1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * assemble.c code generation for the Netwide Assembler
37 * the actual codes (C syntax, i.e. octal):
38 * \0 - terminates the code. (Unless it's a literal of course.)
39 * \1..\4 - that many literal bytes follow in the code stream
40 * \5 - add 4 to the primary operand number (b, low octdigit)
41 * \6 - add 4 to the secondary operand number (a, middle octdigit)
42 * \7 - add 4 to both the primary and the secondary operand number
43 * \10..\13 - a literal byte follows in the code stream, to be added
44 * to the register value of operand 0..3
45 * \14..\17 - a signed byte immediate operand, from operand 0..3
46 * \20..\23 - a byte immediate operand, from operand 0..3
47 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
48 * \30..\33 - a word immediate operand, from operand 0..3
49 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
50 * assembly mode or the operand-size override on the operand
51 * \40..\43 - a long immediate operand, from operand 0..3
52 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
53 * depending on the address size of the instruction.
54 * \50..\53 - a byte relative operand, from operand 0..3
55 * \54..\57 - a qword immediate operand, from operand 0..3
56 * \60..\63 - a word relative operand, from operand 0..3
57 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
58 * assembly mode or the operand-size override on the operand
59 * \70..\73 - a long relative operand, from operand 0..3
60 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
61 * \1ab - a ModRM, calculated on EA in operand a, with the spare
62 * field the register value of operand b.
63 * \140..\143 - an immediate word or signed byte for operand 0..3
64 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
65 * is a signed byte rather than a word. Opcode byte follows.
66 * \150..\153 - an immediate dword or signed byte for operand 0..3
67 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
68 * is a signed byte rather than a dword. Opcode byte follows.
69 * \160..\163 - this instruction uses DREX rather than REX, with the
70 * OC0 field set to 0, and the dest field taken from
72 * \164..\167 - this instruction uses DREX rather than REX, with the
73 * OC0 field set to 1, and the dest field taken from
75 * \171 - placement of DREX suffix in the absence of an EA
76 * \172\ab - the register number from operand a in bits 7..4, with
77 * the 4-bit immediate from operand b in bits 3..0.
78 * \173\xab - the register number from operand a in bits 7..4, with
79 * the value b in bits 3..0.
80 * \174\a - the register number from operand a in bits 7..4, and
81 * an arbitrary value in bits 3..0 (assembled as zero.)
82 * \2ab - a ModRM, calculated on EA in operand a, with the spare
83 * field equal to digit b.
84 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
85 * is not equal to the truncated and sign-extended 32-bit
86 * operand; used for 32-bit immediates in 64-bit mode.
87 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
88 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
89 * V field taken from operand 0..3.
90 * \270 - this instruction uses VEX/XOP rather than REX, with the
91 * V field set to 1111b.
93 * VEX/XOP prefixes are followed by the sequence:
94 * \tmm\wlp where mm is the M field; and wlp is:
96 * [w0] ww = 0 for W = 0
97 * [w1] ww = 1 for W = 1
98 * [wx] ww = 2 for W don't care (always assembled as 0)
99 * [ww] ww = 3 for W used as REX.W
101 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
103 * \274..\277 - a signed byte immediate operand, from operand 0..3,
104 * which is to be extended to the operand size.
105 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
106 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
107 * \312 - (disassembler only) invalid with non-default address size.
108 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
109 * \314 - (disassembler only) invalid with REX.B
110 * \315 - (disassembler only) invalid with REX.X
111 * \316 - (disassembler only) invalid with REX.R
112 * \317 - (disassembler only) invalid with REX.W
113 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
114 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
115 * \322 - indicates that this instruction is only valid when the
116 * operand size is the default (instruction to disassembler,
117 * generates no code in the assembler)
118 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
119 * \324 - indicates 64-bit operand size requiring REX prefix.
120 * \325 - instruction which always uses spl/bpl/sil/dil
121 * \330 - a literal byte follows in the code stream, to be added
122 * to the condition code value of the instruction.
123 * \331 - instruction not valid with REP prefix. Hint for
124 * disassembler only; for SSE instructions.
125 * \332 - REP prefix (0xF2 byte) used as opcode extension.
126 * \333 - REP prefix (0xF3 byte) used as opcode extension.
127 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
128 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
129 * \336 - force a REP(E) prefix (0xF2) even if not specified.
130 * \337 - force a REPNE prefix (0xF3) even if not specified.
131 * \336-\337 are still listed as prefixes in the disassembler.
132 * \340 - reserve <operand 0> bytes of uninitialized storage.
133 * Operand 0 had better be a segmentless constant.
134 * \341 - this instruction needs a WAIT "prefix"
135 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
136 * (POP is never used for CS) depending on operand 0
137 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
139 * \360 - no SSE prefix (== \364\331)
140 * \361 - 66 SSE prefix (== \366\331)
141 * \362 - F2 SSE prefix (== \364\332)
142 * \363 - F3 SSE prefix (== \364\333)
143 * \364 - operand-size prefix (0x66) not permitted
144 * \365 - address-size prefix (0x67) not permitted
145 * \366 - operand-size prefix (0x66) used as opcode extension
146 * \367 - address-size prefix (0x67) used as opcode extension
147 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
148 * 370 is used for Jcc, 371 is used for JMP.
149 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
150 * used for conditional jump over longer jump
153 #include "compiler.h"
157 #include <inttypes.h>
161 #include "assemble.h"
167 * Matching errors. These should be sorted so that more specific
168 * errors come later in the sequence.
176 * Matching success; the conditional ones first
178 MOK_JUMP
, /* Matching OK but needs jmp_match() */
179 MOK_GOOD
/* Matching unconditionally OK */
183 int sib_present
; /* is a SIB byte necessary? */
184 int bytes
; /* # of bytes of offset needed */
185 int size
; /* lazy - this is sib+bytes+1 */
186 uint8_t modrm
, sib
, rex
, rip
; /* the bytes themselves */
189 static uint32_t cpu
; /* cpu level received from nasm.c */
190 static efunc errfunc
;
191 static struct ofmt
*outfmt
;
192 static ListGen
*list
;
194 static int64_t calcsize(int32_t, int64_t, int, insn
*, const uint8_t *);
195 static void gencode(int32_t segment
, int64_t offset
, int bits
,
196 insn
* ins
, const struct itemplate
*temp
,
198 static enum match_result
find_match(const struct itemplate
**tempp
,
200 int32_t segment
, int64_t offset
, int bits
);
201 static enum match_result
matches(const struct itemplate
*, insn
*, int bits
);
202 static opflags_t
regflag(const operand
*);
203 static int32_t regval(const operand
*);
204 static int rexflags(int, opflags_t
, int);
205 static int op_rexflags(const operand
*, int);
206 static ea
*process_ea(operand
*, ea
*, int, int, int, opflags_t
);
207 static void add_asp(insn
*, int);
209 static int has_prefix(insn
* ins
, enum prefix_pos pos
, enum prefixes prefix
)
211 return ins
->prefixes
[pos
] == prefix
;
214 static void assert_no_prefix(insn
* ins
, enum prefix_pos pos
)
216 if (ins
->prefixes
[pos
])
217 errfunc(ERR_NONFATAL
, "invalid %s prefix",
218 prefix_name(ins
->prefixes
[pos
]));
221 static const char *size_name(int size
)
243 static void warn_overflow(int pass
, int size
)
245 errfunc(ERR_WARNING
| pass
| ERR_WARN_NOV
,
246 "%s data exceeds bounds", size_name(size
));
249 static void warn_overflow_const(int64_t data
, int size
)
251 if (overflow_general(data
, size
))
252 warn_overflow(ERR_PASS1
, size
);
255 static void warn_overflow_opd(const struct operand
*o
, int size
)
257 if (size
< 8 && o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
) {
258 if (overflow_general(o
->offset
, size
))
259 warn_overflow(ERR_PASS2
, size
);
264 * This routine wrappers the real output format's output routine,
265 * in order to pass a copy of the data off to the listing file
266 * generator at the same time.
268 static void out(int64_t offset
, int32_t segto
, const void *data
,
269 enum out_type type
, uint64_t size
,
270 int32_t segment
, int32_t wrt
)
272 static int32_t lineno
= 0; /* static!!! */
273 static char *lnfname
= NULL
;
276 if (type
== OUT_ADDRESS
&& segment
== NO_SEG
&& wrt
== NO_SEG
) {
278 * This is a non-relocated address, and we're going to
279 * convert it into RAWDATA format.
284 errfunc(ERR_PANIC
, "OUT_ADDRESS with size > 8");
288 WRITEADDR(q
, *(int64_t *)data
, size
);
293 list
->output(offset
, data
, type
, size
);
296 * this call to src_get determines when we call the
297 * debug-format-specific "linenum" function
298 * it updates lineno and lnfname to the current values
299 * returning 0 if "same as last time", -2 if lnfname
300 * changed, and the amount by which lineno changed,
301 * if it did. thus, these variables must be static
304 if (src_get(&lineno
, &lnfname
)) {
305 outfmt
->current_dfmt
->linenum(lnfname
, lineno
, segto
);
308 outfmt
->output(segto
, data
, type
, size
, segment
, wrt
);
311 static bool jmp_match(int32_t segment
, int64_t offset
, int bits
,
312 insn
* ins
, const uint8_t *code
)
317 if ((c
!= 0370 && c
!= 0371) || (ins
->oprs
[0].type
& STRICT
))
321 if (optimizing
< 0 && c
== 0371)
324 isize
= calcsize(segment
, offset
, bits
, ins
, code
);
326 if (ins
->oprs
[0].opflags
& OPFLAG_UNKNOWN
)
327 /* Be optimistic in pass 1 */
330 if (ins
->oprs
[0].segment
!= segment
)
333 isize
= ins
->oprs
[0].offset
- offset
- isize
; /* isize is delta */
334 return (isize
>= -128 && isize
<= 127); /* is it byte size? */
337 int64_t assemble(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
338 insn
* instruction
, struct ofmt
*output
, efunc error
,
341 const struct itemplate
*temp
;
346 int64_t start
= offset
;
347 int64_t wsize
; /* size for DB etc. */
349 errfunc
= error
; /* to pass to other functions */
351 outfmt
= output
; /* likewise */
352 list
= listgen
; /* and again */
354 wsize
= idata_bytes(instruction
->opcode
);
360 int32_t t
= instruction
->times
;
363 "instruction->times < 0 (%ld) in assemble()", t
);
365 while (t
--) { /* repeat TIMES times */
366 list_for_each(e
, instruction
->eops
) {
367 if (e
->type
== EOT_DB_NUMBER
) {
369 if (e
->segment
!= NO_SEG
)
370 errfunc(ERR_NONFATAL
,
371 "one-byte relocation attempted");
373 uint8_t out_byte
= e
->offset
;
374 out(offset
, segment
, &out_byte
,
375 OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
377 } else if (wsize
> 8) {
378 errfunc(ERR_NONFATAL
,
379 "integer supplied to a DT, DO or DY"
382 out(offset
, segment
, &e
->offset
,
383 OUT_ADDRESS
, wsize
, e
->segment
, e
->wrt
);
385 } else if (e
->type
== EOT_DB_STRING
||
386 e
->type
== EOT_DB_STRING_FREE
) {
389 out(offset
, segment
, e
->stringval
,
390 OUT_RAWDATA
, e
->stringlen
, NO_SEG
, NO_SEG
);
391 align
= e
->stringlen
% wsize
;
394 align
= wsize
- align
;
395 out(offset
, segment
, zero_buffer
,
396 OUT_RAWDATA
, align
, NO_SEG
, NO_SEG
);
398 offset
+= e
->stringlen
+ align
;
401 if (t
> 0 && t
== instruction
->times
- 1) {
403 * Dummy call to list->output to give the offset to the
406 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
407 list
->uplevel(LIST_TIMES
);
410 if (instruction
->times
> 1)
411 list
->downlevel(LIST_TIMES
);
412 return offset
- start
;
415 if (instruction
->opcode
== I_INCBIN
) {
416 const char *fname
= instruction
->eops
->stringval
;
419 fp
= fopen(fname
, "rb");
421 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
423 } else if (fseek(fp
, 0L, SEEK_END
) < 0) {
424 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
427 static char buf
[4096];
428 size_t t
= instruction
->times
;
433 if (instruction
->eops
->next
) {
434 base
= instruction
->eops
->next
->offset
;
436 if (instruction
->eops
->next
->next
&&
437 len
> (size_t)instruction
->eops
->next
->next
->offset
)
438 len
= (size_t)instruction
->eops
->next
->next
->offset
;
441 * Dummy call to list->output to give the offset to the
444 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
445 list
->uplevel(LIST_INCBIN
);
449 fseek(fp
, base
, SEEK_SET
);
453 m
= fread(buf
, 1, l
> sizeof(buf
) ? sizeof(buf
) : l
, fp
);
456 * This shouldn't happen unless the file
457 * actually changes while we are reading
461 "`incbin': unexpected EOF while"
462 " reading file `%s'", fname
);
463 t
= 0; /* Try to exit cleanly */
466 out(offset
, segment
, buf
, OUT_RAWDATA
, m
,
471 list
->downlevel(LIST_INCBIN
);
472 if (instruction
->times
> 1) {
474 * Dummy call to list->output to give the offset to the
477 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
478 list
->uplevel(LIST_TIMES
);
479 list
->downlevel(LIST_TIMES
);
482 return instruction
->times
* len
;
484 return 0; /* if we're here, there's an error */
487 /* Check to see if we need an address-size prefix */
488 add_asp(instruction
, bits
);
490 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
494 int64_t insn_size
= calcsize(segment
, offset
, bits
,
495 instruction
, temp
->code
);
496 itimes
= instruction
->times
;
497 if (insn_size
< 0) /* shouldn't be, on pass two */
498 error(ERR_PANIC
, "errors made it through from pass one");
501 for (j
= 0; j
< MAXPREFIX
; j
++) {
503 switch (instruction
->prefixes
[j
]) {
521 error(ERR_WARNING
| ERR_PASS2
,
522 "cs segment base generated, but will be ignored in 64-bit mode");
528 error(ERR_WARNING
| ERR_PASS2
,
529 "ds segment base generated, but will be ignored in 64-bit mode");
535 error(ERR_WARNING
| ERR_PASS2
,
536 "es segment base generated, but will be ignored in 64-bit mode");
548 error(ERR_WARNING
| ERR_PASS2
,
549 "ss segment base generated, but will be ignored in 64-bit mode");
556 "segr6 and segr7 cannot be used as prefixes");
561 "16-bit addressing is not supported "
563 } else if (bits
!= 16)
573 "64-bit addressing is only supported "
597 error(ERR_PANIC
, "invalid instruction prefix");
600 out(offset
, segment
, &c
, OUT_RAWDATA
, 1,
605 insn_end
= offset
+ insn_size
;
606 gencode(segment
, offset
, bits
, instruction
,
609 if (itimes
> 0 && itimes
== instruction
->times
- 1) {
611 * Dummy call to list->output to give the offset to the
614 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
615 list
->uplevel(LIST_TIMES
);
618 if (instruction
->times
> 1)
619 list
->downlevel(LIST_TIMES
);
620 return offset
- start
;
624 case MERR_OPSIZEMISSING
:
625 error(ERR_NONFATAL
, "operation size not specified");
627 case MERR_OPSIZEMISMATCH
:
628 error(ERR_NONFATAL
, "mismatch in operand sizes");
631 error(ERR_NONFATAL
, "no instruction for this cpu level");
634 error(ERR_NONFATAL
, "instruction not supported in %d-bit mode",
639 "invalid combination of opcode and operands");
646 int64_t insn_size(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
647 insn
* instruction
, efunc error
)
649 const struct itemplate
*temp
;
652 errfunc
= error
; /* to pass to other functions */
655 if (instruction
->opcode
== I_none
)
658 if (instruction
->opcode
== I_DB
|| instruction
->opcode
== I_DW
||
659 instruction
->opcode
== I_DD
|| instruction
->opcode
== I_DQ
||
660 instruction
->opcode
== I_DT
|| instruction
->opcode
== I_DO
||
661 instruction
->opcode
== I_DY
) {
663 int32_t isize
, osize
, wsize
;
666 wsize
= idata_bytes(instruction
->opcode
);
668 list_for_each(e
, instruction
->eops
) {
672 if (e
->type
== EOT_DB_NUMBER
) {
674 warn_overflow_const(e
->offset
, wsize
);
675 } else if (e
->type
== EOT_DB_STRING
||
676 e
->type
== EOT_DB_STRING_FREE
)
677 osize
= e
->stringlen
;
679 align
= (-osize
) % wsize
;
682 isize
+= osize
+ align
;
684 return isize
* instruction
->times
;
687 if (instruction
->opcode
== I_INCBIN
) {
688 const char *fname
= instruction
->eops
->stringval
;
693 fp
= fopen(fname
, "rb");
695 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
697 else if (fseek(fp
, 0L, SEEK_END
) < 0)
698 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
702 if (instruction
->eops
->next
) {
703 len
-= instruction
->eops
->next
->offset
;
704 if (instruction
->eops
->next
->next
&&
705 len
> (size_t)instruction
->eops
->next
->next
->offset
) {
706 len
= (size_t)instruction
->eops
->next
->next
->offset
;
709 val
= instruction
->times
* len
;
716 /* Check to see if we need an address-size prefix */
717 add_asp(instruction
, bits
);
719 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
721 /* we've matched an instruction. */
723 const uint8_t *codes
= temp
->code
;
726 isize
= calcsize(segment
, offset
, bits
, instruction
, codes
);
729 for (j
= 0; j
< MAXPREFIX
; j
++) {
730 switch (instruction
->prefixes
[j
]) {
756 return isize
* instruction
->times
;
758 return -1; /* didn't match any instruction */
762 static bool possible_sbyte(operand
*o
)
764 return o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
&&
765 !(o
->opflags
& OPFLAG_UNKNOWN
) &&
766 optimizing
>= 0 && !(o
->type
& STRICT
);
769 /* check that opn[op] is a signed byte of size 16 or 32 */
770 static bool is_sbyte16(operand
*o
)
774 if (!possible_sbyte(o
))
778 return v
>= -128 && v
<= 127;
781 static bool is_sbyte32(operand
*o
)
785 if (!possible_sbyte(o
))
789 return v
>= -128 && v
<= 127;
792 /* Common construct */
793 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
795 static int64_t calcsize(int32_t segment
, int64_t offset
, int bits
,
796 insn
* ins
, const uint8_t *codes
)
805 ins
->rex
= 0; /* Ensure REX is reset */
807 if (ins
->prefixes
[PPS_OSIZE
] == P_O64
)
810 (void)segment
; /* Don't warn that this parameter is unused */
811 (void)offset
; /* Don't warn that this parameter is unused */
815 op1
= (c
& 3) + ((opex
& 1) << 2);
816 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
817 opx
= &ins
->oprs
[op1
];
818 opex
= 0; /* For the next iteration */
825 codes
+= c
, length
+= c
;
836 op_rexflags(opx
, REX_B
|REX_H
|REX_P
|REX_W
);
851 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
852 length
+= (opx
->type
& BITS16
) ? 2 : 4;
854 length
+= (bits
== 16) ? 2 : 4;
862 length
+= ins
->addr_size
>> 3;
870 length
+= 8; /* MOV reg64/imm */
878 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
879 length
+= (opx
->type
& BITS16
) ? 2 : 4;
881 length
+= (bits
== 16) ? 2 : 4;
893 length
+= is_sbyte16(opx
) ? 1 : 2;
902 length
+= is_sbyte32(opx
) ? 1 : 4;
913 ins
->drexdst
= regval(opx
);
918 ins
->rex
|= REX_D
|REX_OC
;
919 ins
->drexdst
= regval(opx
);
933 length
+= is_sbyte32(opx
) ? 1 : 4;
942 ins
->drexdst
= regval(opx
);
943 ins
->vex_cm
= *codes
++;
944 ins
->vex_wlp
= *codes
++;
950 ins
->vex_cm
= *codes
++;
951 ins
->vex_wlp
= *codes
++;
964 length
+= (bits
!= 16) && !has_prefix(ins
, PPS_ASIZE
, P_A16
);
968 length
+= (bits
!= 32) && !has_prefix(ins
, PPS_ASIZE
, P_A32
);
975 if (bits
!= 64 || has_prefix(ins
, PPS_ASIZE
, P_A16
) ||
976 has_prefix(ins
, PPS_ASIZE
, P_A32
))
984 length
+= (bits
!= 16);
988 length
+= (bits
== 16);
1026 if (!ins
->prefixes
[PPS_LREP
])
1027 ins
->prefixes
[PPS_LREP
] = P_REP
;
1031 if (!ins
->prefixes
[PPS_LREP
])
1032 ins
->prefixes
[PPS_LREP
] = P_REPNE
;
1036 if (ins
->oprs
[0].segment
!= NO_SEG
)
1037 errfunc(ERR_NONFATAL
, "attempt to reserve non-constant"
1038 " quantity of BSS space");
1040 length
+= ins
->oprs
[0].offset
;
1044 if (!ins
->prefixes
[PPS_WAIT
])
1045 ins
->prefixes
[PPS_WAIT
] = P_WAIT
;
1095 struct operand
*opy
= &ins
->oprs
[op2
];
1097 ea_data
.rex
= 0; /* Ensure ea.REX is initially 0 */
1100 /* pick rfield from operand b (opx) */
1101 rflags
= regflag(opx
);
1102 rfield
= nasm_regvals
[opx
->basereg
];
1107 if (!process_ea(opy
, &ea_data
, bits
,
1108 ins
->addr_size
, rfield
, rflags
)) {
1109 errfunc(ERR_NONFATAL
, "invalid effective address");
1112 ins
->rex
|= ea_data
.rex
;
1113 length
+= ea_data
.size
;
1119 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1120 ": instruction code \\%o (0x%02X) given", c
, c
);
1125 ins
->rex
&= rex_mask
;
1127 if (ins
->rex
& REX_NH
) {
1128 if (ins
->rex
& REX_H
) {
1129 errfunc(ERR_NONFATAL
, "instruction cannot use high registers");
1132 ins
->rex
&= ~REX_P
; /* Don't force REX prefix due to high reg */
1135 if (ins
->rex
& REX_V
) {
1136 int bad32
= REX_R
|REX_W
|REX_X
|REX_B
;
1138 if (ins
->rex
& REX_H
) {
1139 errfunc(ERR_NONFATAL
, "cannot use high register in vex instruction");
1142 switch (ins
->vex_wlp
& 030) {
1156 if (bits
!= 64 && ((ins
->rex
& bad32
) || ins
->drexdst
> 7)) {
1157 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1160 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_R
|REX_B
)))
1164 } else if (ins
->rex
& REX_D
) {
1165 if (ins
->rex
& REX_H
) {
1166 errfunc(ERR_NONFATAL
, "cannot use high register in drex instruction");
1169 if (bits
!= 64 && ((ins
->rex
& (REX_R
|REX_W
|REX_X
|REX_B
)) ||
1170 ins
->drexdst
> 7)) {
1171 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1175 } else if (ins
->rex
& REX_REAL
) {
1176 if (ins
->rex
& REX_H
) {
1177 errfunc(ERR_NONFATAL
, "cannot use high register in rex instruction");
1179 } else if (bits
== 64) {
1181 } else if ((ins
->rex
& REX_L
) &&
1182 !(ins
->rex
& (REX_P
|REX_W
|REX_X
|REX_B
)) &&
1185 assert_no_prefix(ins
, PPS_LREP
);
1188 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1196 #define EMIT_REX() \
1197 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1198 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1199 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1204 static void gencode(int32_t segment
, int64_t offset
, int bits
,
1205 insn
* ins
, const struct itemplate
*temp
,
1208 static char condval
[] = { /* conditional opcodes */
1209 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1210 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1211 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1218 struct operand
*opx
;
1219 const uint8_t *codes
= temp
->code
;
1224 op1
= (c
& 3) + ((opex
& 1) << 2);
1225 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
1226 opx
= &ins
->oprs
[op1
];
1227 opex
= 0; /* For the next iteration */
1235 out(offset
, segment
, codes
, OUT_RAWDATA
, c
, NO_SEG
, NO_SEG
);
1248 bytes
[0] = *codes
++ + (regval(opx
) & 7);
1249 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1254 /* The test for BITS8 and SBYTE here is intended to avoid
1255 warning on optimizer actions due to SBYTE, while still
1256 warn on explicit BYTE directives. Also warn, obviously,
1257 if the optimizer isn't enabled. */
1258 if (((opx
->type
& BITS8
) ||
1259 !(opx
->type
& temp
->opd
[op1
] & BYTENESS
)) &&
1260 (opx
->offset
< -128 || opx
->offset
> 127)) {
1261 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1262 "signed byte value exceeds bounds");
1264 if (opx
->segment
!= NO_SEG
) {
1266 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1267 opx
->segment
, opx
->wrt
);
1269 bytes
[0] = opx
->offset
;
1270 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1277 if (opx
->offset
< -256 || opx
->offset
> 255) {
1278 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1279 "byte value exceeds bounds");
1281 if (opx
->segment
!= NO_SEG
) {
1283 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1284 opx
->segment
, opx
->wrt
);
1286 bytes
[0] = opx
->offset
;
1287 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1294 if (opx
->offset
< 0 || opx
->offset
> 255)
1295 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1296 "unsigned byte value exceeds bounds");
1297 if (opx
->segment
!= NO_SEG
) {
1299 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1300 opx
->segment
, opx
->wrt
);
1302 bytes
[0] = opx
->offset
;
1303 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1310 warn_overflow_opd(opx
, 2);
1312 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1313 opx
->segment
, opx
->wrt
);
1318 if (opx
->type
& (BITS16
| BITS32
))
1319 size
= (opx
->type
& BITS16
) ? 2 : 4;
1321 size
= (bits
== 16) ? 2 : 4;
1322 warn_overflow_opd(opx
, size
);
1324 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1325 opx
->segment
, opx
->wrt
);
1330 warn_overflow_opd(opx
, 4);
1332 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1333 opx
->segment
, opx
->wrt
);
1339 size
= ins
->addr_size
>> 3;
1340 warn_overflow_opd(opx
, size
);
1341 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1342 opx
->segment
, opx
->wrt
);
1347 if (opx
->segment
!= segment
)
1348 errfunc(ERR_NONFATAL
,
1349 "short relative jump outside segment");
1350 data
= opx
->offset
- insn_end
;
1351 if (data
> 127 || data
< -128)
1352 errfunc(ERR_NONFATAL
, "short jump is out of range");
1354 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1359 data
= (int64_t)opx
->offset
;
1360 out(offset
, segment
, &data
, OUT_ADDRESS
, 8,
1361 opx
->segment
, opx
->wrt
);
1366 if (opx
->segment
!= segment
) {
1368 out(offset
, segment
, &data
,
1369 OUT_REL2ADR
, insn_end
- offset
,
1370 opx
->segment
, opx
->wrt
);
1372 data
= opx
->offset
- insn_end
;
1373 out(offset
, segment
, &data
,
1374 OUT_ADDRESS
, 2, NO_SEG
, NO_SEG
);
1380 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
1381 size
= (opx
->type
& BITS16
) ? 2 : 4;
1383 size
= (bits
== 16) ? 2 : 4;
1384 if (opx
->segment
!= segment
) {
1386 out(offset
, segment
, &data
,
1387 size
== 2 ? OUT_REL2ADR
: OUT_REL4ADR
,
1388 insn_end
- offset
, opx
->segment
, opx
->wrt
);
1390 data
= opx
->offset
- insn_end
;
1391 out(offset
, segment
, &data
,
1392 OUT_ADDRESS
, size
, NO_SEG
, NO_SEG
);
1398 if (opx
->segment
!= segment
) {
1400 out(offset
, segment
, &data
,
1401 OUT_REL4ADR
, insn_end
- offset
,
1402 opx
->segment
, opx
->wrt
);
1404 data
= opx
->offset
- insn_end
;
1405 out(offset
, segment
, &data
,
1406 OUT_ADDRESS
, 4, NO_SEG
, NO_SEG
);
1412 if (opx
->segment
== NO_SEG
)
1413 errfunc(ERR_NONFATAL
, "value referenced by FAR is not"
1416 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1417 outfmt
->segbase(1 + opx
->segment
),
1424 warn_overflow_opd(opx
, 2);
1425 if (is_sbyte16(opx
)) {
1427 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1431 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1432 opx
->segment
, opx
->wrt
);
1439 bytes
[0] = *codes
++;
1440 if (is_sbyte16(opx
))
1441 bytes
[0] |= 2; /* s-bit */
1442 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1448 warn_overflow_opd(opx
, 4);
1449 if (is_sbyte32(opx
)) {
1451 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1455 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1456 opx
->segment
, opx
->wrt
);
1463 bytes
[0] = *codes
++;
1464 if (is_sbyte32(opx
))
1465 bytes
[0] |= 2; /* s-bit */
1466 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1476 (ins
->drexdst
<< 4) |
1477 (ins
->rex
& REX_OC
? 0x08 : 0) |
1478 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1480 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1486 opx
= &ins
->oprs
[c
>> 3];
1487 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1488 opx
= &ins
->oprs
[c
& 7];
1489 if (opx
->segment
!= NO_SEG
|| opx
->wrt
!= NO_SEG
) {
1490 errfunc(ERR_NONFATAL
,
1491 "non-absolute expression not permitted as argument %d",
1494 if (opx
->offset
& ~15) {
1495 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1496 "four-bit argument exceeds bounds");
1498 bytes
[0] |= opx
->offset
& 15;
1500 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1506 opx
= &ins
->oprs
[c
>> 4];
1507 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1509 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1515 opx
= &ins
->oprs
[c
];
1516 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1517 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1523 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1524 (int32_t)data
!= (int64_t)data
) {
1525 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1526 "signed dword immediate exceeds bounds");
1528 if (is_sbyte32(opx
)) {
1530 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1534 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1535 opx
->segment
, opx
->wrt
);
1542 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1543 (int32_t)data
!= (int64_t)data
) {
1544 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1545 "signed dword immediate exceeds bounds");
1547 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1548 opx
->segment
, opx
->wrt
);
1555 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
))) {
1556 bytes
[0] = (ins
->vex_cm
>> 6) ? 0x8f : 0xc4;
1557 bytes
[1] = (ins
->vex_cm
& 31) | ((~ins
->rex
& 7) << 5);
1558 bytes
[2] = ((ins
->rex
& REX_W
) << (7-3)) |
1559 ((~ins
->drexdst
& 15)<< 3) | (ins
->vex_wlp
& 07);
1560 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 3, NO_SEG
, NO_SEG
);
1564 bytes
[1] = ((~ins
->rex
& REX_R
) << (7-2)) |
1565 ((~ins
->drexdst
& 15) << 3) | (ins
->vex_wlp
& 07);
1566 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 2, NO_SEG
, NO_SEG
);
1576 if (ins
->rex
& REX_W
)
1578 else if (ins
->prefixes
[PPS_OSIZE
] == P_O16
)
1580 else if (ins
->prefixes
[PPS_OSIZE
] == P_O32
)
1585 um
= (uint64_t)2 << (s
-1);
1588 if (uv
> 127 && uv
< (uint64_t)-128 &&
1589 (uv
< um
-128 || uv
> um
-1)) {
1590 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1591 "signed byte value exceeds bounds");
1593 if (opx
->segment
!= NO_SEG
) {
1595 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1596 opx
->segment
, opx
->wrt
);
1599 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1610 if (bits
== 32 && !has_prefix(ins
, PPS_ASIZE
, P_A16
)) {
1612 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1619 if (bits
!= 32 && !has_prefix(ins
, PPS_ASIZE
, P_A32
)) {
1621 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1640 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1649 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1667 *bytes
= *codes
++ ^ condval
[ins
->condition
];
1668 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1677 *bytes
= c
- 0332 + 0xF2;
1678 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1683 if (ins
->rex
& REX_R
) {
1685 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1688 ins
->rex
&= ~(REX_L
|REX_R
);
1699 if (ins
->oprs
[0].segment
!= NO_SEG
)
1700 errfunc(ERR_PANIC
, "non-constant BSS size in pass two");
1702 int64_t size
= ins
->oprs
[0].offset
;
1704 out(offset
, segment
, NULL
,
1705 OUT_RESERVE
, size
, NO_SEG
, NO_SEG
);
1716 switch (ins
->oprs
[0].basereg
) {
1731 "bizarre 8086 segment register received");
1733 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1740 switch (ins
->oprs
[0].basereg
) {
1749 "bizarre 386 segment register received");
1751 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1760 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1766 bytes
[0] = c
- 0362 + 0xf2;
1767 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1777 *bytes
= c
- 0366 + 0x66;
1778 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1788 *bytes
= bits
== 16 ? 3 : 5;
1789 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1812 struct operand
*opy
= &ins
->oprs
[op2
];
1815 /* pick rfield from operand b (opx) */
1816 rflags
= regflag(opx
);
1817 rfield
= nasm_regvals
[opx
->basereg
];
1819 /* rfield is constant */
1824 if (!process_ea(opy
, &ea_data
, bits
, ins
->addr_size
,
1826 errfunc(ERR_NONFATAL
, "invalid effective address");
1831 *p
++ = ea_data
.modrm
;
1832 if (ea_data
.sib_present
)
1835 /* DREX suffixes come between the SIB and the displacement */
1836 if (ins
->rex
& REX_D
) {
1837 *p
++ = (ins
->drexdst
<< 4) |
1838 (ins
->rex
& REX_OC
? 0x08 : 0) |
1839 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1844 out(offset
, segment
, bytes
, OUT_RAWDATA
, s
, NO_SEG
, NO_SEG
);
1847 * Make sure the address gets the right offset in case
1848 * the line breaks in the .lst file (BR 1197827)
1853 switch (ea_data
.bytes
) {
1861 warn_overflow_opd(opy
, ea_data
.bytes
);
1864 if (opy
->segment
== segment
) {
1866 out(offset
, segment
, &data
, OUT_ADDRESS
,
1867 ea_data
.bytes
, NO_SEG
, NO_SEG
);
1869 out(offset
, segment
, &data
, OUT_REL4ADR
,
1870 insn_end
- offset
, opy
->segment
, opy
->wrt
);
1874 out(offset
, segment
, &data
, OUT_ADDRESS
,
1875 ea_data
.bytes
, opy
->segment
, opy
->wrt
);
1881 "Invalid amount of bytes (%d) for offset?!",
1890 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1891 ": instruction code \\%o (0x%02X) given", c
, c
);
1897 static opflags_t
regflag(const operand
* o
)
1899 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1900 errfunc(ERR_PANIC
, "invalid operand passed to regflag()");
1902 return nasm_reg_flags
[o
->basereg
];
1905 static int32_t regval(const operand
* o
)
1907 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1908 errfunc(ERR_PANIC
, "invalid operand passed to regval()");
1910 return nasm_regvals
[o
->basereg
];
1913 static int op_rexflags(const operand
* o
, int mask
)
1918 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1919 errfunc(ERR_PANIC
, "invalid operand passed to op_rexflags()");
1922 flags
= nasm_reg_flags
[o
->basereg
];
1923 val
= nasm_regvals
[o
->basereg
];
1925 return rexflags(val
, flags
, mask
);
1928 static int rexflags(int val
, opflags_t flags
, int mask
)
1933 rex
|= REX_B
|REX_X
|REX_R
;
1936 if (!(REG_HIGH
& ~flags
)) /* AH, CH, DH, BH */
1938 else if (!(REG8
& ~flags
) && val
>= 4) /* SPL, BPL, SIL, DIL */
1944 static enum match_result
find_match(const struct itemplate
**tempp
,
1946 int32_t segment
, int64_t offset
, int bits
)
1948 const struct itemplate
*temp
;
1949 enum match_result m
, merr
;
1950 opflags_t xsizeflags
[MAX_OPERANDS
];
1951 bool opsizemissing
= false;
1954 for (i
= 0; i
< instruction
->operands
; i
++)
1955 xsizeflags
[i
] = instruction
->oprs
[i
].type
& SIZE_MASK
;
1957 merr
= MERR_INVALOP
;
1959 for (temp
= nasm_instructions
[instruction
->opcode
];
1960 temp
->opcode
!= I_none
; temp
++) {
1961 m
= matches(temp
, instruction
, bits
);
1962 if (m
== MOK_JUMP
) {
1963 if (jmp_match(segment
, offset
, bits
, instruction
, temp
->code
))
1967 } else if (m
== MERR_OPSIZEMISSING
&&
1968 (temp
->flags
& IF_SMASK
) != IF_SX
) {
1970 * Missing operand size and a candidate for fuzzy matching...
1972 for (i
= 0; i
< temp
->operands
; i
++) {
1973 if ((temp
->opd
[i
] & SAME_AS
) == 0)
1974 xsizeflags
[i
] |= temp
->opd
[i
] & SIZE_MASK
;
1976 opsizemissing
= true;
1980 if (merr
== MOK_GOOD
)
1984 /* No match, but see if we can get a fuzzy operand size match... */
1988 for (i
= 0; i
< instruction
->operands
; i
++) {
1990 * We ignore extrinsic operand sizes on registers, so we should
1991 * never try to fuzzy-match on them. This also resolves the case
1992 * when we have e.g. "xmmrm128" in two different positions.
1994 if (is_class(REGISTER
, instruction
->oprs
[i
].type
))
1997 /* This tests if xsizeflags[i] has more than one bit set */
1998 if ((xsizeflags
[i
] & (xsizeflags
[i
]-1)))
1999 goto done
; /* No luck */
2001 instruction
->oprs
[i
].type
|= xsizeflags
[i
]; /* Set the size */
2004 /* Try matching again... */
2005 for (temp
= nasm_instructions
[instruction
->opcode
];
2006 temp
->opcode
!= I_none
; temp
++) {
2007 m
= matches(temp
, instruction
, bits
);
2008 if (m
== MOK_JUMP
) {
2009 if (jmp_match(segment
, offset
, bits
, instruction
, temp
->code
))
2016 if (merr
== MOK_GOOD
)
2025 static enum match_result
matches(const struct itemplate
*itemp
,
2026 insn
*instruction
, int bits
)
2028 int i
, size
[MAX_OPERANDS
], asize
, oprs
;
2029 bool opsizemissing
= false;
2034 if (itemp
->opcode
!= instruction
->opcode
)
2035 return MERR_INVALOP
;
2038 * Count the operands
2040 if (itemp
->operands
!= instruction
->operands
)
2041 return MERR_INVALOP
;
2044 * Check that no spurious colons or TOs are present
2046 for (i
= 0; i
< itemp
->operands
; i
++)
2047 if (instruction
->oprs
[i
].type
& ~itemp
->opd
[i
] & (COLON
| TO
))
2048 return MERR_INVALOP
;
2051 * Process size flags
2053 switch (itemp
->flags
& IF_SMASK
) {
2093 if (itemp
->flags
& IF_ARMASK
) {
2094 /* S- flags only apply to a specific operand */
2095 i
= ((itemp
->flags
& IF_ARMASK
) >> IF_ARSHFT
) - 1;
2096 memset(size
, 0, sizeof size
);
2099 /* S- flags apply to all operands */
2100 for (i
= 0; i
< MAX_OPERANDS
; i
++)
2105 * Check that the operand flags all match up,
2106 * it's a bit tricky so lets be verbose:
2108 * 1) Find out the size of operand. If instruction
2109 * doesn't have one specified -- we're trying to
2110 * guess it either from template (IF_S* flag) or
2113 * 2) If template operand (i) has SAME_AS flag [used for registers only]
2114 * (ie the same operand as was specified somewhere in template, and
2115 * this referred operand index is being achieved via ~SAME_AS)
2116 * we are to be sure that both registers (in template and instruction)
2119 * 3) If template operand do not match the instruction OR
2120 * template has an operand size specified AND this size differ
2121 * from which instruction has (perhaps we got it from code bits)
2123 * a) Check that only size of instruction and operand is differ
2124 * other characteristics do match
2125 * b) Perhaps it's a register specified in instruction so
2126 * for such a case we just mark that operand as "size
2127 * missing" and this will turn on fuzzy operand size
2128 * logic facility (handled by a caller)
2130 for (i
= 0; i
< itemp
->operands
; i
++) {
2131 opflags_t type
= instruction
->oprs
[i
].type
;
2132 if (!(type
& SIZE_MASK
))
2135 if (itemp
->opd
[i
] & SAME_AS
) {
2136 int j
= itemp
->opd
[i
] & ~SAME_AS
;
2137 if (type
!= instruction
->oprs
[j
].type
||
2138 instruction
->oprs
[i
].basereg
!= instruction
->oprs
[j
].basereg
)
2139 return MERR_INVALOP
;
2140 } else if (itemp
->opd
[i
] & ~type
||
2141 ((itemp
->opd
[i
] & SIZE_MASK
) &&
2142 ((itemp
->opd
[i
] ^ type
) & SIZE_MASK
))) {
2143 if ((itemp
->opd
[i
] & ~type
& ~SIZE_MASK
) || (type
& SIZE_MASK
)) {
2144 return MERR_INVALOP
;
2145 } else if (!is_class(REGISTER
, type
)) {
2147 * Note: we don't honor extrinsic operand sizes for registers,
2148 * so "missing operand size" for a register should be
2149 * considered a wildcard match rather than an error.
2151 opsizemissing
= true;
2157 return MERR_OPSIZEMISSING
;
2160 * Check operand sizes
2162 if (itemp
->flags
& (IF_SM
| IF_SM2
)) {
2163 oprs
= (itemp
->flags
& IF_SM2
? 2 : itemp
->operands
);
2164 for (i
= 0; i
< oprs
; i
++) {
2165 asize
= itemp
->opd
[i
] & SIZE_MASK
;
2167 for (i
= 0; i
< oprs
; i
++)
2173 oprs
= itemp
->operands
;
2176 for (i
= 0; i
< itemp
->operands
; i
++) {
2177 if (!(itemp
->opd
[i
] & SIZE_MASK
) &&
2178 (instruction
->oprs
[i
].type
& SIZE_MASK
& ~size
[i
]))
2179 return MERR_OPSIZEMISMATCH
;
2183 * Check template is okay at the set cpu level
2185 if (((itemp
->flags
& IF_PLEVEL
) > cpu
))
2189 * Verify the appropriate long mode flag.
2191 if ((itemp
->flags
& (bits
== 64 ? IF_NOLONG
: IF_LONG
)))
2192 return MERR_BADMODE
;
2195 * Check if special handling needed for Jumps
2197 if ((itemp
->code
[0] & 0374) == 0370)
2203 static ea
*process_ea(operand
* input
, ea
* output
, int bits
,
2204 int addrbits
, int rfield
, opflags_t rflags
)
2206 bool forw_ref
= !!(input
->opflags
& OPFLAG_UNKNOWN
);
2208 output
->rip
= false;
2210 /* REX flags for the rfield operand */
2211 output
->rex
|= rexflags(rfield
, rflags
, REX_R
|REX_P
|REX_W
|REX_H
);
2213 if (is_class(REGISTER
, input
->type
)) { /* register direct */
2217 if (input
->basereg
< EXPR_REG_START
/* Verify as Register */
2218 || input
->basereg
>= REG_ENUM_LIMIT
)
2221 i
= nasm_regvals
[input
->basereg
];
2224 return NULL
; /* Invalid EA register */
2226 output
->rex
|= op_rexflags(input
, REX_B
|REX_P
|REX_W
|REX_H
);
2228 output
->sib_present
= false; /* no SIB necessary */
2229 output
->bytes
= 0; /* no offset necessary either */
2230 output
->modrm
= 0xC0 | ((rfield
& 7) << 3) | (i
& 7);
2231 } else { /* it's a memory reference */
2232 if (input
->basereg
== -1
2233 && (input
->indexreg
== -1 || input
->scale
== 0)) {
2234 /* it's a pure offset */
2235 if (bits
== 64 && (~input
->type
& IP_REL
)) {
2236 int scale
, index
, base
;
2237 output
->sib_present
= true;
2241 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2243 output
->modrm
= 4 | ((rfield
& 7) << 3);
2244 output
->rip
= false;
2246 output
->sib_present
= false;
2247 output
->bytes
= (addrbits
!= 16 ? 4 : 2);
2248 output
->modrm
= (addrbits
!= 16 ? 5 : 6) | ((rfield
& 7) << 3);
2249 output
->rip
= bits
== 64;
2251 } else { /* it's an indirection */
2252 int i
= input
->indexreg
, b
= input
->basereg
, s
= input
->scale
;
2253 int32_t o
= input
->offset
, seg
= input
->segment
;
2254 int hb
= input
->hintbase
, ht
= input
->hinttype
;
2255 int t
, it
, bt
; /* register numbers */
2256 opflags_t x
, ix
, bx
; /* register flags */
2259 i
= -1; /* make this easy, at least */
2261 if (i
>= EXPR_REG_START
&& i
< REG_ENUM_LIMIT
) {
2262 it
= nasm_regvals
[i
];
2263 ix
= nasm_reg_flags
[i
];
2269 if (b
>= EXPR_REG_START
&& b
< REG_ENUM_LIMIT
) {
2270 bt
= nasm_regvals
[b
];
2271 bx
= nasm_reg_flags
[b
];
2277 /* check for a 32/64-bit memory reference... */
2278 if ((ix
|bx
) & (BITS32
|BITS64
)) {
2279 /* it must be a 32/64-bit memory reference. Firstly we have
2280 * to check that all registers involved are type E/Rxx. */
2281 int32_t sok
= BITS32
|BITS64
;
2284 if (!(REG64
& ~ix
) || !(REG32
& ~ix
))
2292 return NULL
; /* Invalid register */
2293 if (~sok
& bx
& SIZE_MASK
)
2294 return NULL
; /* Invalid size */
2298 /* While we're here, ensure the user didn't specify
2300 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2303 if (addrbits
== 16 ||
2304 (addrbits
== 32 && !(sok
& BITS32
)) ||
2305 (addrbits
== 64 && !(sok
& BITS64
)))
2308 /* now reorganize base/index */
2309 if (s
== 1 && bt
!= it
&& bt
!= -1 && it
!= -1 &&
2310 ((hb
== b
&& ht
== EAH_NOTBASE
)
2311 || (hb
== i
&& ht
== EAH_MAKEBASE
))) {
2312 /* swap if hints say so */
2313 t
= bt
, bt
= it
, it
= t
;
2314 x
= bx
, bx
= ix
, ix
= x
;
2316 if (bt
== it
) /* convert EAX+2*EAX to 3*EAX */
2317 bt
= -1, bx
= 0, s
++;
2318 if (bt
== -1 && s
== 1 && !(hb
== it
&& ht
== EAH_NOTBASE
)) {
2319 /* make single reg base, unless hint */
2320 bt
= it
, bx
= ix
, it
= -1, ix
= 0;
2322 if (((s
== 2 && it
!= REG_NUM_ESP
2323 && !(input
->eaflags
& EAF_TIMESTWO
)) || s
== 3
2324 || s
== 5 || s
== 9) && bt
== -1)
2325 bt
= it
, bx
= ix
, s
--; /* convert 3*EAX to EAX+2*EAX */
2326 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
2327 && (input
->eaflags
& EAF_TIMESTWO
))
2328 it
= bt
, ix
= bx
, bt
= -1, bx
= 0, s
= 1;
2329 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2330 if (s
== 1 && it
== REG_NUM_ESP
) {
2331 /* swap ESP into base if scale is 1 */
2332 t
= it
, it
= bt
, bt
= t
;
2333 x
= ix
, ix
= bx
, bx
= x
;
2335 if (it
== REG_NUM_ESP
2336 || (s
!= 1 && s
!= 2 && s
!= 4 && s
!= 8 && it
!= -1))
2337 return NULL
; /* wrong, for various reasons */
2339 output
->rex
|= rexflags(it
, ix
, REX_X
);
2340 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2342 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
) {
2351 if (rm
!= REG_NUM_EBP
&& o
== 0 &&
2352 seg
== NO_SEG
&& !forw_ref
&&
2354 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2356 else if (input
->eaflags
& EAF_BYTEOFFS
||
2357 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2359 && !(input
->eaflags
& EAF_WORDOFFS
)))
2365 output
->sib_present
= false;
2366 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2367 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2370 int mod
, scale
, index
, base
;
2390 default: /* then what the smeg is it? */
2391 return NULL
; /* panic */
2399 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2400 seg
== NO_SEG
&& !forw_ref
&&
2402 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2404 else if (input
->eaflags
& EAF_BYTEOFFS
||
2405 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2407 && !(input
->eaflags
& EAF_WORDOFFS
)))
2413 output
->sib_present
= true;
2414 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2415 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | 4;
2416 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2418 } else { /* it's 16-bit */
2421 /* check for 64-bit long mode */
2425 /* check all registers are BX, BP, SI or DI */
2426 if ((b
!= -1 && b
!= R_BP
&& b
!= R_BX
&& b
!= R_SI
2427 && b
!= R_DI
) || (i
!= -1 && i
!= R_BP
&& i
!= R_BX
2428 && i
!= R_SI
&& i
!= R_DI
))
2431 /* ensure the user didn't specify DWORD/QWORD */
2432 if (input
->disp_size
== 32 || input
->disp_size
== 64)
2435 if (s
!= 1 && i
!= -1)
2436 return NULL
; /* no can do, in 16-bit EA */
2437 if (b
== -1 && i
!= -1) {
2442 if ((b
== R_SI
|| b
== R_DI
) && i
!= -1) {
2447 /* have BX/BP as base, SI/DI index */
2449 return NULL
; /* shouldn't ever happen, in theory */
2450 if (i
!= -1 && b
!= -1 &&
2451 (i
== R_BP
|| i
== R_BX
|| b
== R_SI
|| b
== R_DI
))
2452 return NULL
; /* invalid combinations */
2453 if (b
== -1) /* pure offset: handled above */
2454 return NULL
; /* so if it gets to here, panic! */
2458 switch (i
* 256 + b
) {
2459 case R_SI
* 256 + R_BX
:
2462 case R_DI
* 256 + R_BX
:
2465 case R_SI
* 256 + R_BP
:
2468 case R_DI
* 256 + R_BP
:
2486 if (rm
== -1) /* can't happen, in theory */
2487 return NULL
; /* so panic if it does */
2489 if (o
== 0 && seg
== NO_SEG
&& !forw_ref
&& rm
!= 6 &&
2490 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2492 else if (input
->eaflags
& EAF_BYTEOFFS
||
2493 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2495 && !(input
->eaflags
& EAF_WORDOFFS
)))
2500 output
->sib_present
= false; /* no SIB - it's 16-bit */
2501 output
->bytes
= mod
; /* bytes of offset needed */
2502 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2507 output
->size
= 1 + output
->sib_present
+ output
->bytes
;
2511 static void add_asp(insn
*ins
, int addrbits
)
2516 valid
= (addrbits
== 64) ? 64|32 : 32|16;
2518 switch (ins
->prefixes
[PPS_ASIZE
]) {
2529 valid
&= (addrbits
== 32) ? 16 : 32;
2535 for (j
= 0; j
< ins
->operands
; j
++) {
2536 if (is_class(MEMORY
, ins
->oprs
[j
].type
)) {
2539 /* Verify as Register */
2540 if (ins
->oprs
[j
].indexreg
< EXPR_REG_START
2541 || ins
->oprs
[j
].indexreg
>= REG_ENUM_LIMIT
)
2544 i
= nasm_reg_flags
[ins
->oprs
[j
].indexreg
];
2546 /* Verify as Register */
2547 if (ins
->oprs
[j
].basereg
< EXPR_REG_START
2548 || ins
->oprs
[j
].basereg
>= REG_ENUM_LIMIT
)
2551 b
= nasm_reg_flags
[ins
->oprs
[j
].basereg
];
2553 if (ins
->oprs
[j
].scale
== 0)
2557 int ds
= ins
->oprs
[j
].disp_size
;
2558 if ((addrbits
!= 64 && ds
> 8) ||
2559 (addrbits
== 64 && ds
== 16))
2579 if (valid
& addrbits
) {
2580 ins
->addr_size
= addrbits
;
2581 } else if (valid
& ((addrbits
== 32) ? 16 : 32)) {
2582 /* Add an address size prefix */
2583 enum prefixes pref
= (addrbits
== 32) ? P_A16
: P_A32
;
2584 ins
->prefixes
[PPS_ASIZE
] = pref
;
2585 ins
->addr_size
= (addrbits
== 32) ? 16 : 32;
2588 errfunc(ERR_NONFATAL
, "impossible combination of address sizes");
2589 ins
->addr_size
= addrbits
; /* Error recovery */
2592 defdisp
= ins
->addr_size
== 16 ? 16 : 32;
2594 for (j
= 0; j
< ins
->operands
; j
++) {
2595 if (!(MEM_OFFS
& ~ins
->oprs
[j
].type
) &&
2596 (ins
->oprs
[j
].disp_size
? ins
->oprs
[j
].disp_size
: defdisp
)
2597 != ins
->addr_size
) {
2598 /* mem_offs sizes must match the address size; if not,
2599 strip the MEM_OFFS bit and match only EA instructions */
2600 ins
->oprs
[j
].type
&= ~(MEM_OFFS
& ~MEMORY
);