1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2010 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * assemble.c code generation for the Netwide Assembler
37 * the actual codes (C syntax, i.e. octal):
38 * \0 - terminates the code. (Unless it's a literal of course.)
39 * \1..\4 - that many literal bytes follow in the code stream
40 * \5 - add 4 to the primary operand number (b, low octdigit)
41 * \6 - add 4 to the secondary operand number (a, middle octdigit)
42 * \7 - add 4 to both the primary and the secondary operand number
43 * \10..\13 - a literal byte follows in the code stream, to be added
44 * to the register value of operand 0..3
45 * \14..\17 - a signed byte immediate operand, from operand 0..3
46 * \20..\23 - a byte immediate operand, from operand 0..3
47 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
48 * \30..\33 - a word immediate operand, from operand 0..3
49 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
50 * assembly mode or the operand-size override on the operand
51 * \40..\43 - a long immediate operand, from operand 0..3
52 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
53 * depending on the address size of the instruction.
54 * \50..\53 - a byte relative operand, from operand 0..3
55 * \54..\57 - a qword immediate operand, from operand 0..3
56 * \60..\63 - a word relative operand, from operand 0..3
57 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
58 * assembly mode or the operand-size override on the operand
59 * \70..\73 - a long relative operand, from operand 0..3
60 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
61 * \1ab - a ModRM, calculated on EA in operand a, with the spare
62 * field the register value of operand b.
63 * \140..\143 - an immediate word or signed byte for operand 0..3
64 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
65 * is a signed byte rather than a word. Opcode byte follows.
66 * \150..\153 - an immediate dword or signed byte for operand 0..3
67 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
68 * is a signed byte rather than a dword. Opcode byte follows.
69 * \160..\163 - this instruction uses DREX rather than REX, with the
70 * OC0 field set to 0, and the dest field taken from
72 * \164..\167 - this instruction uses DREX rather than REX, with the
73 * OC0 field set to 1, and the dest field taken from
75 * \171 - placement of DREX suffix in the absence of an EA
76 * \172\ab - the register number from operand a in bits 7..4, with
77 * the 4-bit immediate from operand b in bits 3..0.
78 * \173\xab - the register number from operand a in bits 7..4, with
79 * the value b in bits 3..0.
80 * \174\a - the register number from operand a in bits 7..4, and
81 * an arbitrary value in bits 3..0 (assembled as zero.)
82 * \2ab - a ModRM, calculated on EA in operand a, with the spare
83 * field equal to digit b.
84 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
85 * is not equal to the truncated and sign-extended 32-bit
86 * operand; used for 32-bit immediates in 64-bit mode.
87 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
88 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
89 * V field taken from operand 0..3.
90 * \270 - this instruction uses VEX/XOP rather than REX, with the
91 * V field set to 1111b.
93 * VEX/XOP prefixes are followed by the sequence:
94 * \tmm\wlp where mm is the M field; and wlp is:
96 * [w0] ww = 0 for W = 0
97 * [w1] ww = 1 for W = 1
98 * [wx] ww = 2 for W don't care (always assembled as 0)
99 * [ww] ww = 3 for W used as REX.W
101 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
103 * \274..\277 - a signed byte immediate operand, from operand 0..3,
104 * which is to be extended to the operand size.
105 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
106 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
107 * \312 - (disassembler only) invalid with non-default address size.
108 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
109 * \314 - (disassembler only) invalid with REX.B
110 * \315 - (disassembler only) invalid with REX.X
111 * \316 - (disassembler only) invalid with REX.R
112 * \317 - (disassembler only) invalid with REX.W
113 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
114 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
115 * \322 - indicates that this instruction is only valid when the
116 * operand size is the default (instruction to disassembler,
117 * generates no code in the assembler)
118 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
119 * \324 - indicates 64-bit operand size requiring REX prefix.
120 * \325 - instruction which always uses spl/bpl/sil/dil
121 * \330 - a literal byte follows in the code stream, to be added
122 * to the condition code value of the instruction.
123 * \331 - instruction not valid with REP prefix. Hint for
124 * disassembler only; for SSE instructions.
125 * \332 - REP prefix (0xF2 byte) used as opcode extension.
126 * \333 - REP prefix (0xF3 byte) used as opcode extension.
127 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
128 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
129 * \336 - force a REP(E) prefix (0xF2) even if not specified.
130 * \337 - force a REPNE prefix (0xF3) even if not specified.
131 * \336-\337 are still listed as prefixes in the disassembler.
132 * \340 - reserve <operand 0> bytes of uninitialized storage.
133 * Operand 0 had better be a segmentless constant.
134 * \341 - this instruction needs a WAIT "prefix"
135 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
136 * (POP is never used for CS) depending on operand 0
137 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
139 * \360 - no SSE prefix (== \364\331)
140 * \361 - 66 SSE prefix (== \366\331)
141 * \362 - F2 SSE prefix (== \364\332)
142 * \363 - F3 SSE prefix (== \364\333)
143 * \364 - operand-size prefix (0x66) not permitted
144 * \365 - address-size prefix (0x67) not permitted
145 * \366 - operand-size prefix (0x66) used as opcode extension
146 * \367 - address-size prefix (0x67) used as opcode extension
147 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
148 * 370 is used for Jcc, 371 is used for JMP.
149 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
150 * used for conditional jump over longer jump
153 #include "compiler.h"
157 #include <inttypes.h>
161 #include "assemble.h"
167 * Matching errors. These should be sorted so that more specific
168 * errors come later in the sequence.
176 * Matching success; the conditional ones first
178 MOK_JUMP
, /* Matching OK but needs jmp_match() */
179 MOK_GOOD
/* Matching unconditionally OK */
183 int sib_present
; /* is a SIB byte necessary? */
184 int bytes
; /* # of bytes of offset needed */
185 int size
; /* lazy - this is sib+bytes+1 */
186 uint8_t modrm
, sib
, rex
, rip
; /* the bytes themselves */
189 static uint32_t cpu
; /* cpu level received from nasm.c */
190 static efunc errfunc
;
191 static struct ofmt
*outfmt
;
192 static ListGen
*list
;
194 static int64_t calcsize(int32_t, int64_t, int, insn
*, const uint8_t *);
195 static void gencode(int32_t segment
, int64_t offset
, int bits
,
196 insn
* ins
, const struct itemplate
*temp
,
198 static enum match_result
find_match(const struct itemplate
**tempp
,
200 int32_t segment
, int64_t offset
, int bits
);
201 static enum match_result
matches(const struct itemplate
*, insn
*, int bits
);
202 static opflags_t
regflag(const operand
*);
203 static int32_t regval(const operand
*);
204 static int rexflags(int, opflags_t
, int);
205 static int op_rexflags(const operand
*, int);
206 static ea
*process_ea(operand
*, ea
*, int, int, int, opflags_t
);
207 static void add_asp(insn
*, int);
209 static int has_prefix(insn
* ins
, enum prefix_pos pos
, enum prefixes prefix
)
211 return ins
->prefixes
[pos
] == prefix
;
214 static void assert_no_prefix(insn
* ins
, enum prefix_pos pos
)
216 if (ins
->prefixes
[pos
])
217 errfunc(ERR_NONFATAL
, "invalid %s prefix",
218 prefix_name(ins
->prefixes
[pos
]));
221 static const char *size_name(int size
)
243 static void warn_overflow(int pass
, int size
)
245 errfunc(ERR_WARNING
| pass
| ERR_WARN_NOV
,
246 "%s data exceeds bounds", size_name(size
));
249 static void warn_overflow_const(int64_t data
, int size
)
251 if (overflow_general(data
, size
))
252 warn_overflow(ERR_PASS1
, size
);
255 static void warn_overflow_opd(const struct operand
*o
, int size
)
257 if (o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
) {
258 if (overflow_general(o
->offset
, size
))
259 warn_overflow(ERR_PASS2
, size
);
264 * This routine wrappers the real output format's output routine,
265 * in order to pass a copy of the data off to the listing file
266 * generator at the same time.
268 static void out(int64_t offset
, int32_t segto
, const void *data
,
269 enum out_type type
, uint64_t size
,
270 int32_t segment
, int32_t wrt
)
272 static int32_t lineno
= 0; /* static!!! */
273 static char *lnfname
= NULL
;
276 if (type
== OUT_ADDRESS
&& segment
== NO_SEG
&& wrt
== NO_SEG
) {
278 * This is a non-relocated address, and we're going to
279 * convert it into RAWDATA format.
284 errfunc(ERR_PANIC
, "OUT_ADDRESS with size > 8");
288 WRITEADDR(q
, *(int64_t *)data
, size
);
293 list
->output(offset
, data
, type
, size
);
296 * this call to src_get determines when we call the
297 * debug-format-specific "linenum" function
298 * it updates lineno and lnfname to the current values
299 * returning 0 if "same as last time", -2 if lnfname
300 * changed, and the amount by which lineno changed,
301 * if it did. thus, these variables must be static
304 if (src_get(&lineno
, &lnfname
)) {
305 outfmt
->current_dfmt
->linenum(lnfname
, lineno
, segto
);
308 outfmt
->output(segto
, data
, type
, size
, segment
, wrt
);
311 static bool jmp_match(int32_t segment
, int64_t offset
, int bits
,
312 insn
* ins
, const uint8_t *code
)
317 if ((c
!= 0370 && c
!= 0371) || (ins
->oprs
[0].type
& STRICT
))
321 if (optimizing
< 0 && c
== 0371)
324 isize
= calcsize(segment
, offset
, bits
, ins
, code
);
326 if (ins
->oprs
[0].opflags
& OPFLAG_UNKNOWN
)
327 /* Be optimistic in pass 1 */
330 if (ins
->oprs
[0].segment
!= segment
)
333 isize
= ins
->oprs
[0].offset
- offset
- isize
; /* isize is delta */
334 return (isize
>= -128 && isize
<= 127); /* is it byte size? */
337 int64_t assemble(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
338 insn
* instruction
, struct ofmt
*output
, efunc error
,
341 const struct itemplate
*temp
;
346 int64_t start
= offset
;
347 int64_t wsize
; /* size for DB etc. */
349 errfunc
= error
; /* to pass to other functions */
351 outfmt
= output
; /* likewise */
352 list
= listgen
; /* and again */
354 wsize
= idata_bytes(instruction
->opcode
);
360 int32_t t
= instruction
->times
;
363 "instruction->times < 0 (%ld) in assemble()", t
);
365 while (t
--) { /* repeat TIMES times */
366 list_for_each(e
, instruction
->eops
) {
367 if (e
->type
== EOT_DB_NUMBER
) {
369 errfunc(ERR_NONFATAL
,
370 "integer supplied to a DT, DO or DY"
373 out(offset
, segment
, &e
->offset
,
374 OUT_ADDRESS
, wsize
, e
->segment
, e
->wrt
);
377 } else if (e
->type
== EOT_DB_STRING
||
378 e
->type
== EOT_DB_STRING_FREE
) {
381 out(offset
, segment
, e
->stringval
,
382 OUT_RAWDATA
, e
->stringlen
, NO_SEG
, NO_SEG
);
383 align
= e
->stringlen
% wsize
;
386 align
= wsize
- align
;
387 out(offset
, segment
, zero_buffer
,
388 OUT_RAWDATA
, align
, NO_SEG
, NO_SEG
);
390 offset
+= e
->stringlen
+ align
;
393 if (t
> 0 && t
== instruction
->times
- 1) {
395 * Dummy call to list->output to give the offset to the
398 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
399 list
->uplevel(LIST_TIMES
);
402 if (instruction
->times
> 1)
403 list
->downlevel(LIST_TIMES
);
404 return offset
- start
;
407 if (instruction
->opcode
== I_INCBIN
) {
408 const char *fname
= instruction
->eops
->stringval
;
411 fp
= fopen(fname
, "rb");
413 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
415 } else if (fseek(fp
, 0L, SEEK_END
) < 0) {
416 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
419 static char buf
[4096];
420 size_t t
= instruction
->times
;
425 if (instruction
->eops
->next
) {
426 base
= instruction
->eops
->next
->offset
;
428 if (instruction
->eops
->next
->next
&&
429 len
> (size_t)instruction
->eops
->next
->next
->offset
)
430 len
= (size_t)instruction
->eops
->next
->next
->offset
;
433 * Dummy call to list->output to give the offset to the
436 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
437 list
->uplevel(LIST_INCBIN
);
441 fseek(fp
, base
, SEEK_SET
);
445 m
= fread(buf
, 1, l
> sizeof(buf
) ? sizeof(buf
) : l
, fp
);
448 * This shouldn't happen unless the file
449 * actually changes while we are reading
453 "`incbin': unexpected EOF while"
454 " reading file `%s'", fname
);
455 t
= 0; /* Try to exit cleanly */
458 out(offset
, segment
, buf
, OUT_RAWDATA
, m
,
463 list
->downlevel(LIST_INCBIN
);
464 if (instruction
->times
> 1) {
466 * Dummy call to list->output to give the offset to the
469 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
470 list
->uplevel(LIST_TIMES
);
471 list
->downlevel(LIST_TIMES
);
474 return instruction
->times
* len
;
476 return 0; /* if we're here, there's an error */
479 /* Check to see if we need an address-size prefix */
480 add_asp(instruction
, bits
);
482 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
486 int64_t insn_size
= calcsize(segment
, offset
, bits
,
487 instruction
, temp
->code
);
488 itimes
= instruction
->times
;
489 if (insn_size
< 0) /* shouldn't be, on pass two */
490 error(ERR_PANIC
, "errors made it through from pass one");
493 for (j
= 0; j
< MAXPREFIX
; j
++) {
495 switch (instruction
->prefixes
[j
]) {
513 error(ERR_WARNING
| ERR_PASS2
,
514 "cs segment base generated, but will be ignored in 64-bit mode");
520 error(ERR_WARNING
| ERR_PASS2
,
521 "ds segment base generated, but will be ignored in 64-bit mode");
527 error(ERR_WARNING
| ERR_PASS2
,
528 "es segment base generated, but will be ignored in 64-bit mode");
540 error(ERR_WARNING
| ERR_PASS2
,
541 "ss segment base generated, but will be ignored in 64-bit mode");
548 "segr6 and segr7 cannot be used as prefixes");
553 "16-bit addressing is not supported "
555 } else if (bits
!= 16)
565 "64-bit addressing is only supported "
589 error(ERR_PANIC
, "invalid instruction prefix");
592 out(offset
, segment
, &c
, OUT_RAWDATA
, 1,
597 insn_end
= offset
+ insn_size
;
598 gencode(segment
, offset
, bits
, instruction
,
601 if (itimes
> 0 && itimes
== instruction
->times
- 1) {
603 * Dummy call to list->output to give the offset to the
606 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
607 list
->uplevel(LIST_TIMES
);
610 if (instruction
->times
> 1)
611 list
->downlevel(LIST_TIMES
);
612 return offset
- start
;
616 case MERR_OPSIZEMISSING
:
617 error(ERR_NONFATAL
, "operation size not specified");
619 case MERR_OPSIZEMISMATCH
:
620 error(ERR_NONFATAL
, "mismatch in operand sizes");
623 error(ERR_NONFATAL
, "no instruction for this cpu level");
626 error(ERR_NONFATAL
, "instruction not supported in %d-bit mode",
631 "invalid combination of opcode and operands");
638 int64_t insn_size(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
639 insn
* instruction
, efunc error
)
641 const struct itemplate
*temp
;
644 errfunc
= error
; /* to pass to other functions */
647 if (instruction
->opcode
== I_none
)
650 if (instruction
->opcode
== I_DB
|| instruction
->opcode
== I_DW
||
651 instruction
->opcode
== I_DD
|| instruction
->opcode
== I_DQ
||
652 instruction
->opcode
== I_DT
|| instruction
->opcode
== I_DO
||
653 instruction
->opcode
== I_DY
) {
655 int32_t isize
, osize
, wsize
;
658 wsize
= idata_bytes(instruction
->opcode
);
660 list_for_each(e
, instruction
->eops
) {
664 if (e
->type
== EOT_DB_NUMBER
) {
666 warn_overflow_const(e
->offset
, wsize
);
667 } else if (e
->type
== EOT_DB_STRING
||
668 e
->type
== EOT_DB_STRING_FREE
)
669 osize
= e
->stringlen
;
671 align
= (-osize
) % wsize
;
674 isize
+= osize
+ align
;
676 return isize
* instruction
->times
;
679 if (instruction
->opcode
== I_INCBIN
) {
680 const char *fname
= instruction
->eops
->stringval
;
685 fp
= fopen(fname
, "rb");
687 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
689 else if (fseek(fp
, 0L, SEEK_END
) < 0)
690 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
694 if (instruction
->eops
->next
) {
695 len
-= instruction
->eops
->next
->offset
;
696 if (instruction
->eops
->next
->next
&&
697 len
> (size_t)instruction
->eops
->next
->next
->offset
) {
698 len
= (size_t)instruction
->eops
->next
->next
->offset
;
701 val
= instruction
->times
* len
;
708 /* Check to see if we need an address-size prefix */
709 add_asp(instruction
, bits
);
711 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
713 /* we've matched an instruction. */
715 const uint8_t *codes
= temp
->code
;
718 isize
= calcsize(segment
, offset
, bits
, instruction
, codes
);
721 for (j
= 0; j
< MAXPREFIX
; j
++) {
722 switch (instruction
->prefixes
[j
]) {
748 return isize
* instruction
->times
;
750 return -1; /* didn't match any instruction */
754 static bool possible_sbyte(operand
*o
)
756 return o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
&&
757 !(o
->opflags
& OPFLAG_UNKNOWN
) &&
758 optimizing
>= 0 && !(o
->type
& STRICT
);
761 /* check that opn[op] is a signed byte of size 16 or 32 */
762 static bool is_sbyte16(operand
*o
)
766 if (!possible_sbyte(o
))
770 return v
>= -128 && v
<= 127;
773 static bool is_sbyte32(operand
*o
)
777 if (!possible_sbyte(o
))
781 return v
>= -128 && v
<= 127;
784 /* Common construct */
785 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
787 static int64_t calcsize(int32_t segment
, int64_t offset
, int bits
,
788 insn
* ins
, const uint8_t *codes
)
797 ins
->rex
= 0; /* Ensure REX is reset */
799 if (ins
->prefixes
[PPS_OSIZE
] == P_O64
)
802 (void)segment
; /* Don't warn that this parameter is unused */
803 (void)offset
; /* Don't warn that this parameter is unused */
807 op1
= (c
& 3) + ((opex
& 1) << 2);
808 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
809 opx
= &ins
->oprs
[op1
];
810 opex
= 0; /* For the next iteration */
817 codes
+= c
, length
+= c
;
828 op_rexflags(opx
, REX_B
|REX_H
|REX_P
|REX_W
);
843 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
844 length
+= (opx
->type
& BITS16
) ? 2 : 4;
846 length
+= (bits
== 16) ? 2 : 4;
854 length
+= ins
->addr_size
>> 3;
862 length
+= 8; /* MOV reg64/imm */
870 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
871 length
+= (opx
->type
& BITS16
) ? 2 : 4;
873 length
+= (bits
== 16) ? 2 : 4;
885 length
+= is_sbyte16(opx
) ? 1 : 2;
894 length
+= is_sbyte32(opx
) ? 1 : 4;
905 ins
->drexdst
= regval(opx
);
910 ins
->rex
|= REX_D
|REX_OC
;
911 ins
->drexdst
= regval(opx
);
925 length
+= is_sbyte32(opx
) ? 1 : 4;
934 ins
->drexdst
= regval(opx
);
935 ins
->vex_cm
= *codes
++;
936 ins
->vex_wlp
= *codes
++;
942 ins
->vex_cm
= *codes
++;
943 ins
->vex_wlp
= *codes
++;
956 length
+= (bits
!= 16) && !has_prefix(ins
, PPS_ASIZE
, P_A16
);
960 length
+= (bits
!= 32) && !has_prefix(ins
, PPS_ASIZE
, P_A32
);
967 if (bits
!= 64 || has_prefix(ins
, PPS_ASIZE
, P_A16
) ||
968 has_prefix(ins
, PPS_ASIZE
, P_A32
))
976 length
+= (bits
!= 16);
980 length
+= (bits
== 16);
1018 if (!ins
->prefixes
[PPS_LREP
])
1019 ins
->prefixes
[PPS_LREP
] = P_REP
;
1023 if (!ins
->prefixes
[PPS_LREP
])
1024 ins
->prefixes
[PPS_LREP
] = P_REPNE
;
1028 if (ins
->oprs
[0].segment
!= NO_SEG
)
1029 errfunc(ERR_NONFATAL
, "attempt to reserve non-constant"
1030 " quantity of BSS space");
1032 length
+= ins
->oprs
[0].offset
;
1036 if (!ins
->prefixes
[PPS_WAIT
])
1037 ins
->prefixes
[PPS_WAIT
] = P_WAIT
;
1087 struct operand
*opy
= &ins
->oprs
[op2
];
1089 ea_data
.rex
= 0; /* Ensure ea.REX is initially 0 */
1092 /* pick rfield from operand b (opx) */
1093 rflags
= regflag(opx
);
1094 rfield
= nasm_regvals
[opx
->basereg
];
1099 if (!process_ea(opy
, &ea_data
, bits
,
1100 ins
->addr_size
, rfield
, rflags
)) {
1101 errfunc(ERR_NONFATAL
, "invalid effective address");
1104 ins
->rex
|= ea_data
.rex
;
1105 length
+= ea_data
.size
;
1111 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1112 ": instruction code \\%o (0x%02X) given", c
, c
);
1117 ins
->rex
&= rex_mask
;
1119 if (ins
->rex
& REX_NH
) {
1120 if (ins
->rex
& REX_H
) {
1121 errfunc(ERR_NONFATAL
, "instruction cannot use high registers");
1124 ins
->rex
&= ~REX_P
; /* Don't force REX prefix due to high reg */
1127 if (ins
->rex
& REX_V
) {
1128 int bad32
= REX_R
|REX_W
|REX_X
|REX_B
;
1130 if (ins
->rex
& REX_H
) {
1131 errfunc(ERR_NONFATAL
, "cannot use high register in vex instruction");
1134 switch (ins
->vex_wlp
& 030) {
1148 if (bits
!= 64 && ((ins
->rex
& bad32
) || ins
->drexdst
> 7)) {
1149 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1152 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_R
|REX_B
)))
1156 } else if (ins
->rex
& REX_D
) {
1157 if (ins
->rex
& REX_H
) {
1158 errfunc(ERR_NONFATAL
, "cannot use high register in drex instruction");
1161 if (bits
!= 64 && ((ins
->rex
& (REX_R
|REX_W
|REX_X
|REX_B
)) ||
1162 ins
->drexdst
> 7)) {
1163 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1167 } else if (ins
->rex
& REX_REAL
) {
1168 if (ins
->rex
& REX_H
) {
1169 errfunc(ERR_NONFATAL
, "cannot use high register in rex instruction");
1171 } else if (bits
== 64) {
1173 } else if ((ins
->rex
& REX_L
) &&
1174 !(ins
->rex
& (REX_P
|REX_W
|REX_X
|REX_B
)) &&
1177 assert_no_prefix(ins
, PPS_LREP
);
1180 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1188 #define EMIT_REX() \
1189 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1190 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1191 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1196 static void gencode(int32_t segment
, int64_t offset
, int bits
,
1197 insn
* ins
, const struct itemplate
*temp
,
1200 static char condval
[] = { /* conditional opcodes */
1201 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1202 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1203 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1210 struct operand
*opx
;
1211 const uint8_t *codes
= temp
->code
;
1216 op1
= (c
& 3) + ((opex
& 1) << 2);
1217 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
1218 opx
= &ins
->oprs
[op1
];
1219 opex
= 0; /* For the next iteration */
1227 out(offset
, segment
, codes
, OUT_RAWDATA
, c
, NO_SEG
, NO_SEG
);
1240 bytes
[0] = *codes
++ + (regval(opx
) & 7);
1241 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1246 /* The test for BITS8 and SBYTE here is intended to avoid
1247 warning on optimizer actions due to SBYTE, while still
1248 warn on explicit BYTE directives. Also warn, obviously,
1249 if the optimizer isn't enabled. */
1250 if (((opx
->type
& BITS8
) ||
1251 !(opx
->type
& temp
->opd
[op1
] & BYTENESS
)) &&
1252 (opx
->offset
< -128 || opx
->offset
> 127)) {
1253 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1254 "signed byte value exceeds bounds");
1256 if (opx
->segment
!= NO_SEG
) {
1258 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1259 opx
->segment
, opx
->wrt
);
1261 bytes
[0] = opx
->offset
;
1262 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1269 if (opx
->offset
< -256 || opx
->offset
> 255) {
1270 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1271 "byte value exceeds bounds");
1273 if (opx
->segment
!= NO_SEG
) {
1275 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1276 opx
->segment
, opx
->wrt
);
1278 bytes
[0] = opx
->offset
;
1279 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1286 if (opx
->offset
< 0 || opx
->offset
> 255)
1287 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1288 "unsigned byte value exceeds bounds");
1289 if (opx
->segment
!= NO_SEG
) {
1291 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1292 opx
->segment
, opx
->wrt
);
1294 bytes
[0] = opx
->offset
;
1295 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1302 warn_overflow_opd(opx
, 2);
1304 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1305 opx
->segment
, opx
->wrt
);
1310 if (opx
->type
& (BITS16
| BITS32
))
1311 size
= (opx
->type
& BITS16
) ? 2 : 4;
1313 size
= (bits
== 16) ? 2 : 4;
1314 warn_overflow_opd(opx
, size
);
1316 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1317 opx
->segment
, opx
->wrt
);
1322 warn_overflow_opd(opx
, 4);
1324 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1325 opx
->segment
, opx
->wrt
);
1331 size
= ins
->addr_size
>> 3;
1332 warn_overflow_opd(opx
, size
);
1333 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1334 opx
->segment
, opx
->wrt
);
1339 if (opx
->segment
!= segment
) {
1341 out(offset
, segment
, &data
,
1342 OUT_REL1ADR
, insn_end
- offset
,
1343 opx
->segment
, opx
->wrt
);
1345 data
= opx
->offset
- insn_end
;
1346 if (data
> 127 || data
< -128)
1347 errfunc(ERR_NONFATAL
, "short jump is out of range");
1348 out(offset
, segment
, &data
,
1349 OUT_ADDRESS
, 1, NO_SEG
, NO_SEG
);
1355 data
= (int64_t)opx
->offset
;
1356 out(offset
, segment
, &data
, OUT_ADDRESS
, 8,
1357 opx
->segment
, opx
->wrt
);
1362 if (opx
->segment
!= segment
) {
1364 out(offset
, segment
, &data
,
1365 OUT_REL2ADR
, insn_end
- offset
,
1366 opx
->segment
, opx
->wrt
);
1368 data
= opx
->offset
- insn_end
;
1369 out(offset
, segment
, &data
,
1370 OUT_ADDRESS
, 2, NO_SEG
, NO_SEG
);
1376 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
1377 size
= (opx
->type
& BITS16
) ? 2 : 4;
1379 size
= (bits
== 16) ? 2 : 4;
1380 if (opx
->segment
!= segment
) {
1382 out(offset
, segment
, &data
,
1383 size
== 2 ? OUT_REL2ADR
: OUT_REL4ADR
,
1384 insn_end
- offset
, opx
->segment
, opx
->wrt
);
1386 data
= opx
->offset
- insn_end
;
1387 out(offset
, segment
, &data
,
1388 OUT_ADDRESS
, size
, NO_SEG
, NO_SEG
);
1394 if (opx
->segment
!= segment
) {
1396 out(offset
, segment
, &data
,
1397 OUT_REL4ADR
, insn_end
- offset
,
1398 opx
->segment
, opx
->wrt
);
1400 data
= opx
->offset
- insn_end
;
1401 out(offset
, segment
, &data
,
1402 OUT_ADDRESS
, 4, NO_SEG
, NO_SEG
);
1408 if (opx
->segment
== NO_SEG
)
1409 errfunc(ERR_NONFATAL
, "value referenced by FAR is not"
1412 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1413 outfmt
->segbase(1 + opx
->segment
),
1420 warn_overflow_opd(opx
, 2);
1421 if (is_sbyte16(opx
)) {
1423 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1427 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1428 opx
->segment
, opx
->wrt
);
1435 bytes
[0] = *codes
++;
1436 if (is_sbyte16(opx
))
1437 bytes
[0] |= 2; /* s-bit */
1438 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1444 warn_overflow_opd(opx
, 4);
1445 if (is_sbyte32(opx
)) {
1447 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1451 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1452 opx
->segment
, opx
->wrt
);
1459 bytes
[0] = *codes
++;
1460 if (is_sbyte32(opx
))
1461 bytes
[0] |= 2; /* s-bit */
1462 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1472 (ins
->drexdst
<< 4) |
1473 (ins
->rex
& REX_OC
? 0x08 : 0) |
1474 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1476 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1482 opx
= &ins
->oprs
[c
>> 3];
1483 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1484 opx
= &ins
->oprs
[c
& 7];
1485 if (opx
->segment
!= NO_SEG
|| opx
->wrt
!= NO_SEG
) {
1486 errfunc(ERR_NONFATAL
,
1487 "non-absolute expression not permitted as argument %d",
1490 if (opx
->offset
& ~15) {
1491 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1492 "four-bit argument exceeds bounds");
1494 bytes
[0] |= opx
->offset
& 15;
1496 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1502 opx
= &ins
->oprs
[c
>> 4];
1503 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1505 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1511 opx
= &ins
->oprs
[c
];
1512 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1513 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1519 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1520 (int32_t)data
!= (int64_t)data
) {
1521 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1522 "signed dword immediate exceeds bounds");
1524 if (is_sbyte32(opx
)) {
1526 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1530 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1531 opx
->segment
, opx
->wrt
);
1538 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1539 (int32_t)data
!= (int64_t)data
) {
1540 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1541 "signed dword immediate exceeds bounds");
1543 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1544 opx
->segment
, opx
->wrt
);
1551 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
))) {
1552 bytes
[0] = (ins
->vex_cm
>> 6) ? 0x8f : 0xc4;
1553 bytes
[1] = (ins
->vex_cm
& 31) | ((~ins
->rex
& 7) << 5);
1554 bytes
[2] = ((ins
->rex
& REX_W
) << (7-3)) |
1555 ((~ins
->drexdst
& 15)<< 3) | (ins
->vex_wlp
& 07);
1556 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 3, NO_SEG
, NO_SEG
);
1560 bytes
[1] = ((~ins
->rex
& REX_R
) << (7-2)) |
1561 ((~ins
->drexdst
& 15) << 3) | (ins
->vex_wlp
& 07);
1562 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 2, NO_SEG
, NO_SEG
);
1572 if (ins
->rex
& REX_W
)
1574 else if (ins
->prefixes
[PPS_OSIZE
] == P_O16
)
1576 else if (ins
->prefixes
[PPS_OSIZE
] == P_O32
)
1581 um
= (uint64_t)2 << (s
-1);
1584 if (uv
> 127 && uv
< (uint64_t)-128 &&
1585 (uv
< um
-128 || uv
> um
-1)) {
1586 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1587 "signed byte value exceeds bounds");
1589 if (opx
->segment
!= NO_SEG
) {
1591 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1592 opx
->segment
, opx
->wrt
);
1595 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1606 if (bits
== 32 && !has_prefix(ins
, PPS_ASIZE
, P_A16
)) {
1608 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1615 if (bits
!= 32 && !has_prefix(ins
, PPS_ASIZE
, P_A32
)) {
1617 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1636 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1645 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1663 *bytes
= *codes
++ ^ condval
[ins
->condition
];
1664 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1673 *bytes
= c
- 0332 + 0xF2;
1674 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1679 if (ins
->rex
& REX_R
) {
1681 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1684 ins
->rex
&= ~(REX_L
|REX_R
);
1695 if (ins
->oprs
[0].segment
!= NO_SEG
)
1696 errfunc(ERR_PANIC
, "non-constant BSS size in pass two");
1698 int64_t size
= ins
->oprs
[0].offset
;
1700 out(offset
, segment
, NULL
,
1701 OUT_RESERVE
, size
, NO_SEG
, NO_SEG
);
1712 switch (ins
->oprs
[0].basereg
) {
1727 "bizarre 8086 segment register received");
1729 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1736 switch (ins
->oprs
[0].basereg
) {
1745 "bizarre 386 segment register received");
1747 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1756 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1762 bytes
[0] = c
- 0362 + 0xf2;
1763 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1773 *bytes
= c
- 0366 + 0x66;
1774 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1784 *bytes
= bits
== 16 ? 3 : 5;
1785 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1808 struct operand
*opy
= &ins
->oprs
[op2
];
1811 /* pick rfield from operand b (opx) */
1812 rflags
= regflag(opx
);
1813 rfield
= nasm_regvals
[opx
->basereg
];
1815 /* rfield is constant */
1820 if (!process_ea(opy
, &ea_data
, bits
, ins
->addr_size
,
1822 errfunc(ERR_NONFATAL
, "invalid effective address");
1827 *p
++ = ea_data
.modrm
;
1828 if (ea_data
.sib_present
)
1831 /* DREX suffixes come between the SIB and the displacement */
1832 if (ins
->rex
& REX_D
) {
1833 *p
++ = (ins
->drexdst
<< 4) |
1834 (ins
->rex
& REX_OC
? 0x08 : 0) |
1835 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1840 out(offset
, segment
, bytes
, OUT_RAWDATA
, s
, NO_SEG
, NO_SEG
);
1843 * Make sure the address gets the right offset in case
1844 * the line breaks in the .lst file (BR 1197827)
1849 switch (ea_data
.bytes
) {
1859 if (opy
->segment
== segment
) {
1861 if (overflow_signed(data
, ea_data
.bytes
))
1862 warn_overflow(ERR_PASS2
, ea_data
.bytes
);
1863 out(offset
, segment
, &data
, OUT_ADDRESS
,
1864 ea_data
.bytes
, NO_SEG
, NO_SEG
);
1866 /* overflow check in output/linker? */
1867 out(offset
, segment
, &data
, OUT_REL4ADR
,
1868 insn_end
- offset
, opy
->segment
, opy
->wrt
);
1871 if (overflow_general(opy
->offset
, ins
->addr_size
>> 3) ||
1872 signed_bits(opy
->offset
, ins
->addr_size
) !=
1873 signed_bits(opy
->offset
, ea_data
.bytes
* 8))
1874 warn_overflow(ERR_PASS2
, ea_data
.bytes
);
1877 out(offset
, segment
, &data
, OUT_ADDRESS
,
1878 ea_data
.bytes
, opy
->segment
, opy
->wrt
);
1884 "Invalid amount of bytes (%d) for offset?!",
1893 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1894 ": instruction code \\%o (0x%02X) given", c
, c
);
1900 static opflags_t
regflag(const operand
* o
)
1902 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1903 errfunc(ERR_PANIC
, "invalid operand passed to regflag()");
1905 return nasm_reg_flags
[o
->basereg
];
1908 static int32_t regval(const operand
* o
)
1910 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1911 errfunc(ERR_PANIC
, "invalid operand passed to regval()");
1913 return nasm_regvals
[o
->basereg
];
1916 static int op_rexflags(const operand
* o
, int mask
)
1921 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1922 errfunc(ERR_PANIC
, "invalid operand passed to op_rexflags()");
1925 flags
= nasm_reg_flags
[o
->basereg
];
1926 val
= nasm_regvals
[o
->basereg
];
1928 return rexflags(val
, flags
, mask
);
1931 static int rexflags(int val
, opflags_t flags
, int mask
)
1936 rex
|= REX_B
|REX_X
|REX_R
;
1939 if (!(REG_HIGH
& ~flags
)) /* AH, CH, DH, BH */
1941 else if (!(REG8
& ~flags
) && val
>= 4) /* SPL, BPL, SIL, DIL */
1947 static enum match_result
find_match(const struct itemplate
**tempp
,
1949 int32_t segment
, int64_t offset
, int bits
)
1951 const struct itemplate
*temp
;
1952 enum match_result m
, merr
;
1953 opflags_t xsizeflags
[MAX_OPERANDS
];
1954 bool opsizemissing
= false;
1957 for (i
= 0; i
< instruction
->operands
; i
++)
1958 xsizeflags
[i
] = instruction
->oprs
[i
].type
& SIZE_MASK
;
1960 merr
= MERR_INVALOP
;
1962 for (temp
= nasm_instructions
[instruction
->opcode
];
1963 temp
->opcode
!= I_none
; temp
++) {
1964 m
= matches(temp
, instruction
, bits
);
1965 if (m
== MOK_JUMP
) {
1966 if (jmp_match(segment
, offset
, bits
, instruction
, temp
->code
))
1970 } else if (m
== MERR_OPSIZEMISSING
&&
1971 (temp
->flags
& IF_SMASK
) != IF_SX
) {
1973 * Missing operand size and a candidate for fuzzy matching...
1975 for (i
= 0; i
< temp
->operands
; i
++) {
1976 if ((temp
->opd
[i
] & SAME_AS
) == 0)
1977 xsizeflags
[i
] |= temp
->opd
[i
] & SIZE_MASK
;
1979 opsizemissing
= true;
1983 if (merr
== MOK_GOOD
)
1987 /* No match, but see if we can get a fuzzy operand size match... */
1991 for (i
= 0; i
< instruction
->operands
; i
++) {
1993 * We ignore extrinsic operand sizes on registers, so we should
1994 * never try to fuzzy-match on them. This also resolves the case
1995 * when we have e.g. "xmmrm128" in two different positions.
1997 if (is_class(REGISTER
, instruction
->oprs
[i
].type
))
2000 /* This tests if xsizeflags[i] has more than one bit set */
2001 if ((xsizeflags
[i
] & (xsizeflags
[i
]-1)))
2002 goto done
; /* No luck */
2004 instruction
->oprs
[i
].type
|= xsizeflags
[i
]; /* Set the size */
2007 /* Try matching again... */
2008 for (temp
= nasm_instructions
[instruction
->opcode
];
2009 temp
->opcode
!= I_none
; temp
++) {
2010 m
= matches(temp
, instruction
, bits
);
2011 if (m
== MOK_JUMP
) {
2012 if (jmp_match(segment
, offset
, bits
, instruction
, temp
->code
))
2019 if (merr
== MOK_GOOD
)
2028 static enum match_result
matches(const struct itemplate
*itemp
,
2029 insn
*instruction
, int bits
)
2031 int i
, size
[MAX_OPERANDS
], asize
, oprs
;
2032 bool opsizemissing
= false;
2037 if (itemp
->opcode
!= instruction
->opcode
)
2038 return MERR_INVALOP
;
2041 * Count the operands
2043 if (itemp
->operands
!= instruction
->operands
)
2044 return MERR_INVALOP
;
2047 * Check that no spurious colons or TOs are present
2049 for (i
= 0; i
< itemp
->operands
; i
++)
2050 if (instruction
->oprs
[i
].type
& ~itemp
->opd
[i
] & (COLON
| TO
))
2051 return MERR_INVALOP
;
2054 * Process size flags
2056 switch (itemp
->flags
& IF_SMASK
) {
2096 if (itemp
->flags
& IF_ARMASK
) {
2097 /* S- flags only apply to a specific operand */
2098 i
= ((itemp
->flags
& IF_ARMASK
) >> IF_ARSHFT
) - 1;
2099 memset(size
, 0, sizeof size
);
2102 /* S- flags apply to all operands */
2103 for (i
= 0; i
< MAX_OPERANDS
; i
++)
2108 * Check that the operand flags all match up,
2109 * it's a bit tricky so lets be verbose:
2111 * 1) Find out the size of operand. If instruction
2112 * doesn't have one specified -- we're trying to
2113 * guess it either from template (IF_S* flag) or
2116 * 2) If template operand (i) has SAME_AS flag [used for registers only]
2117 * (ie the same operand as was specified somewhere in template, and
2118 * this referred operand index is being achieved via ~SAME_AS)
2119 * we are to be sure that both registers (in template and instruction)
2122 * 3) If template operand do not match the instruction OR
2123 * template has an operand size specified AND this size differ
2124 * from which instruction has (perhaps we got it from code bits)
2126 * a) Check that only size of instruction and operand is differ
2127 * other characteristics do match
2128 * b) Perhaps it's a register specified in instruction so
2129 * for such a case we just mark that operand as "size
2130 * missing" and this will turn on fuzzy operand size
2131 * logic facility (handled by a caller)
2133 for (i
= 0; i
< itemp
->operands
; i
++) {
2134 opflags_t type
= instruction
->oprs
[i
].type
;
2135 if (!(type
& SIZE_MASK
))
2138 if (itemp
->opd
[i
] & SAME_AS
) {
2139 int j
= itemp
->opd
[i
] & ~SAME_AS
;
2140 if (type
!= instruction
->oprs
[j
].type
||
2141 instruction
->oprs
[i
].basereg
!= instruction
->oprs
[j
].basereg
)
2142 return MERR_INVALOP
;
2143 } else if (itemp
->opd
[i
] & ~type
||
2144 ((itemp
->opd
[i
] & SIZE_MASK
) &&
2145 ((itemp
->opd
[i
] ^ type
) & SIZE_MASK
))) {
2146 if ((itemp
->opd
[i
] & ~type
& ~SIZE_MASK
) || (type
& SIZE_MASK
)) {
2147 return MERR_INVALOP
;
2148 } else if (!is_class(REGISTER
, type
)) {
2150 * Note: we don't honor extrinsic operand sizes for registers,
2151 * so "missing operand size" for a register should be
2152 * considered a wildcard match rather than an error.
2154 opsizemissing
= true;
2160 return MERR_OPSIZEMISSING
;
2163 * Check operand sizes
2165 if (itemp
->flags
& (IF_SM
| IF_SM2
)) {
2166 oprs
= (itemp
->flags
& IF_SM2
? 2 : itemp
->operands
);
2167 for (i
= 0; i
< oprs
; i
++) {
2168 asize
= itemp
->opd
[i
] & SIZE_MASK
;
2170 for (i
= 0; i
< oprs
; i
++)
2176 oprs
= itemp
->operands
;
2179 for (i
= 0; i
< itemp
->operands
; i
++) {
2180 if (!(itemp
->opd
[i
] & SIZE_MASK
) &&
2181 (instruction
->oprs
[i
].type
& SIZE_MASK
& ~size
[i
]))
2182 return MERR_OPSIZEMISMATCH
;
2186 * Check template is okay at the set cpu level
2188 if (((itemp
->flags
& IF_PLEVEL
) > cpu
))
2192 * Verify the appropriate long mode flag.
2194 if ((itemp
->flags
& (bits
== 64 ? IF_NOLONG
: IF_LONG
)))
2195 return MERR_BADMODE
;
2198 * Check if special handling needed for Jumps
2200 if ((itemp
->code
[0] & 0374) == 0370)
2206 static ea
*process_ea(operand
* input
, ea
* output
, int bits
,
2207 int addrbits
, int rfield
, opflags_t rflags
)
2209 bool forw_ref
= !!(input
->opflags
& OPFLAG_UNKNOWN
);
2211 output
->rip
= false;
2213 /* REX flags for the rfield operand */
2214 output
->rex
|= rexflags(rfield
, rflags
, REX_R
|REX_P
|REX_W
|REX_H
);
2216 if (is_class(REGISTER
, input
->type
)) { /* register direct */
2220 if (input
->basereg
< EXPR_REG_START
/* Verify as Register */
2221 || input
->basereg
>= REG_ENUM_LIMIT
)
2224 i
= nasm_regvals
[input
->basereg
];
2227 return NULL
; /* Invalid EA register */
2229 output
->rex
|= op_rexflags(input
, REX_B
|REX_P
|REX_W
|REX_H
);
2231 output
->sib_present
= false; /* no SIB necessary */
2232 output
->bytes
= 0; /* no offset necessary either */
2233 output
->modrm
= 0xC0 | ((rfield
& 7) << 3) | (i
& 7);
2234 } else { /* it's a memory reference */
2235 if (input
->basereg
== -1
2236 && (input
->indexreg
== -1 || input
->scale
== 0)) {
2237 /* it's a pure offset */
2239 if (bits
== 64 && ((input
->type
& IP_REL
) == IP_REL
) &&
2240 input
->segment
== NO_SEG
) {
2241 nasm_error(ERR_WARNING
| ERR_PASS1
, "absolute address can not be RIP-relative");
2242 input
->type
&= ~IP_REL
;
2243 input
->type
|= MEMORY
;
2246 if (input
->eaflags
& EAF_BYTEOFFS
||
2247 (input
->eaflags
& EAF_WORDOFFS
&&
2248 input
->disp_size
!= (addrbits
!= 16 ? 32 : 16))) {
2249 nasm_error(ERR_WARNING
| ERR_PASS1
, "displacement size ignored on absolute address");
2252 if (bits
== 64 && (~input
->type
& IP_REL
)) {
2253 int scale
, index
, base
;
2254 output
->sib_present
= true;
2258 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2260 output
->modrm
= 4 | ((rfield
& 7) << 3);
2261 output
->rip
= false;
2263 output
->sib_present
= false;
2264 output
->bytes
= (addrbits
!= 16 ? 4 : 2);
2265 output
->modrm
= (addrbits
!= 16 ? 5 : 6) | ((rfield
& 7) << 3);
2266 output
->rip
= bits
== 64;
2268 } else { /* it's an indirection */
2269 int i
= input
->indexreg
, b
= input
->basereg
, s
= input
->scale
;
2270 int32_t seg
= input
->segment
;
2271 int hb
= input
->hintbase
, ht
= input
->hinttype
;
2272 int t
, it
, bt
; /* register numbers */
2273 opflags_t x
, ix
, bx
; /* register flags */
2276 i
= -1; /* make this easy, at least */
2278 if (i
>= EXPR_REG_START
&& i
< REG_ENUM_LIMIT
) {
2279 it
= nasm_regvals
[i
];
2280 ix
= nasm_reg_flags
[i
];
2286 if (b
>= EXPR_REG_START
&& b
< REG_ENUM_LIMIT
) {
2287 bt
= nasm_regvals
[b
];
2288 bx
= nasm_reg_flags
[b
];
2294 /* check for a 32/64-bit memory reference... */
2295 if ((ix
|bx
) & (BITS32
|BITS64
)) {
2296 /* it must be a 32/64-bit memory reference. Firstly we have
2297 * to check that all registers involved are type E/Rxx. */
2298 int32_t sok
= BITS32
|BITS64
, o
= input
->offset
;
2301 if (!(REG64
& ~ix
) || !(REG32
& ~ix
))
2309 return NULL
; /* Invalid register */
2310 if (~sok
& bx
& SIZE_MASK
)
2311 return NULL
; /* Invalid size */
2315 /* While we're here, ensure the user didn't specify
2317 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2320 if (addrbits
== 16 ||
2321 (addrbits
== 32 && !(sok
& BITS32
)) ||
2322 (addrbits
== 64 && !(sok
& BITS64
)))
2325 /* now reorganize base/index */
2326 if (s
== 1 && bt
!= it
&& bt
!= -1 && it
!= -1 &&
2327 ((hb
== b
&& ht
== EAH_NOTBASE
)
2328 || (hb
== i
&& ht
== EAH_MAKEBASE
))) {
2329 /* swap if hints say so */
2330 t
= bt
, bt
= it
, it
= t
;
2331 x
= bx
, bx
= ix
, ix
= x
;
2333 if (bt
== it
) /* convert EAX+2*EAX to 3*EAX */
2334 bt
= -1, bx
= 0, s
++;
2335 if (bt
== -1 && s
== 1 && !(hb
== it
&& ht
== EAH_NOTBASE
)) {
2336 /* make single reg base, unless hint */
2337 bt
= it
, bx
= ix
, it
= -1, ix
= 0;
2339 if (((s
== 2 && it
!= REG_NUM_ESP
2340 && !(input
->eaflags
& EAF_TIMESTWO
)) || s
== 3
2341 || s
== 5 || s
== 9) && bt
== -1)
2342 bt
= it
, bx
= ix
, s
--; /* convert 3*EAX to EAX+2*EAX */
2343 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
2344 && (input
->eaflags
& EAF_TIMESTWO
))
2345 it
= bt
, ix
= bx
, bt
= -1, bx
= 0, s
= 1;
2346 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2347 if (s
== 1 && it
== REG_NUM_ESP
) {
2348 /* swap ESP into base if scale is 1 */
2349 t
= it
, it
= bt
, bt
= t
;
2350 x
= ix
, ix
= bx
, bx
= x
;
2352 if (it
== REG_NUM_ESP
2353 || (s
!= 1 && s
!= 2 && s
!= 4 && s
!= 8 && it
!= -1))
2354 return NULL
; /* wrong, for various reasons */
2356 output
->rex
|= rexflags(it
, ix
, REX_X
);
2357 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2359 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
) {
2368 if (rm
!= REG_NUM_EBP
&& o
== 0 &&
2369 seg
== NO_SEG
&& !forw_ref
&&
2371 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2373 else if (input
->eaflags
& EAF_BYTEOFFS
||
2374 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2376 && !(input
->eaflags
& EAF_WORDOFFS
)))
2382 output
->sib_present
= false;
2383 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2384 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2387 int mod
, scale
, index
, base
;
2407 default: /* then what the smeg is it? */
2408 return NULL
; /* panic */
2416 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2417 seg
== NO_SEG
&& !forw_ref
&&
2419 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2421 else if (input
->eaflags
& EAF_BYTEOFFS
||
2422 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2424 && !(input
->eaflags
& EAF_WORDOFFS
)))
2430 output
->sib_present
= true;
2431 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2432 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | 4;
2433 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2435 } else { /* it's 16-bit */
2437 int16_t o
= input
->offset
;
2439 /* check for 64-bit long mode */
2443 /* check all registers are BX, BP, SI or DI */
2444 if ((b
!= -1 && b
!= R_BP
&& b
!= R_BX
&& b
!= R_SI
2445 && b
!= R_DI
) || (i
!= -1 && i
!= R_BP
&& i
!= R_BX
2446 && i
!= R_SI
&& i
!= R_DI
))
2449 /* ensure the user didn't specify DWORD/QWORD */
2450 if (input
->disp_size
== 32 || input
->disp_size
== 64)
2453 if (s
!= 1 && i
!= -1)
2454 return NULL
; /* no can do, in 16-bit EA */
2455 if (b
== -1 && i
!= -1) {
2460 if ((b
== R_SI
|| b
== R_DI
) && i
!= -1) {
2465 /* have BX/BP as base, SI/DI index */
2467 return NULL
; /* shouldn't ever happen, in theory */
2468 if (i
!= -1 && b
!= -1 &&
2469 (i
== R_BP
|| i
== R_BX
|| b
== R_SI
|| b
== R_DI
))
2470 return NULL
; /* invalid combinations */
2471 if (b
== -1) /* pure offset: handled above */
2472 return NULL
; /* so if it gets to here, panic! */
2476 switch (i
* 256 + b
) {
2477 case R_SI
* 256 + R_BX
:
2480 case R_DI
* 256 + R_BX
:
2483 case R_SI
* 256 + R_BP
:
2486 case R_DI
* 256 + R_BP
:
2504 if (rm
== -1) /* can't happen, in theory */
2505 return NULL
; /* so panic if it does */
2507 if (o
== 0 && seg
== NO_SEG
&& !forw_ref
&& rm
!= 6 &&
2508 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2510 else if (input
->eaflags
& EAF_BYTEOFFS
||
2511 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2513 && !(input
->eaflags
& EAF_WORDOFFS
)))
2518 output
->sib_present
= false; /* no SIB - it's 16-bit */
2519 output
->bytes
= mod
; /* bytes of offset needed */
2520 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2525 output
->size
= 1 + output
->sib_present
+ output
->bytes
;
2529 static void add_asp(insn
*ins
, int addrbits
)
2534 valid
= (addrbits
== 64) ? 64|32 : 32|16;
2536 switch (ins
->prefixes
[PPS_ASIZE
]) {
2547 valid
&= (addrbits
== 32) ? 16 : 32;
2553 for (j
= 0; j
< ins
->operands
; j
++) {
2554 if (is_class(MEMORY
, ins
->oprs
[j
].type
)) {
2557 /* Verify as Register */
2558 if (ins
->oprs
[j
].indexreg
< EXPR_REG_START
2559 || ins
->oprs
[j
].indexreg
>= REG_ENUM_LIMIT
)
2562 i
= nasm_reg_flags
[ins
->oprs
[j
].indexreg
];
2564 /* Verify as Register */
2565 if (ins
->oprs
[j
].basereg
< EXPR_REG_START
2566 || ins
->oprs
[j
].basereg
>= REG_ENUM_LIMIT
)
2569 b
= nasm_reg_flags
[ins
->oprs
[j
].basereg
];
2571 if (ins
->oprs
[j
].scale
== 0)
2575 int ds
= ins
->oprs
[j
].disp_size
;
2576 if ((addrbits
!= 64 && ds
> 8) ||
2577 (addrbits
== 64 && ds
== 16))
2597 if (valid
& addrbits
) {
2598 ins
->addr_size
= addrbits
;
2599 } else if (valid
& ((addrbits
== 32) ? 16 : 32)) {
2600 /* Add an address size prefix */
2601 enum prefixes pref
= (addrbits
== 32) ? P_A16
: P_A32
;
2602 ins
->prefixes
[PPS_ASIZE
] = pref
;
2603 ins
->addr_size
= (addrbits
== 32) ? 16 : 32;
2606 errfunc(ERR_NONFATAL
, "impossible combination of address sizes");
2607 ins
->addr_size
= addrbits
; /* Error recovery */
2610 defdisp
= ins
->addr_size
== 16 ? 16 : 32;
2612 for (j
= 0; j
< ins
->operands
; j
++) {
2613 if (!(MEM_OFFS
& ~ins
->oprs
[j
].type
) &&
2614 (ins
->oprs
[j
].disp_size
? ins
->oprs
[j
].disp_size
: defdisp
)
2615 != ins
->addr_size
) {
2616 /* mem_offs sizes must match the address size; if not,
2617 strip the MEM_OFFS bit and match only EA instructions */
2618 ins
->oprs
[j
].type
&= ~(MEM_OFFS
& ~MEMORY
);