& 3) + ((opex
& 1) << 2);
1197 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
1198 opx
= &ins
->oprs
[op1
];
1199 opex
= 0; /* For the next iteration */
1207 out(offset
, segment
, codes
, OUT_RAWDATA
, c
, NO_SEG
, NO_SEG
);
1220 bytes
[0] = *codes
++ + (regval(opx
) & 7);
1221 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1226 /* The test for BITS8 and SBYTE here is intended to avoid
1227 warning on optimizer actions due to SBYTE, while still
1228 warn on explicit BYTE directives. Also warn, obviously,
1229 if the optimizer isn't enabled. */
1230 if (((opx
->type
& BITS8
) ||
1231 !(opx
->type
& temp
->opd
[op1
] & BYTENESS
)) &&
1232 (opx
->offset
< -128 || opx
->offset
> 127)) {
1233 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1234 "signed byte value exceeds bounds");
1236 if (opx
->segment
!= NO_SEG
) {
1238 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1239 opx
->segment
, opx
->wrt
);
1241 bytes
[0] = opx
->offset
;
1242 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1249 if (opx
->offset
< -256 || opx
->offset
> 255) {
1250 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1251 "byte value exceeds bounds");
1253 if (opx
->segment
!= NO_SEG
) {
1255 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1256 opx
->segment
, opx
->wrt
);
1258 bytes
[0] = opx
->offset
;
1259 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1266 if (opx
->offset
< 0 || opx
->offset
> 255)
1267 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1268 "unsigned byte value exceeds bounds");
1269 if (opx
->segment
!= NO_SEG
) {
1271 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1272 opx
->segment
, opx
->wrt
);
1274 bytes
[0] = opx
->offset
;
1275 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1282 warn_overflow(2, opx
);
1284 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1285 opx
->segment
, opx
->wrt
);
1290 if (opx
->type
& (BITS16
| BITS32
))
1291 size
= (opx
->type
& BITS16
) ? 2 : 4;
1293 size
= (bits
== 16) ? 2 : 4;
1294 warn_overflow(size
, opx
);
1296 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1297 opx
->segment
, opx
->wrt
);
1302 warn_overflow(4, opx
);
1304 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1305 opx
->segment
, opx
->wrt
);
1311 size
= ins
->addr_size
>> 3;
1312 warn_overflow(size
, opx
);
1313 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1314 opx
->segment
, opx
->wrt
);
1319 if (opx
->segment
!= segment
)
1320 errfunc(ERR_NONFATAL
,
1321 "short relative jump outside segment");
1322 data
= opx
->offset
- insn_end
;
1323 if (data
> 127 || data
< -128)
1324 errfunc(ERR_NONFATAL
, "short jump is out of range");
1326 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1331 data
= (int64_t)opx
->offset
;
1332 out(offset
, segment
, &data
, OUT_ADDRESS
, 8,
1333 opx
->segment
, opx
->wrt
);
1338 if (opx
->segment
!= segment
) {
1340 out(offset
, segment
, &data
,
1341 OUT_REL2ADR
, insn_end
- offset
,
1342 opx
->segment
, opx
->wrt
);
1344 data
= opx
->offset
- insn_end
;
1345 out(offset
, segment
, &data
,
1346 OUT_ADDRESS
, 2, NO_SEG
, NO_SEG
);
1352 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
1353 size
= (opx
->type
& BITS16
) ? 2 : 4;
1355 size
= (bits
== 16) ? 2 : 4;
1356 if (opx
->segment
!= segment
) {
1358 out(offset
, segment
, &data
,
1359 size
== 2 ? OUT_REL2ADR
: OUT_REL4ADR
,
1360 insn_end
- offset
, opx
->segment
, opx
->wrt
);
1362 data
= opx
->offset
- insn_end
;
1363 out(offset
, segment
, &data
,
1364 OUT_ADDRESS
, size
, NO_SEG
, NO_SEG
);
1370 if (opx
->segment
!= segment
) {
1372 out(offset
, segment
, &data
,
1373 OUT_REL4ADR
, insn_end
- offset
,
1374 opx
->segment
, opx
->wrt
);
1376 data
= opx
->offset
- insn_end
;
1377 out(offset
, segment
, &data
,
1378 OUT_ADDRESS
, 4, NO_SEG
, NO_SEG
);
1384 if (opx
->segment
== NO_SEG
)
1385 errfunc(ERR_NONFATAL
, "value referenced by FAR is not"
1388 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1389 outfmt
->segbase(1 + opx
->segment
),
1396 warn_overflow(2, opx
);
1397 if (is_sbyte16(opx
)) {
1399 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1403 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1404 opx
->segment
, opx
->wrt
);
1411 bytes
[0] = *codes
++;
1412 if (is_sbyte16(opx
))
1413 bytes
[0] |= 2; /* s-bit */
1414 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1420 warn_overflow(4, opx
);
1421 if (is_sbyte32(opx
)) {
1423 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1427 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1428 opx
->segment
, opx
->wrt
);
1435 bytes
[0] = *codes
++;
1436 if (is_sbyte32(opx
))
1437 bytes
[0] |= 2; /* s-bit */
1438 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1448 (ins
->drexdst
<< 4) |
1449 (ins
->rex
& REX_OC
? 0x08 : 0) |
1450 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1452 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1458 opx
= &ins
->oprs
[c
>> 3];
1459 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1460 opx
= &ins
->oprs
[c
& 7];
1461 if (opx
->segment
!= NO_SEG
|| opx
->wrt
!= NO_SEG
) {
1462 errfunc(ERR_NONFATAL
,
1463 "non-absolute expression not permitted as argument %d",
1466 if (opx
->offset
& ~15) {
1467 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1468 "four-bit argument exceeds bounds");
1470 bytes
[0] |= opx
->offset
& 15;
1472 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1478 opx
= &ins
->oprs
[c
>> 4];
1479 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1481 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1487 opx
= &ins
->oprs
[c
];
1488 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1489 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1495 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1496 (int32_t)data
!= (int64_t)data
) {
1497 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1498 "signed dword immediate exceeds bounds");
1500 if (is_sbyte32(opx
)) {
1502 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1506 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1507 opx
->segment
, opx
->wrt
);
1514 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1515 (int32_t)data
!= (int64_t)data
) {
1516 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1517 "signed dword immediate exceeds bounds");
1519 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1520 opx
->segment
, opx
->wrt
);
1527 if (ins
->vex_m
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
))) {
1529 bytes
[1] = ins
->vex_m
| ((~ins
->rex
& 7) << 5);
1530 bytes
[2] = ((ins
->rex
& REX_W
) << (7-3)) |
1531 ((~ins
->drexdst
& 15)<< 3) | (ins
->vex_wlp
& 07);
1532 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 3, NO_SEG
, NO_SEG
);
1536 bytes
[1] = ((~ins
->rex
& REX_R
) << (7-2)) |
1537 ((~ins
->drexdst
& 15) << 3) | (ins
->vex_wlp
& 07);
1538 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 2, NO_SEG
, NO_SEG
);
1548 if (ins
->rex
& REX_W
)
1550 else if (ins
->prefixes
[PPS_OSIZE
] == P_O16
)
1552 else if (ins
->prefixes
[PPS_OSIZE
] == P_O32
)
1557 um
= (uint64_t)2 << (s
-1);
1560 if (uv
> 127 && uv
< (uint64_t)-128 &&
1561 (uv
< um
-128 || uv
> um
-1)) {
1562 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1563 "signed byte value exceeds bounds");
1565 if (opx
->segment
!= NO_SEG
) {
1567 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1568 opx
->segment
, opx
->wrt
);
1571 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1582 if (bits
== 32 && !has_prefix(ins
, PPS_ASIZE
, P_A16
)) {
1584 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1591 if (bits
!= 32 && !has_prefix(ins
, PPS_ASIZE
, P_A32
)) {
1593 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1612 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1621 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1636 *bytes
= *codes
++ ^ condval
[ins
->condition
];
1637 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1646 *bytes
= c
- 0332 + 0xF2;
1647 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1652 if (ins
->rex
& REX_R
) {
1654 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1657 ins
->rex
&= ~(REX_L
|REX_R
);
1668 if (ins
->oprs
[0].segment
!= NO_SEG
)
1669 errfunc(ERR_PANIC
, "non-constant BSS size in pass two");
1671 int64_t size
= ins
->oprs
[0].offset
;
1673 out(offset
, segment
, NULL
,
1674 OUT_RESERVE
, size
, NO_SEG
, NO_SEG
);
1682 switch (ins
->oprs
[0].basereg
) {
1697 "bizarre 8086 segment register received");
1699 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1706 switch (ins
->oprs
[0].basereg
) {
1715 "bizarre 386 segment register received");
1717 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1726 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1732 bytes
[0] = c
- 0362 + 0xf2;
1733 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1743 *bytes
= c
- 0366 + 0x66;
1744 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1754 *bytes
= bits
== 16 ? 3 : 5;
1755 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1778 struct operand
*opy
= &ins
->oprs
[op2
];
1781 /* pick rfield from operand b (opx) */
1782 rflags
= regflag(opx
);
1783 rfield
= nasm_regvals
[opx
->basereg
];
1785 /* rfield is constant */
1790 if (!process_ea(opy
, &ea_data
, bits
, ins
->addr_size
,
1792 errfunc(ERR_NONFATAL
, "invalid effective address");
1797 *p
++ = ea_data
.modrm
;
1798 if (ea_data
.sib_present
)
1801 /* DREX suffixes come between the SIB and the displacement */
1802 if (ins
->rex
& REX_D
) {
1803 *p
++ = (ins
->drexdst
<< 4) |
1804 (ins
->rex
& REX_OC
? 0x08 : 0) |
1805 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1810 out(offset
, segment
, bytes
, OUT_RAWDATA
, s
, NO_SEG
, NO_SEG
);
1813 * Make sure the address gets the right offset in case
1814 * the line breaks in the .lst file (BR 1197827)
1819 switch (ea_data
.bytes
) {
1823 if (opy
->segment
!= NO_SEG
) {
1825 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1826 opy
->segment
, opy
->wrt
);
1828 *bytes
= opy
->offset
;
1829 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1,
1838 warn_overflow(ea_data
.bytes
, opy
);
1841 if (opy
->segment
== segment
) {
1843 out(offset
, segment
, &data
, OUT_ADDRESS
,
1844 ea_data
.bytes
, NO_SEG
, NO_SEG
);
1846 out(offset
, segment
, &data
, OUT_REL4ADR
,
1847 insn_end
- offset
, opy
->segment
, opy
->wrt
);
1851 out(offset
, segment
, &data
, OUT_ADDRESS
,
1852 ea_data
.bytes
, opy
->segment
, opy
->wrt
);
1861 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1862 ": instruction code 0x%02X given", c
);
1868 static int32_t regflag(const operand
* o
)
1870 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1871 errfunc(ERR_PANIC
, "invalid operand passed to regflag()");
1873 return nasm_reg_flags
[o
->basereg
];
1876 static int32_t regval(const operand
* o
)
1878 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1879 errfunc(ERR_PANIC
, "invalid operand passed to regval()");
1881 return nasm_regvals
[o
->basereg
];
1884 static int op_rexflags(const operand
* o
, int mask
)
1889 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1890 errfunc(ERR_PANIC
, "invalid operand passed to op_rexflags()");
1893 flags
= nasm_reg_flags
[o
->basereg
];
1894 val
= nasm_regvals
[o
->basereg
];
1896 return rexflags(val
, flags
, mask
);
1899 static int rexflags(int val
, int32_t flags
, int mask
)
1904 rex
|= REX_B
|REX_X
|REX_R
;
1907 if (!(REG_HIGH
& ~flags
)) /* AH, CH, DH, BH */
1909 else if (!(REG8
& ~flags
) && val
>= 4) /* SPL, BPL, SIL, DIL */
1915 static int matches(const struct itemplate
*itemp
, insn
* instruction
, int bits
)
1917 int i
, size
[MAX_OPERANDS
], asize
, oprs
, ret
;
1924 if (itemp
->opcode
!= instruction
->opcode
)
1928 * Count the operands
1930 if (itemp
->operands
!= instruction
->operands
)
1934 * Check that no spurious colons or TOs are present
1936 for (i
= 0; i
< itemp
->operands
; i
++)
1937 if (instruction
->oprs
[i
].type
& ~itemp
->opd
[i
] & (COLON
| TO
))
1941 * Process size flags
1943 if (itemp
->flags
& IF_ARMASK
) {
1944 memset(size
, 0, sizeof size
);
1946 i
= ((itemp
->flags
& IF_ARMASK
) >> IF_ARSHFT
) - 1;
1948 switch (itemp
->flags
& IF_SMASK
) {
1985 switch (itemp
->flags
& IF_SMASK
) {
2020 for (i
= 0; i
< MAX_OPERANDS
; i
++)
2025 * Check that the operand flags all match up
2027 for (i
= 0; i
< itemp
->operands
; i
++) {
2028 int32_t type
= instruction
->oprs
[i
].type
;
2029 if (!(type
& SIZE_MASK
))
2032 if (itemp
->opd
[i
] & SAME_AS
) {
2033 int j
= itemp
->opd
[i
] & ~SAME_AS
;
2034 if (type
!= instruction
->oprs
[j
].type
||
2035 instruction
->oprs
[i
].basereg
!= instruction
->oprs
[j
].basereg
)
2037 } else if (itemp
->opd
[i
] & ~type
||
2038 ((itemp
->opd
[i
] & SIZE_MASK
) &&
2039 ((itemp
->opd
[i
] ^ type
) & SIZE_MASK
))) {
2040 if ((itemp
->opd
[i
] & ~type
& ~SIZE_MASK
) ||
2049 * Check operand sizes
2051 if (itemp
->flags
& (IF_SM
| IF_SM2
)) {
2052 oprs
= (itemp
->flags
& IF_SM2
? 2 : itemp
->operands
);
2054 for (i
= 0; i
< oprs
; i
++) {
2055 if ((asize
= itemp
->opd
[i
] & SIZE_MASK
) != 0) {
2057 for (j
= 0; j
< oprs
; j
++)
2063 oprs
= itemp
->operands
;
2066 for (i
= 0; i
< itemp
->operands
; i
++) {
2067 if (!(itemp
->opd
[i
] & SIZE_MASK
) &&
2068 (instruction
->oprs
[i
].type
& SIZE_MASK
& ~size
[i
]))
2073 * Check template is okay at the set cpu level
2075 if (((itemp
->flags
& IF_PLEVEL
) > cpu
))
2079 * Check if instruction is available in long mode
2081 if ((itemp
->flags
& IF_NOLONG
) && (bits
== 64))
2085 * Check if special handling needed for Jumps
2087 if ((uint8_t)(itemp
->code
[0]) >= 0370)
2093 static ea
*process_ea(operand
* input
, ea
* output
, int bits
,
2094 int addrbits
, int rfield
, int32_t rflags
)
2096 bool forw_ref
= !!(input
->opflags
& OPFLAG_FORWARD
);
2098 output
->rip
= false;
2100 /* REX flags for the rfield operand */
2101 output
->rex
|= rexflags(rfield
, rflags
, REX_R
|REX_P
|REX_W
|REX_H
);
2103 if (!(REGISTER
& ~input
->type
)) { /* register direct */
2107 if (input
->basereg
< EXPR_REG_START
/* Verify as Register */
2108 || input
->basereg
>= REG_ENUM_LIMIT
)
2111 i
= nasm_regvals
[input
->basereg
];
2114 return NULL
; /* Invalid EA register */
2116 output
->rex
|= op_rexflags(input
, REX_B
|REX_P
|REX_W
|REX_H
);
2118 output
->sib_present
= false; /* no SIB necessary */
2119 output
->bytes
= 0; /* no offset necessary either */
2120 output
->modrm
= 0xC0 | ((rfield
& 7) << 3) | (i
& 7);
2121 } else { /* it's a memory reference */
2122 if (input
->basereg
== -1
2123 && (input
->indexreg
== -1 || input
->scale
== 0)) {
2124 /* it's a pure offset */
2125 if (bits
== 64 && (~input
->type
& IP_REL
)) {
2126 int scale
, index
, base
;
2127 output
->sib_present
= true;
2131 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2133 output
->modrm
= 4 | ((rfield
& 7) << 3);
2134 output
->rip
= false;
2136 output
->sib_present
= false;
2137 output
->bytes
= (addrbits
!= 16 ? 4 : 2);
2138 output
->modrm
= (addrbits
!= 16 ? 5 : 6) | ((rfield
& 7) << 3);
2139 output
->rip
= bits
== 64;
2141 } else { /* it's an indirection */
2142 int i
= input
->indexreg
, b
= input
->basereg
, s
= input
->scale
;
2143 int32_t o
= input
->offset
, seg
= input
->segment
;
2144 int hb
= input
->hintbase
, ht
= input
->hinttype
;
2147 int32_t ix
, bx
; /* register flags */
2150 i
= -1; /* make this easy, at least */
2152 if (i
>= EXPR_REG_START
&& i
< REG_ENUM_LIMIT
) {
2153 it
= nasm_regvals
[i
];
2154 ix
= nasm_reg_flags
[i
];
2160 if (b
>= EXPR_REG_START
&& b
< REG_ENUM_LIMIT
) {
2161 bt
= nasm_regvals
[b
];
2162 bx
= nasm_reg_flags
[b
];
2168 /* check for a 32/64-bit memory reference... */
2169 if ((ix
|bx
) & (BITS32
|BITS64
)) {
2170 /* it must be a 32/64-bit memory reference. Firstly we have
2171 * to check that all registers involved are type E/Rxx. */
2172 int32_t sok
= BITS32
|BITS64
;
2175 if (!(REG64
& ~ix
) || !(REG32
& ~ix
))
2183 return NULL
; /* Invalid register */
2184 if (~sok
& bx
& SIZE_MASK
)
2185 return NULL
; /* Invalid size */
2189 /* While we're here, ensure the user didn't specify
2191 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2194 if (addrbits
== 16 ||
2195 (addrbits
== 32 && !(sok
& BITS32
)) ||
2196 (addrbits
== 64 && !(sok
& BITS64
)))
2199 /* now reorganize base/index */
2200 if (s
== 1 && bt
!= it
&& bt
!= -1 && it
!= -1 &&
2201 ((hb
== b
&& ht
== EAH_NOTBASE
)
2202 || (hb
== i
&& ht
== EAH_MAKEBASE
))) {
2203 /* swap if hints say so */
2204 t
= bt
, bt
= it
, it
= t
;
2205 t
= bx
, bx
= ix
, ix
= t
;
2207 if (bt
== it
) /* convert EAX+2*EAX to 3*EAX */
2208 bt
= -1, bx
= 0, s
++;
2209 if (bt
== -1 && s
== 1 && !(hb
== it
&& ht
== EAH_NOTBASE
)) {
2210 /* make single reg base, unless hint */
2211 bt
= it
, bx
= ix
, it
= -1, ix
= 0;
2213 if (((s
== 2 && it
!= REG_NUM_ESP
2214 && !(input
->eaflags
& EAF_TIMESTWO
)) || s
== 3
2215 || s
== 5 || s
== 9) && bt
== -1)
2216 bt
= it
, bx
= ix
, s
--; /* convert 3*EAX to EAX+2*EAX */
2217 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
2218 && (input
->eaflags
& EAF_TIMESTWO
))
2219 it
= bt
, ix
= bx
, bt
= -1, bx
= 0, s
= 1;
2220 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2221 if (s
== 1 && it
== REG_NUM_ESP
) {
2222 /* swap ESP into base if scale is 1 */
2223 t
= it
, it
= bt
, bt
= t
;
2224 t
= ix
, ix
= bx
, bx
= t
;
2226 if (it
== REG_NUM_ESP
2227 || (s
!= 1 && s
!= 2 && s
!= 4 && s
!= 8 && it
!= -1))
2228 return NULL
; /* wrong, for various reasons */
2230 output
->rex
|= rexflags(it
, ix
, REX_X
);
2231 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2233 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
) {
2242 if (rm
!= REG_NUM_EBP
&& o
== 0 &&
2243 seg
== NO_SEG
&& !forw_ref
&&
2245 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2247 else if (input
->eaflags
& EAF_BYTEOFFS
||
2248 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2250 && !(input
->eaflags
& EAF_WORDOFFS
)))
2256 output
->sib_present
= false;
2257 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2258 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2261 int mod
, scale
, index
, base
;
2281 default: /* then what the smeg is it? */
2282 return NULL
; /* panic */
2290 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2291 seg
== NO_SEG
&& !forw_ref
&&
2293 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2295 else if (input
->eaflags
& EAF_BYTEOFFS
||
2296 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2298 && !(input
->eaflags
& EAF_WORDOFFS
)))
2304 output
->sib_present
= true;
2305 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2306 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | 4;
2307 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2309 } else { /* it's 16-bit */
2312 /* check for 64-bit long mode */
2316 /* check all registers are BX, BP, SI or DI */
2317 if ((b
!= -1 && b
!= R_BP
&& b
!= R_BX
&& b
!= R_SI
2318 && b
!= R_DI
) || (i
!= -1 && i
!= R_BP
&& i
!= R_BX
2319 && i
!= R_SI
&& i
!= R_DI
))
2322 /* ensure the user didn't specify DWORD/QWORD */
2323 if (input
->disp_size
== 32 || input
->disp_size
== 64)
2326 if (s
!= 1 && i
!= -1)
2327 return NULL
; /* no can do, in 16-bit EA */
2328 if (b
== -1 && i
!= -1) {
2333 if ((b
== R_SI
|| b
== R_DI
) && i
!= -1) {
2338 /* have BX/BP as base, SI/DI index */
2340 return NULL
; /* shouldn't ever happen, in theory */
2341 if (i
!= -1 && b
!= -1 &&
2342 (i
== R_BP
|| i
== R_BX
|| b
== R_SI
|| b
== R_DI
))
2343 return NULL
; /* invalid combinations */
2344 if (b
== -1) /* pure offset: handled above */
2345 return NULL
; /* so if it gets to here, panic! */
2349 switch (i
* 256 + b
) {
2350 case R_SI
* 256 + R_BX
:
2353 case R_DI
* 256 + R_BX
:
2356 case R_SI
* 256 + R_BP
:
2359 case R_DI
* 256 + R_BP
:
2377 if (rm
== -1) /* can't happen, in theory */
2378 return NULL
; /* so panic if it does */
2380 if (o
== 0 && seg
== NO_SEG
&& !forw_ref
&& rm
!= 6 &&
2381 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2383 else if (input
->eaflags
& EAF_BYTEOFFS
||
2384 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2386 && !(input
->eaflags
& EAF_WORDOFFS
)))
2391 output
->sib_present
= false; /* no SIB - it's 16-bit */
2392 output
->bytes
= mod
; /* bytes of offset needed */
2393 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2398 output
->size
= 1 + output
->sib_present
+ output
->bytes
;
2402 static void add_asp(insn
*ins
, int addrbits
)
2407 valid
= (addrbits
== 64) ? 64|32 : 32|16;
2409 switch (ins
->prefixes
[PPS_ASIZE
]) {
2420 valid
&= (addrbits
== 32) ? 16 : 32;
2426 for (j
= 0; j
< ins
->operands
; j
++) {
2427 if (!(MEMORY
& ~ins
->oprs
[j
].type
)) {
2430 /* Verify as Register */
2431 if (ins
->oprs
[j
].indexreg
< EXPR_REG_START
2432 || ins
->oprs
[j
].indexreg
>= REG_ENUM_LIMIT
)
2435 i
= nasm_reg_flags
[ins
->oprs
[j
].indexreg
];
2437 /* Verify as Register */
2438 if (ins
->oprs
[j
].basereg
< EXPR_REG_START
2439 || ins
->oprs
[j
].basereg
>= REG_ENUM_LIMIT
)
2442 b
= nasm_reg_flags
[ins
->oprs
[j
].basereg
];
2444 if (ins
->oprs
[j
].scale
== 0)
2448 int ds
= ins
->oprs
[j
].disp_size
;
2449 if ((addrbits
!= 64 && ds
> 8) ||
2450 (addrbits
== 64 && ds
== 16))
2470 if (valid
& addrbits
) {
2471 ins
->addr_size
= addrbits
;
2472 } else if (valid
& ((addrbits
== 32) ? 16 : 32)) {
2473 /* Add an address size prefix */
2474 enum prefixes pref
= (addrbits
== 32) ? P_A16
: P_A32
;
2475 ins
->prefixes
[PPS_ASIZE
] = pref
;
2476 ins
->addr_size
= (addrbits
== 32) ? 16 : 32;
2479 errfunc(ERR_NONFATAL
, "impossible combination of address sizes");
2480 ins
->addr_size
= addrbits
; /* Error recovery */
2483 defdisp
= ins
->addr_size
== 16 ? 16 : 32;
2485 for (j
= 0; j
< ins
->operands
; j
++) {
2486 if (!(MEM_OFFS
& ~ins
->oprs
[j
].type
) &&
2487 (ins
->oprs
[j
].disp_size
? ins
->oprs
[j
].disp_size
: defdisp
)
2488 != ins
->addr_size
) {
2489 /* mem_offs sizes must match the address size; if not,
2490 strip the MEM_OFFS bit and match only EA instructions */
2491 ins
->oprs
[j
].type
&= ~(MEM_OFFS
& ~MEMORY
);