1 /* assemble.c code generation for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * the actual codes (C syntax, i.e. octal):
9 * \0 - terminates the code. (Unless it's a literal of course.)
10 * \1, \2, \3 - that many literal bytes follow in the code stream
11 * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
12 * (POP is never used for CS) depending on operand 0
13 * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
15 * \10..\13 - a literal byte follows in the code stream, to be added
16 * to the register value of operand 0..3
17 * \14..\17 - a signed byte immediate operand, from operand 0..3
18 * \20..\23 - a byte immediate operand, from operand 0..3
19 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
20 * \30..\33 - a word immediate operand, from operand 0..3
21 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
22 * assembly mode or the operand-size override on the operand
23 * \40..\43 - a long immediate operand, from operand 0..3
24 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
25 * depending on the address size of the instruction.
26 * \50..\53 - a byte relative operand, from operand 0..3
27 * \54..\57 - a qword immediate operand, from operand 0..3
28 * \60..\63 - a word relative operand, from operand 0..3
29 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
30 * assembly mode or the operand-size override on the operand
31 * \70..\73 - a long relative operand, from operand 0..3
32 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
33 * \1ab - a ModRM, calculated on EA in operand a, with the spare
34 * field the register value of operand b.
35 * \140..\143 - an immediate word or signed byte for operand 0..3
36 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
37 * is a signed byte rather than a word. Opcode byte follows.
38 * \150..\153 - an immediate dword or signed byte for operand 0..3
39 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
40 * is a signed byte rather than a dword. Opcode byte follows.
41 * \160..\163 - this instruction uses DREX rather than REX, with the
42 * OC0 field set to 0, and the dest field taken from
44 * \164..\167 - this instruction uses DREX rather than REX, with the
45 * OC0 field set to 1, and the dest field taken from
47 * \171 - placement of DREX suffix in the absence of an EA
48 * \172\ab - the register number from operand a in bits 7..4, with
49 * the 4-bit immediate from operand b in bits 3..0.
50 * \173\xab - the register number from operand a in bits 7..4, with
51 * the value b in bits 3..0.
52 * \174\a - the register number from operand a in bits 7..4, and
53 * an arbitrary value in bits 3..0 (assembled as zero.)
54 * \2ab - a ModRM, calculated on EA in operand a, with the spare
55 * field equal to digit b.
56 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
57 * is not equal to the truncated and sign-extended 32-bit
58 * operand; used for 32-bit immediates in 64-bit mode.
59 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
60 * \260..\263 - this instruction uses VEX rather than REX, with the
61 * V field taken from operand 0..3.
62 * \270 - this instruction uses VEX rather than REX, with the
63 * V field set to 1111b.
65 * VEX prefixes are followed by the sequence:
66 * \mm\wlp where mm is the M field; and wlp is:
68 * [w0] ww = 0 for W = 0
69 * [w1] ww = 1 for W = 1
70 * [wx] ww = 2 for W don't care (always assembled as 0)
71 * [ww] ww = 3 for W used as REX.W
74 * \274..\277 - a signed byte immediate operand, from operand 0..3,
75 * which is to be extended to the operand size.
76 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
77 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
78 * \312 - (disassembler only) marker on LOOP, LOOPxx instructions.
79 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
80 * \314 - (disassembler only) invalid with REX.B
81 * \315 - (disassembler only) invalid with REX.X
82 * \316 - (disassembler only) invalid with REX.R
83 * \317 - (disassembler only) invalid with REX.W
84 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
85 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
86 * \322 - indicates that this instruction is only valid when the
87 * operand size is the default (instruction to disassembler,
88 * generates no code in the assembler)
89 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
90 * \324 - indicates 64-bit operand size requiring REX prefix.
91 * \330 - a literal byte follows in the code stream, to be added
92 * to the condition code value of the instruction.
93 * \331 - instruction not valid with REP prefix. Hint for
94 * disassembler only; for SSE instructions.
95 * \332 - REP prefix (0xF2 byte) used as opcode extension.
96 * \333 - REP prefix (0xF3 byte) used as opcode extension.
97 * \334 - LOCK prefix used instead of REX.R
98 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
99 * \336 - force a REP(E) prefix (0xF2) even if not specified.
100 * \337 - force a REPNE prefix (0xF3) even if not specified.
101 * \336-\337 are still listed as prefixes in the disassembler.
102 * \340 - reserve <operand 0> bytes of uninitialized storage.
103 * Operand 0 had better be a segmentless constant.
104 * \360 - no SSE prefix (== \364\331)
105 * \361 - 66 SSE prefix (== \366\331)
106 * \362 - F2 SSE prefix (== \364\332)
107 * \363 - F3 SSE prefix (== \364\333)
108 * \364 - operand-size prefix (0x66) not permitted
109 * \365 - address-size prefix (0x67) not permitted
110 * \366 - operand-size prefix (0x66) used as opcode extension
111 * \367 - address-size prefix (0x67) used as opcode extension
112 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
113 * 370 is used for Jcc, 371 is used for JMP.
114 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
115 * used for conditional jump over longer jump
118 #include "compiler.h"
122 #include <inttypes.h>
126 #include "assemble.h"
130 /* Initialized to zero by the C standard */
131 static const uint8_t const_zero_buf
[256];
134 int sib_present
; /* is a SIB byte necessary? */
135 int bytes
; /* # of bytes of offset needed */
136 int size
; /* lazy - this is sib+bytes+1 */
137 uint8_t modrm
, sib
, rex
, rip
; /* the bytes themselves */
140 static uint32_t cpu
; /* cpu level received from nasm.c */
141 static efunc errfunc
;
142 static struct ofmt
*outfmt
;
143 static ListGen
*list
;
145 static int64_t calcsize(int32_t, int64_t, int, insn
*, const uint8_t *);
146 static void gencode(int32_t segment
, int64_t offset
, int bits
,
147 insn
* ins
, const struct itemplate
*temp
,
149 static int matches(const struct itemplate
*, insn
*, int bits
);
150 static int32_t regflag(const operand
*);
151 static int32_t regval(const operand
*);
152 static int rexflags(int, int32_t, int);
153 static int op_rexflags(const operand
*, int);
154 static ea
*process_ea(operand
*, ea
*, int, int, int, int32_t);
155 static void add_asp(insn
*, int);
157 static int has_prefix(insn
* ins
, enum prefix_pos pos
, enum prefixes prefix
)
159 return ins
->prefixes
[pos
] == prefix
;
162 static void assert_no_prefix(insn
* ins
, enum prefix_pos pos
)
164 if (ins
->prefixes
[pos
])
165 errfunc(ERR_NONFATAL
, "invalid %s prefix",
166 prefix_name(ins
->prefixes
[pos
]));
169 static const char *size_name(int size
)
191 static void warn_overflow(int size
, const struct operand
*o
)
193 if (size
< 8 && o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
) {
194 int64_t lim
= ((int64_t)1 << (size
*8))-1;
195 int64_t data
= o
->offset
;
197 if (data
< ~lim
|| data
> lim
)
198 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
199 "%s data exceeds bounds", size_name(size
));
203 * This routine wrappers the real output format's output routine,
204 * in order to pass a copy of the data off to the listing file
205 * generator at the same time.
207 static void out(int64_t offset
, int32_t segto
, const void *data
,
208 enum out_type type
, uint64_t size
,
209 int32_t segment
, int32_t wrt
)
211 static int32_t lineno
= 0; /* static!!! */
212 static char *lnfname
= NULL
;
215 if (type
== OUT_ADDRESS
&& segment
== NO_SEG
&& wrt
== NO_SEG
) {
217 * This is a non-relocated address, and we're going to
218 * convert it into RAWDATA format.
223 errfunc(ERR_PANIC
, "OUT_ADDRESS with size > 8");
227 WRITEADDR(q
, *(int64_t *)data
, size
);
232 list
->output(offset
, data
, type
, size
);
235 * this call to src_get determines when we call the
236 * debug-format-specific "linenum" function
237 * it updates lineno and lnfname to the current values
238 * returning 0 if "same as last time", -2 if lnfname
239 * changed, and the amount by which lineno changed,
240 * if it did. thus, these variables must be static
243 if (src_get(&lineno
, &lnfname
)) {
244 outfmt
->current_dfmt
->linenum(lnfname
, lineno
, segto
);
247 outfmt
->output(segto
, data
, type
, size
, segment
, wrt
);
250 static bool jmp_match(int32_t segment
, int64_t offset
, int bits
,
251 insn
* ins
, const uint8_t *code
)
256 if ((c
!= 0370 && c
!= 0371) || (ins
->oprs
[0].type
& STRICT
))
260 if (optimizing
< 0 && c
== 0371)
263 isize
= calcsize(segment
, offset
, bits
, ins
, code
);
264 if (ins
->oprs
[0].segment
!= segment
)
267 isize
= ins
->oprs
[0].offset
- offset
- isize
; /* isize is delta */
268 return (isize
>= -128 && isize
<= 127); /* is it byte size? */
271 int64_t assemble(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
272 insn
* instruction
, struct ofmt
*output
, efunc error
,
275 const struct itemplate
*temp
;
280 int64_t start
= offset
;
281 int64_t wsize
= 0; /* size for DB etc. */
283 errfunc
= error
; /* to pass to other functions */
285 outfmt
= output
; /* likewise */
286 list
= listgen
; /* and again */
288 switch (instruction
->opcode
) {
318 int32_t t
= instruction
->times
;
321 "instruction->times < 0 (%ld) in assemble()", t
);
323 while (t
--) { /* repeat TIMES times */
324 for (e
= instruction
->eops
; e
; e
= e
->next
) {
325 if (e
->type
== EOT_DB_NUMBER
) {
327 if (e
->segment
!= NO_SEG
)
328 errfunc(ERR_NONFATAL
,
329 "one-byte relocation attempted");
331 uint8_t out_byte
= e
->offset
;
332 out(offset
, segment
, &out_byte
,
333 OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
335 } else if (wsize
> 8) {
336 errfunc(ERR_NONFATAL
,
337 "integer supplied to a DT, DO or DY"
340 out(offset
, segment
, &e
->offset
,
341 OUT_ADDRESS
, wsize
, e
->segment
, e
->wrt
);
343 } else if (e
->type
== EOT_DB_STRING
||
344 e
->type
== EOT_DB_STRING_FREE
) {
347 out(offset
, segment
, e
->stringval
,
348 OUT_RAWDATA
, e
->stringlen
, NO_SEG
, NO_SEG
);
349 align
= e
->stringlen
% wsize
;
352 align
= wsize
- align
;
353 out(offset
, segment
, const_zero_buf
,
354 OUT_RAWDATA
, align
, NO_SEG
, NO_SEG
);
356 offset
+= e
->stringlen
+ align
;
359 if (t
> 0 && t
== instruction
->times
- 1) {
361 * Dummy call to list->output to give the offset to the
364 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
365 list
->uplevel(LIST_TIMES
);
368 if (instruction
->times
> 1)
369 list
->downlevel(LIST_TIMES
);
370 return offset
- start
;
373 if (instruction
->opcode
== I_INCBIN
) {
374 const char *fname
= instruction
->eops
->stringval
;
377 fp
= fopen(fname
, "rb");
379 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
381 } else if (fseek(fp
, 0L, SEEK_END
) < 0) {
382 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
385 static char buf
[4096];
386 size_t t
= instruction
->times
;
391 if (instruction
->eops
->next
) {
392 base
= instruction
->eops
->next
->offset
;
394 if (instruction
->eops
->next
->next
&&
395 len
> (size_t)instruction
->eops
->next
->next
->offset
)
396 len
= (size_t)instruction
->eops
->next
->next
->offset
;
399 * Dummy call to list->output to give the offset to the
402 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
403 list
->uplevel(LIST_INCBIN
);
407 fseek(fp
, base
, SEEK_SET
);
411 fread(buf
, 1, (l
> (int32_t) sizeof(buf
) ? (int32_t) sizeof(buf
) : l
),
415 * This shouldn't happen unless the file
416 * actually changes while we are reading
420 "`incbin': unexpected EOF while"
421 " reading file `%s'", fname
);
422 t
= 0; /* Try to exit cleanly */
425 out(offset
, segment
, buf
, OUT_RAWDATA
, m
,
430 list
->downlevel(LIST_INCBIN
);
431 if (instruction
->times
> 1) {
433 * Dummy call to list->output to give the offset to the
436 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
437 list
->uplevel(LIST_TIMES
);
438 list
->downlevel(LIST_TIMES
);
441 return instruction
->times
* len
;
443 return 0; /* if we're here, there's an error */
446 /* Check to see if we need an address-size prefix */
447 add_asp(instruction
, bits
);
451 for (temp
= nasm_instructions
[instruction
->opcode
]; temp
->opcode
!= -1; temp
++){
452 int m
= matches(temp
, instruction
, bits
);
454 (m
== 99 && jmp_match(segment
, offset
, bits
,
455 instruction
, temp
->code
))) {
457 int64_t insn_size
= calcsize(segment
, offset
, bits
,
458 instruction
, temp
->code
);
459 itimes
= instruction
->times
;
460 if (insn_size
< 0) /* shouldn't be, on pass two */
461 error(ERR_PANIC
, "errors made it through from pass one");
464 for (j
= 0; j
< MAXPREFIX
; j
++) {
466 switch (instruction
->prefixes
[j
]) {
481 error(ERR_WARNING
| ERR_PASS2
,
482 "cs segment base generated, but will be ignored in 64-bit mode");
488 error(ERR_WARNING
| ERR_PASS2
,
489 "ds segment base generated, but will be ignored in 64-bit mode");
495 error(ERR_WARNING
| ERR_PASS2
,
496 "es segment base generated, but will be ignored in 64-bit mode");
508 error(ERR_WARNING
| ERR_PASS2
,
509 "ss segment base generated, but will be ignored in 64-bit mode");
516 "segr6 and segr7 cannot be used as prefixes");
521 "16-bit addressing is not supported "
523 } else if (bits
!= 16)
533 "64-bit addressing is only supported "
557 error(ERR_PANIC
, "invalid instruction prefix");
560 out(offset
, segment
, &c
, OUT_RAWDATA
, 1,
565 insn_end
= offset
+ insn_size
;
566 gencode(segment
, offset
, bits
, instruction
,
569 if (itimes
> 0 && itimes
== instruction
->times
- 1) {
571 * Dummy call to list->output to give the offset to the
574 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
575 list
->uplevel(LIST_TIMES
);
578 if (instruction
->times
> 1)
579 list
->downlevel(LIST_TIMES
);
580 return offset
- start
;
581 } else if (m
> 0 && m
> size_prob
) {
586 if (temp
->opcode
== -1) { /* didn't match any instruction */
589 error(ERR_NONFATAL
, "operation size not specified");
592 error(ERR_NONFATAL
, "mismatch in operand sizes");
595 error(ERR_NONFATAL
, "no instruction for this cpu level");
598 error(ERR_NONFATAL
, "instruction not supported in 64-bit mode");
602 "invalid combination of opcode and operands");
609 int64_t insn_size(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
610 insn
* instruction
, efunc error
)
612 const struct itemplate
*temp
;
614 errfunc
= error
; /* to pass to other functions */
617 if (instruction
->opcode
== -1)
620 if (instruction
->opcode
== I_DB
|| instruction
->opcode
== I_DW
||
621 instruction
->opcode
== I_DD
|| instruction
->opcode
== I_DQ
||
622 instruction
->opcode
== I_DT
|| instruction
->opcode
== I_DO
||
623 instruction
->opcode
== I_DY
) {
625 int32_t isize
, osize
, wsize
= 0; /* placate gcc */
628 switch (instruction
->opcode
) {
654 for (e
= instruction
->eops
; e
; e
= e
->next
) {
658 if (e
->type
== EOT_DB_NUMBER
)
660 else if (e
->type
== EOT_DB_STRING
||
661 e
->type
== EOT_DB_STRING_FREE
)
662 osize
= e
->stringlen
;
664 align
= (-osize
) % wsize
;
667 isize
+= osize
+ align
;
669 return isize
* instruction
->times
;
672 if (instruction
->opcode
== I_INCBIN
) {
673 const char *fname
= instruction
->eops
->stringval
;
677 fp
= fopen(fname
, "rb");
679 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
681 else if (fseek(fp
, 0L, SEEK_END
) < 0)
682 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
687 if (instruction
->eops
->next
) {
688 len
-= instruction
->eops
->next
->offset
;
689 if (instruction
->eops
->next
->next
&&
690 len
> (size_t)instruction
->eops
->next
->next
->offset
) {
691 len
= (size_t)instruction
->eops
->next
->next
->offset
;
694 return instruction
->times
* len
;
696 return 0; /* if we're here, there's an error */
699 /* Check to see if we need an address-size prefix */
700 add_asp(instruction
, bits
);
702 for (temp
= nasm_instructions
[instruction
->opcode
]; temp
->opcode
!= -1; temp
++) {
703 int m
= matches(temp
, instruction
, bits
);
705 (m
== 99 && jmp_match(segment
, offset
, bits
,
706 instruction
, temp
->code
))) {
707 /* we've matched an instruction. */
709 const uint8_t *codes
= temp
->code
;
712 isize
= calcsize(segment
, offset
, bits
, instruction
, codes
);
715 for (j
= 0; j
< MAXPREFIX
; j
++) {
716 switch (instruction
->prefixes
[j
]) {
742 return isize
* instruction
->times
;
745 return -1; /* didn't match any instruction */
748 static bool possible_sbyte(operand
*o
)
750 return o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
&&
751 !(o
->opflags
& OPFLAG_FORWARD
) &&
752 optimizing
>= 0 && !(o
->type
& STRICT
);
755 /* check that opn[op] is a signed byte of size 16 or 32 */
756 static bool is_sbyte16(operand
*o
)
760 if (!possible_sbyte(o
))
764 return v
>= -128 && v
<= 127;
767 static bool is_sbyte32(operand
*o
)
771 if (!possible_sbyte(o
))
775 return v
>= -128 && v
<= 127;
778 static int64_t calcsize(int32_t segment
, int64_t offset
, int bits
,
779 insn
* ins
, const uint8_t *codes
)
786 ins
->rex
= 0; /* Ensure REX is reset */
788 if (ins
->prefixes
[PPS_OSIZE
] == P_O64
)
791 (void)segment
; /* Don't warn that this parameter is unused */
792 (void)offset
; /* Don't warn that this parameter is unused */
796 opx
= &ins
->oprs
[c
& 3];
801 codes
+= c
, length
+= c
;
814 op_rexflags(opx
, REX_B
|REX_H
|REX_P
|REX_W
);
845 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
846 length
+= (opx
->type
& BITS16
) ? 2 : 4;
848 length
+= (bits
== 16) ? 2 : 4;
860 length
+= ins
->addr_size
>> 3;
872 length
+= 8; /* MOV reg64/imm */
884 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
885 length
+= (opx
->type
& BITS16
) ? 2 : 4;
887 length
+= (bits
== 16) ? 2 : 4;
905 length
+= is_sbyte16(opx
) ? 1 : 2;
918 length
+= is_sbyte32(opx
) ? 1 : 4;
933 ins
->drexdst
= regval(opx
);
940 ins
->rex
|= REX_D
|REX_OC
;
941 ins
->drexdst
= regval(opx
);
955 length
+= is_sbyte32(opx
) ? 1 : 4;
968 ins
->drexdst
= regval(opx
);
969 ins
->vex_m
= *codes
++;
970 ins
->vex_wlp
= *codes
++;
975 ins
->vex_m
= *codes
++;
976 ins
->vex_wlp
= *codes
++;
992 length
+= (bits
!= 16) && !has_prefix(ins
, PPS_ASIZE
, P_A16
);
995 length
+= (bits
!= 32) && !has_prefix(ins
, PPS_ASIZE
, P_A32
);
1000 if (bits
!= 64 || has_prefix(ins
, PPS_ASIZE
, P_A16
) ||
1001 has_prefix(ins
, PPS_ASIZE
, P_A32
))
1010 length
+= (bits
!= 16);
1013 length
+= (bits
== 16);
1038 if (!ins
->prefixes
[PPS_LREP
])
1039 ins
->prefixes
[PPS_LREP
] = P_REP
;
1042 if (!ins
->prefixes
[PPS_LREP
])
1043 ins
->prefixes
[PPS_LREP
] = P_REPNE
;
1046 if (ins
->oprs
[0].segment
!= NO_SEG
)
1047 errfunc(ERR_NONFATAL
, "attempt to reserve non-constant"
1048 " quantity of BSS space");
1050 length
+= ins
->oprs
[0].offset
;
1073 default: /* can't do it by 'case' statements */
1074 if (c
>= 0100 && c
<= 0277) { /* it's an EA */
1078 ea_data
.rex
= 0; /* Ensure ea.REX is initially 0 */
1081 /* pick rfield from operand b */
1082 rflags
= regflag(&ins
->oprs
[c
& 7]);
1083 rfield
= nasm_regvals
[ins
->oprs
[c
& 7].basereg
];
1090 (&ins
->oprs
[(c
>> 3) & 7], &ea_data
, bits
,
1091 ins
->addr_size
, rfield
, rflags
)) {
1092 errfunc(ERR_NONFATAL
, "invalid effective address");
1095 ins
->rex
|= ea_data
.rex
;
1096 length
+= ea_data
.size
;
1099 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1100 ": instruction code 0x%02X given", c
);
1105 ins
->rex
&= rex_mask
;
1107 if (ins
->rex
& REX_V
) {
1108 int bad32
= REX_R
|REX_W
|REX_X
|REX_B
;
1110 if (ins
->rex
& REX_H
) {
1111 errfunc(ERR_NONFATAL
, "cannot use high register in vex instruction");
1114 switch (ins
->vex_wlp
& 030) {
1128 if (bits
!= 64 && ((ins
->rex
& bad32
) || ins
->drexdst
> 7)) {
1129 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1132 if (ins
->vex_m
!= 1 || (ins
->rex
& (REX_W
|REX_R
|REX_B
)))
1136 } else if (ins
->rex
& REX_D
) {
1137 if (ins
->rex
& REX_H
) {
1138 errfunc(ERR_NONFATAL
, "cannot use high register in drex instruction");
1141 if (bits
!= 64 && ((ins
->rex
& (REX_R
|REX_W
|REX_X
|REX_B
)) ||
1142 ins
->drexdst
> 7)) {
1143 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1147 } else if (ins
->rex
& REX_REAL
) {
1148 if (ins
->rex
& REX_H
) {
1149 errfunc(ERR_NONFATAL
, "cannot use high register in rex instruction");
1151 } else if (bits
== 64) {
1153 } else if ((ins
->rex
& REX_L
) &&
1154 !(ins
->rex
& (REX_P
|REX_W
|REX_X
|REX_B
)) &&
1157 assert_no_prefix(ins
, PPS_LREP
);
1160 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1168 #define EMIT_REX() \
1169 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1170 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1171 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1176 static void gencode(int32_t segment
, int64_t offset
, int bits
,
1177 insn
* ins
, const struct itemplate
*temp
,
1180 static char condval
[] = { /* conditional opcodes */
1181 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1182 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1183 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1189 struct operand
*opx
;
1190 const uint8_t *codes
= temp
->code
;
1194 opx
= &ins
->oprs
[c
& 3];
1200 out(offset
, segment
, codes
, OUT_RAWDATA
, c
, NO_SEG
, NO_SEG
);
1207 switch (ins
->oprs
[0].basereg
) {
1209 bytes
[0] = 0x0E + (c
== 0x04 ? 1 : 0);
1212 bytes
[0] = 0x1E + (c
== 0x04 ? 1 : 0);
1215 bytes
[0] = 0x06 + (c
== 0x04 ? 1 : 0);
1218 bytes
[0] = 0x16 + (c
== 0x04 ? 1 : 0);
1222 "bizarre 8086 segment register received");
1224 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1230 switch (ins
->oprs
[0].basereg
) {
1232 bytes
[0] = 0xA0 + (c
== 0x05 ? 1 : 0);
1235 bytes
[0] = 0xA8 + (c
== 0x05 ? 1 : 0);
1239 "bizarre 386 segment register received");
1241 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1250 bytes
[0] = *codes
++ + ((regval(opx
)) & 7);
1251 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1259 /* The test for BITS8 and SBYTE here is intended to avoid
1260 warning on optimizer actions due to SBYTE, while still
1261 warn on explicit BYTE directives. Also warn, obviously,
1262 if the optimizer isn't enabled. */
1263 if (((opx
->type
& BITS8
) ||
1264 !(opx
->type
& temp
->opd
[c
& 3] & BYTENESS
)) &&
1265 (opx
->offset
< -128 || opx
->offset
> 127)) {
1266 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1267 "signed byte value exceeds bounds");
1269 if (opx
->segment
!= NO_SEG
) {
1271 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1272 opx
->segment
, opx
->wrt
);
1274 bytes
[0] = opx
->offset
;
1275 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1285 if (opx
->offset
< -256 || opx
->offset
> 255) {
1286 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1287 "byte value exceeds bounds");
1289 if (opx
->segment
!= NO_SEG
) {
1291 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1292 opx
->segment
, opx
->wrt
);
1294 bytes
[0] = opx
->offset
;
1295 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1305 if (opx
->offset
< 0 || opx
->offset
> 255)
1306 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1307 "unsigned byte value exceeds bounds");
1308 if (opx
->segment
!= NO_SEG
) {
1310 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1311 opx
->segment
, opx
->wrt
);
1313 bytes
[0] = opx
->offset
;
1314 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1324 warn_overflow(2, opx
);
1326 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1327 opx
->segment
, opx
->wrt
);
1335 if (opx
->type
& (BITS16
| BITS32
))
1336 size
= (opx
->type
& BITS16
) ? 2 : 4;
1338 size
= (bits
== 16) ? 2 : 4;
1339 warn_overflow(size
, opx
);
1341 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1342 opx
->segment
, opx
->wrt
);
1350 warn_overflow(4, opx
);
1352 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1353 opx
->segment
, opx
->wrt
);
1362 size
= ins
->addr_size
>> 3;
1363 warn_overflow(size
, opx
);
1364 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1365 opx
->segment
, opx
->wrt
);
1373 if (opx
->segment
!= segment
)
1374 errfunc(ERR_NONFATAL
,
1375 "short relative jump outside segment");
1376 data
= opx
->offset
- insn_end
;
1377 if (data
> 127 || data
< -128)
1378 errfunc(ERR_NONFATAL
, "short jump is out of range");
1380 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1388 data
= (int64_t)opx
->offset
;
1389 out(offset
, segment
, &data
, OUT_ADDRESS
, 8,
1390 opx
->segment
, opx
->wrt
);
1398 if (opx
->segment
!= segment
) {
1400 out(offset
, segment
, &data
,
1401 OUT_REL2ADR
, insn_end
- offset
,
1402 opx
->segment
, opx
->wrt
);
1404 data
= opx
->offset
- insn_end
;
1405 out(offset
, segment
, &data
,
1406 OUT_ADDRESS
, 2, NO_SEG
, NO_SEG
);
1415 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
1416 size
= (opx
->type
& BITS16
) ? 2 : 4;
1418 size
= (bits
== 16) ? 2 : 4;
1419 if (opx
->segment
!= segment
) {
1421 out(offset
, segment
, &data
,
1422 size
== 2 ? OUT_REL2ADR
: OUT_REL4ADR
,
1423 insn_end
- offset
, opx
->segment
, opx
->wrt
);
1425 data
= opx
->offset
- insn_end
;
1426 out(offset
, segment
, &data
,
1427 OUT_ADDRESS
, size
, NO_SEG
, NO_SEG
);
1436 if (opx
->segment
!= segment
) {
1438 out(offset
, segment
, &data
,
1439 OUT_REL4ADR
, insn_end
- offset
,
1440 opx
->segment
, opx
->wrt
);
1442 data
= opx
->offset
- insn_end
;
1443 out(offset
, segment
, &data
,
1444 OUT_ADDRESS
, 4, NO_SEG
, NO_SEG
);
1453 if (opx
->segment
== NO_SEG
)
1454 errfunc(ERR_NONFATAL
, "value referenced by FAR is not"
1457 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1458 outfmt
->segbase(1 + opx
->segment
),
1468 warn_overflow(2, opx
);
1469 if (is_sbyte16(opx
)) {
1471 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1475 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1476 opx
->segment
, opx
->wrt
);
1486 bytes
[0] = *codes
++;
1487 if (is_sbyte16(opx
))
1488 bytes
[0] |= 2; /* s-bit */
1489 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1498 warn_overflow(4, opx
);
1499 if (is_sbyte32(opx
)) {
1501 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1505 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1506 opx
->segment
, opx
->wrt
);
1516 bytes
[0] = *codes
++;
1517 if (is_sbyte32(opx
))
1518 bytes
[0] |= 2; /* s-bit */
1519 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1535 (ins
->drexdst
<< 4) |
1536 (ins
->rex
& REX_OC
? 0x08 : 0) |
1537 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1539 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1545 opx
= &ins
->oprs
[c
>> 3];
1546 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1547 opx
= &ins
->oprs
[c
& 7];
1548 if (opx
->segment
!= NO_SEG
|| opx
->wrt
!= NO_SEG
) {
1549 errfunc(ERR_NONFATAL
,
1550 "non-absolute expression not permitted as argument %d",
1553 if (opx
->offset
& ~15) {
1554 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1555 "four-bit argument exceeds bounds");
1557 bytes
[0] |= opx
->offset
& 15;
1559 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1565 opx
= &ins
->oprs
[c
>> 4];
1566 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1568 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1574 opx
= &ins
->oprs
[c
];
1575 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1576 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1585 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1586 (int32_t)data
!= (int64_t)data
) {
1587 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1588 "signed dword immediate exceeds bounds");
1590 if (is_sbyte32(opx
)) {
1592 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1596 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1597 opx
->segment
, opx
->wrt
);
1607 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1608 (int32_t)data
!= (int64_t)data
) {
1609 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1610 "signed dword immediate exceeds bounds");
1612 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1613 opx
->segment
, opx
->wrt
);
1623 if (ins
->vex_m
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
))) {
1625 bytes
[1] = ins
->vex_m
| ((~ins
->rex
& 7) << 5);
1626 bytes
[2] = ((ins
->rex
& REX_W
) << (7-3)) |
1627 ((~ins
->drexdst
& 15)<< 3) | (ins
->vex_wlp
& 07);
1628 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 3, NO_SEG
, NO_SEG
);
1632 bytes
[1] = ((~ins
->rex
& REX_R
) << (7-2)) |
1633 ((~ins
->drexdst
& 15) << 3) | (ins
->vex_wlp
& 07);
1634 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 2, NO_SEG
, NO_SEG
);
1647 if (ins
->rex
& REX_W
)
1649 else if (ins
->prefixes
[PPS_OSIZE
] == P_O16
)
1651 else if (ins
->prefixes
[PPS_OSIZE
] == P_O32
)
1656 um
= (uint64_t)2 << (s
-1);
1659 if (uv
> 127 && uv
< (uint64_t)-128 &&
1660 (uv
< um
-128 || uv
> um
-1)) {
1661 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1662 "signed byte value exceeds bounds");
1664 if (opx
->segment
!= NO_SEG
) {
1666 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1667 opx
->segment
, opx
->wrt
);
1670 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1684 if (bits
== 32 && !has_prefix(ins
, PPS_ASIZE
, P_A16
)) {
1686 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1693 if (bits
!= 32 && !has_prefix(ins
, PPS_ASIZE
, P_A32
)) {
1695 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1717 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1726 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1741 *bytes
= *codes
++ ^ condval
[ins
->condition
];
1742 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1751 *bytes
= c
- 0332 + 0xF2;
1752 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1757 if (ins
->rex
& REX_R
) {
1759 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1762 ins
->rex
&= ~(REX_L
|REX_R
);
1773 if (ins
->oprs
[0].segment
!= NO_SEG
)
1774 errfunc(ERR_PANIC
, "non-constant BSS size in pass two");
1776 int64_t size
= ins
->oprs
[0].offset
;
1778 out(offset
, segment
, NULL
,
1779 OUT_RESERVE
, size
, NO_SEG
, NO_SEG
);
1789 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1795 bytes
[0] = c
- 0362 + 0xf2;
1796 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1806 *bytes
= c
- 0366 + 0x66;
1807 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1817 *bytes
= bits
== 16 ? 3 : 5;
1818 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1822 default: /* can't do it by 'case' statements */
1823 if (c
>= 0100 && c
<= 0277) { /* it's an EA */
1832 /* pick rfield from operand b */
1833 rflags
= regflag(&ins
->oprs
[c
& 7]);
1834 rfield
= nasm_regvals
[ins
->oprs
[c
& 7].basereg
];
1836 /* rfield is constant */
1842 (&ins
->oprs
[(c
>> 3) & 7], &ea_data
, bits
,
1843 ins
->addr_size
, rfield
, rflags
)) {
1844 errfunc(ERR_NONFATAL
, "invalid effective address");
1849 *p
++ = ea_data
.modrm
;
1850 if (ea_data
.sib_present
)
1853 /* DREX suffixes come between the SIB and the displacement */
1854 if (ins
->rex
& REX_D
) {
1856 (ins
->drexdst
<< 4) |
1857 (ins
->rex
& REX_OC
? 0x08 : 0) |
1858 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1863 out(offset
, segment
, bytes
, OUT_RAWDATA
, s
, NO_SEG
, NO_SEG
);
1866 * Make sure the address gets the right offset in case
1867 * the line breaks in the .lst file (BR 1197827)
1872 switch (ea_data
.bytes
) {
1876 if (ins
->oprs
[(c
>> 3) & 7].segment
!= NO_SEG
) {
1877 data
= ins
->oprs
[(c
>> 3) & 7].offset
;
1878 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1879 ins
->oprs
[(c
>> 3) & 7].segment
,
1880 ins
->oprs
[(c
>> 3) & 7].wrt
);
1882 *bytes
= ins
->oprs
[(c
>> 3) & 7].offset
;
1883 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1,
1891 data
= ins
->oprs
[(c
>> 3) & 7].offset
;
1892 warn_overflow(ea_data
.bytes
, opx
);
1895 data
-= insn_end
- (offset
+ea_data
.bytes
);
1900 out(offset
, segment
, &data
, type
, ea_data
.bytes
,
1901 ins
->oprs
[(c
>> 3) & 7].segment
,
1902 ins
->oprs
[(c
>> 3) & 7].wrt
);
1907 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1908 ": instruction code 0x%02X given", c
);
1914 static int32_t regflag(const operand
* o
)
1916 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1917 errfunc(ERR_PANIC
, "invalid operand passed to regflag()");
1919 return nasm_reg_flags
[o
->basereg
];
1922 static int32_t regval(const operand
* o
)
1924 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1925 errfunc(ERR_PANIC
, "invalid operand passed to regval()");
1927 return nasm_regvals
[o
->basereg
];
1930 static int op_rexflags(const operand
* o
, int mask
)
1935 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1936 errfunc(ERR_PANIC
, "invalid operand passed to op_rexflags()");
1939 flags
= nasm_reg_flags
[o
->basereg
];
1940 val
= nasm_regvals
[o
->basereg
];
1942 return rexflags(val
, flags
, mask
);
1945 static int rexflags(int val
, int32_t flags
, int mask
)
1950 rex
|= REX_B
|REX_X
|REX_R
;
1953 if (!(REG_HIGH
& ~flags
)) /* AH, CH, DH, BH */
1955 else if (!(REG8
& ~flags
) && val
>= 4) /* SPL, BPL, SIL, DIL */
1961 static int matches(const struct itemplate
*itemp
, insn
* instruction
, int bits
)
1963 int i
, size
[MAX_OPERANDS
], asize
, oprs
, ret
;
1970 if (itemp
->opcode
!= instruction
->opcode
)
1974 * Count the operands
1976 if (itemp
->operands
!= instruction
->operands
)
1980 * Check that no spurious colons or TOs are present
1982 for (i
= 0; i
< itemp
->operands
; i
++)
1983 if (instruction
->oprs
[i
].type
& ~itemp
->opd
[i
] & (COLON
| TO
))
1987 * Process size flags
1989 if (itemp
->flags
& IF_ARMASK
) {
1990 memset(size
, 0, sizeof size
);
1992 i
= ((itemp
->flags
& IF_ARMASK
) >> IF_ARSHFT
) - 1;
1994 switch (itemp
->flags
& IF_SMASK
) {
2031 switch (itemp
->flags
& IF_SMASK
) {
2066 for (i
= 0; i
< MAX_OPERANDS
; i
++)
2071 * Check that the operand flags all match up
2073 for (i
= 0; i
< itemp
->operands
; i
++) {
2074 int32_t type
= instruction
->oprs
[i
].type
;
2075 if (!(type
& SIZE_MASK
))
2078 if (itemp
->opd
[i
] & SAME_AS
) {
2079 int j
= itemp
->opd
[i
] & ~SAME_AS
;
2080 if (type
!= instruction
->oprs
[j
].type
||
2081 instruction
->oprs
[i
].basereg
!= instruction
->oprs
[j
].basereg
)
2083 } else if (itemp
->opd
[i
] & ~type
||
2084 ((itemp
->opd
[i
] & SIZE_MASK
) &&
2085 ((itemp
->opd
[i
] ^ type
) & SIZE_MASK
))) {
2086 if ((itemp
->opd
[i
] & ~type
& ~SIZE_MASK
) ||
2095 * Check operand sizes
2097 if (itemp
->flags
& (IF_SM
| IF_SM2
)) {
2098 oprs
= (itemp
->flags
& IF_SM2
? 2 : itemp
->operands
);
2100 for (i
= 0; i
< oprs
; i
++) {
2101 if ((asize
= itemp
->opd
[i
] & SIZE_MASK
) != 0) {
2103 for (j
= 0; j
< oprs
; j
++)
2109 oprs
= itemp
->operands
;
2112 for (i
= 0; i
< itemp
->operands
; i
++) {
2113 if (!(itemp
->opd
[i
] & SIZE_MASK
) &&
2114 (instruction
->oprs
[i
].type
& SIZE_MASK
& ~size
[i
]))
2119 * Check template is okay at the set cpu level
2121 if (((itemp
->flags
& IF_PLEVEL
) > cpu
))
2125 * Check if instruction is available in long mode
2127 if ((itemp
->flags
& IF_NOLONG
) && (bits
== 64))
2131 * Check if special handling needed for Jumps
2133 if ((uint8_t)(itemp
->code
[0]) >= 0370)
2139 static ea
*process_ea(operand
* input
, ea
* output
, int bits
,
2140 int addrbits
, int rfield
, int32_t rflags
)
2142 bool forw_ref
= !!(input
->opflags
& OPFLAG_FORWARD
);
2144 output
->rip
= false;
2146 /* REX flags for the rfield operand */
2147 output
->rex
|= rexflags(rfield
, rflags
, REX_R
|REX_P
|REX_W
|REX_H
);
2149 if (!(REGISTER
& ~input
->type
)) { /* register direct */
2153 if (input
->basereg
< EXPR_REG_START
/* Verify as Register */
2154 || input
->basereg
>= REG_ENUM_LIMIT
)
2157 i
= nasm_regvals
[input
->basereg
];
2160 return NULL
; /* Invalid EA register */
2162 output
->rex
|= op_rexflags(input
, REX_B
|REX_P
|REX_W
|REX_H
);
2164 output
->sib_present
= false; /* no SIB necessary */
2165 output
->bytes
= 0; /* no offset necessary either */
2166 output
->modrm
= 0xC0 | ((rfield
& 7) << 3) | (i
& 7);
2167 } else { /* it's a memory reference */
2168 if (input
->basereg
== -1
2169 && (input
->indexreg
== -1 || input
->scale
== 0)) {
2170 /* it's a pure offset */
2171 if (bits
== 64 && (~input
->type
& IP_REL
)) {
2172 int scale
, index
, base
;
2173 output
->sib_present
= true;
2177 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2179 output
->modrm
= 4 | ((rfield
& 7) << 3);
2180 output
->rip
= false;
2182 output
->sib_present
= false;
2183 output
->bytes
= (addrbits
!= 16 ? 4 : 2);
2184 output
->modrm
= (addrbits
!= 16 ? 5 : 6) | ((rfield
& 7) << 3);
2185 output
->rip
= bits
== 64;
2187 } else { /* it's an indirection */
2188 int i
= input
->indexreg
, b
= input
->basereg
, s
= input
->scale
;
2189 int32_t o
= input
->offset
, seg
= input
->segment
;
2190 int hb
= input
->hintbase
, ht
= input
->hinttype
;
2193 int32_t ix
, bx
; /* register flags */
2196 i
= -1; /* make this easy, at least */
2198 if (i
>= EXPR_REG_START
&& i
< REG_ENUM_LIMIT
) {
2199 it
= nasm_regvals
[i
];
2200 ix
= nasm_reg_flags
[i
];
2206 if (b
>= EXPR_REG_START
&& b
< REG_ENUM_LIMIT
) {
2207 bt
= nasm_regvals
[b
];
2208 bx
= nasm_reg_flags
[b
];
2214 /* check for a 32/64-bit memory reference... */
2215 if ((ix
|bx
) & (BITS32
|BITS64
)) {
2216 /* it must be a 32/64-bit memory reference. Firstly we have
2217 * to check that all registers involved are type E/Rxx. */
2218 int32_t sok
= BITS32
|BITS64
;
2221 if (!(REG64
& ~ix
) || !(REG32
& ~ix
))
2229 return NULL
; /* Invalid register */
2230 if (~sok
& bx
& SIZE_MASK
)
2231 return NULL
; /* Invalid size */
2235 /* While we're here, ensure the user didn't specify
2237 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2240 if (addrbits
== 16 ||
2241 (addrbits
== 32 && !(sok
& BITS32
)) ||
2242 (addrbits
== 64 && !(sok
& BITS64
)))
2245 /* now reorganize base/index */
2246 if (s
== 1 && bt
!= it
&& bt
!= -1 && it
!= -1 &&
2247 ((hb
== b
&& ht
== EAH_NOTBASE
)
2248 || (hb
== i
&& ht
== EAH_MAKEBASE
))) {
2249 /* swap if hints say so */
2250 t
= bt
, bt
= it
, it
= t
;
2251 t
= bx
, bx
= ix
, ix
= t
;
2253 if (bt
== it
) /* convert EAX+2*EAX to 3*EAX */
2254 bt
= -1, bx
= 0, s
++;
2255 if (bt
== -1 && s
== 1 && !(hb
== it
&& ht
== EAH_NOTBASE
)) {
2256 /* make single reg base, unless hint */
2257 bt
= it
, bx
= ix
, it
= -1, ix
= 0;
2259 if (((s
== 2 && it
!= REG_NUM_ESP
2260 && !(input
->eaflags
& EAF_TIMESTWO
)) || s
== 3
2261 || s
== 5 || s
== 9) && bt
== -1)
2262 bt
= it
, bx
= ix
, s
--; /* convert 3*EAX to EAX+2*EAX */
2263 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
2264 && (input
->eaflags
& EAF_TIMESTWO
))
2265 it
= bt
, ix
= bx
, bt
= -1, bx
= 0, s
= 1;
2266 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2267 if (s
== 1 && it
== REG_NUM_ESP
) {
2268 /* swap ESP into base if scale is 1 */
2269 t
= it
, it
= bt
, bt
= t
;
2270 t
= ix
, ix
= bx
, bx
= t
;
2272 if (it
== REG_NUM_ESP
2273 || (s
!= 1 && s
!= 2 && s
!= 4 && s
!= 8 && it
!= -1))
2274 return NULL
; /* wrong, for various reasons */
2276 output
->rex
|= rexflags(it
, ix
, REX_X
);
2277 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2279 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
) {
2288 if (rm
!= REG_NUM_EBP
&& o
== 0 &&
2289 seg
== NO_SEG
&& !forw_ref
&&
2291 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2293 else if (input
->eaflags
& EAF_BYTEOFFS
||
2294 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2296 && !(input
->eaflags
& EAF_WORDOFFS
)))
2302 output
->sib_present
= false;
2303 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2304 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2307 int mod
, scale
, index
, base
;
2327 default: /* then what the smeg is it? */
2328 return NULL
; /* panic */
2336 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2337 seg
== NO_SEG
&& !forw_ref
&&
2339 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2341 else if (input
->eaflags
& EAF_BYTEOFFS
||
2342 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2344 && !(input
->eaflags
& EAF_WORDOFFS
)))
2350 output
->sib_present
= true;
2351 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2352 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | 4;
2353 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2355 } else { /* it's 16-bit */
2358 /* check for 64-bit long mode */
2362 /* check all registers are BX, BP, SI or DI */
2363 if ((b
!= -1 && b
!= R_BP
&& b
!= R_BX
&& b
!= R_SI
2364 && b
!= R_DI
) || (i
!= -1 && i
!= R_BP
&& i
!= R_BX
2365 && i
!= R_SI
&& i
!= R_DI
))
2368 /* ensure the user didn't specify DWORD/QWORD */
2369 if (input
->disp_size
== 32 || input
->disp_size
== 64)
2372 if (s
!= 1 && i
!= -1)
2373 return NULL
; /* no can do, in 16-bit EA */
2374 if (b
== -1 && i
!= -1) {
2379 if ((b
== R_SI
|| b
== R_DI
) && i
!= -1) {
2384 /* have BX/BP as base, SI/DI index */
2386 return NULL
; /* shouldn't ever happen, in theory */
2387 if (i
!= -1 && b
!= -1 &&
2388 (i
== R_BP
|| i
== R_BX
|| b
== R_SI
|| b
== R_DI
))
2389 return NULL
; /* invalid combinations */
2390 if (b
== -1) /* pure offset: handled above */
2391 return NULL
; /* so if it gets to here, panic! */
2395 switch (i
* 256 + b
) {
2396 case R_SI
* 256 + R_BX
:
2399 case R_DI
* 256 + R_BX
:
2402 case R_SI
* 256 + R_BP
:
2405 case R_DI
* 256 + R_BP
:
2423 if (rm
== -1) /* can't happen, in theory */
2424 return NULL
; /* so panic if it does */
2426 if (o
== 0 && seg
== NO_SEG
&& !forw_ref
&& rm
!= 6 &&
2427 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2429 else if (input
->eaflags
& EAF_BYTEOFFS
||
2430 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2432 && !(input
->eaflags
& EAF_WORDOFFS
)))
2437 output
->sib_present
= false; /* no SIB - it's 16-bit */
2438 output
->bytes
= mod
; /* bytes of offset needed */
2439 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2444 output
->size
= 1 + output
->sib_present
+ output
->bytes
;
2448 static void add_asp(insn
*ins
, int addrbits
)
2453 valid
= (addrbits
== 64) ? 64|32 : 32|16;
2455 switch (ins
->prefixes
[PPS_ASIZE
]) {
2466 valid
&= (addrbits
== 32) ? 16 : 32;
2472 for (j
= 0; j
< ins
->operands
; j
++) {
2473 if (!(MEMORY
& ~ins
->oprs
[j
].type
)) {
2476 /* Verify as Register */
2477 if (ins
->oprs
[j
].indexreg
< EXPR_REG_START
2478 || ins
->oprs
[j
].indexreg
>= REG_ENUM_LIMIT
)
2481 i
= nasm_reg_flags
[ins
->oprs
[j
].indexreg
];
2483 /* Verify as Register */
2484 if (ins
->oprs
[j
].basereg
< EXPR_REG_START
2485 || ins
->oprs
[j
].basereg
>= REG_ENUM_LIMIT
)
2488 b
= nasm_reg_flags
[ins
->oprs
[j
].basereg
];
2490 if (ins
->oprs
[j
].scale
== 0)
2494 int ds
= ins
->oprs
[j
].disp_size
;
2495 if ((addrbits
!= 64 && ds
> 8) ||
2496 (addrbits
== 64 && ds
== 16))
2516 if (valid
& addrbits
) {
2517 ins
->addr_size
= addrbits
;
2518 } else if (valid
& ((addrbits
== 32) ? 16 : 32)) {
2519 /* Add an address size prefix */
2520 enum prefixes pref
= (addrbits
== 32) ? P_A16
: P_A32
;
2521 ins
->prefixes
[PPS_ASIZE
] = pref
;
2522 ins
->addr_size
= (addrbits
== 32) ? 16 : 32;
2525 errfunc(ERR_NONFATAL
, "impossible combination of address sizes");
2526 ins
->addr_size
= addrbits
; /* Error recovery */
2529 defdisp
= ins
->addr_size
== 16 ? 16 : 32;
2531 for (j
= 0; j
< ins
->operands
; j
++) {
2532 if (!(MEM_OFFS
& ~ins
->oprs
[j
].type
) &&
2533 (ins
->oprs
[j
].disp_size
? ins
->oprs
[j
].disp_size
: defdisp
)
2534 != ins
->addr_size
) {
2535 /* mem_offs sizes must match the address size; if not,
2536 strip the MEM_OFFS bit and match only EA instructions */
2537 ins
->oprs
[j
].type
&= ~(MEM_OFFS
& ~MEMORY
);