attempt to make static makefiles aware of outelf32/outelf64
[nasm/nasm.git] / nasm.h
blobf2672a4f9e2af1f6f9d715fc30884771684aacee
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #include <stdio.h>
15 #include <inttypes.h>
16 #include "version.h" /* generated NASM version macros */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif
22 #ifndef NULL
23 #define NULL 0
24 #endif
26 #ifndef FALSE
27 #define FALSE 0 /* comes in handy */
28 #endif
29 #ifndef TRUE
30 #define TRUE 1
31 #endif
33 #define NO_SEG -1L /* null segment value */
34 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
36 #ifndef FILENAME_MAX
37 #define FILENAME_MAX 256
38 #endif
40 #ifndef PREFIX_MAX
41 #define PREFIX_MAX 10
42 #endif
44 #ifndef POSTFIX_MAX
45 #define POSTFIX_MAX 10
46 #endif
48 #define IDLEN_MAX 4096
51 * Name pollution problems: <time.h> on Digital UNIX pulls in some
52 * strange hardware header file which sees fit to define R_SP. We
53 * undefine it here so as not to break the enum below.
55 #ifdef R_SP
56 #undef R_SP
57 #endif
60 * We must declare the existence of this structure type up here,
61 * since we have to reference it before we define it...
63 struct ofmt;
66 * -------------------------
67 * Error reporting functions
68 * -------------------------
72 * An error reporting function should look like this.
74 typedef void (*efunc) (int severity, const char *fmt, ...);
77 * These are the error severity codes which get passed as the first
78 * argument to an efunc.
81 #define ERR_DEBUG 0x00000008 /* put out debugging message */
82 #define ERR_WARNING 0x00000000 /* warn only: no further action */
83 #define ERR_NONFATAL 0x00000001 /* terminate assembly after phase */
84 #define ERR_FATAL 0x00000002 /* instantly fatal: exit with error */
85 #define ERR_PANIC 0x00000003 /* internal error: panic instantly
86 * and dump core for reference */
87 #define ERR_MASK 0x0000000F /* mask off the above codes */
88 #define ERR_NOFILE 0x00000010 /* don't give source file name/line */
89 #define ERR_USAGE 0x00000020 /* print a usage message */
90 #define ERR_PASS1 0x00000040 /* only print this error on pass one */
93 * These codes define specific types of suppressible warning.
96 #define ERR_WARN_MASK 0x0000FF00 /* the mask for this feature */
97 #define ERR_WARN_SHR 8 /* how far to shift right */
99 #define ERR_WARN_MNP 0x00000100 /* macro-num-parameters warning */
100 #define ERR_WARN_MSR 0x00000200 /* macro self-reference */
101 #define ERR_WARN_OL 0x00000300 /* orphan label (no colon, and
102 * alone on line) */
103 #define ERR_WARN_NOV 0x00000400 /* numeric overflow */
104 #define ERR_WARN_GNUELF 0x00000500 /* using GNU ELF extensions */
105 #define ERR_WARN_MAX 5 /* the highest numbered one */
108 * -----------------------
109 * Other function typedefs
110 * -----------------------
114 * A label-lookup function should look like this.
116 typedef int (*lfunc) (char *label, int32_t *segment, int32_t *offset);
119 * And a label-definition function like this. The boolean parameter
120 * `is_norm' states whether the label is a `normal' label (which
121 * should affect the local-label system), or something odder like
122 * an EQU or a segment-base symbol, which shouldn't.
124 typedef void (*ldfunc) (char *label, int32_t segment, int32_t offset,
125 char *special, int is_norm, int isextrn,
126 struct ofmt * ofmt, efunc error);
129 * List-file generators should look like this:
131 typedef struct {
133 * Called to initialize the listing file generator. Before this
134 * is called, the other routines will silently do nothing when
135 * called. The `char *' parameter is the file name to write the
136 * listing to.
138 void (*init) (char *, efunc);
141 * Called to clear stuff up and close the listing file.
143 void (*cleanup) (void);
146 * Called to output binary data. Parameters are: the offset;
147 * the data; the data type. Data types are similar to the
148 * output-format interface, only OUT_ADDRESS will _always_ be
149 * displayed as if it's relocatable, so ensure that any non-
150 * relocatable address has been converted to OUT_RAWDATA by
151 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
152 * dummy call used to give the listing generator an offset to
153 * work with when doing things like uplevel(LIST_TIMES) or
154 * uplevel(LIST_INCBIN).
156 void (*output) (int32_t, const void *, uint32_t);
159 * Called to send a text line to the listing generator. The
160 * `int' parameter is LIST_READ or LIST_MACRO depending on
161 * whether the line came directly from an input file or is the
162 * result of a multi-line macro expansion.
164 void (*line) (int, char *);
167 * Called to change one of the various levelled mechanisms in
168 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
169 * used to increase the nesting level of include files and
170 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
171 * two binary-output-suppression mechanisms for large-scale
172 * pseudo-instructions.
174 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
175 * it indicates the beginning of the expansion of a `nolist'
176 * macro, so anything under that level won't be expanded unless
177 * it includes another file.
179 void (*uplevel) (int);
182 * Reverse the effects of uplevel.
184 void (*downlevel) (int);
185 } ListGen;
188 * The expression evaluator must be passed a scanner function; a
189 * standard scanner is provided as part of nasmlib.c. The
190 * preprocessor will use a different one. Scanners, and the
191 * token-value structures they return, look like this.
193 * The return value from the scanner is always a copy of the
194 * `t_type' field in the structure.
196 struct tokenval {
197 int t_type;
198 int64_t t_integer, t_inttwo;
199 char *t_charptr;
201 typedef int (*scanner) (void *private_data, struct tokenval * tv);
204 * Token types returned by the scanner, in addition to ordinary
205 * ASCII character values, and zero for end-of-string.
207 enum { /* token types, other than chars */
208 TOKEN_INVALID = -1, /* a placeholder value */
209 TOKEN_EOS = 0, /* end of string */
210 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
211 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
212 TOKEN_ERRNUM, /* numeric constant with error in */
213 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
214 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
215 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
216 TOKEN_SHL, TOKEN_SHR, /* << and >> */
217 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
218 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
219 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
220 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
221 TOKEN_FLOAT /* floating-point constant */
224 typedef struct {
225 int32_t segment;
226 int64_t offset;
227 int known;
228 } loc_t;
231 * Expression-evaluator datatype. Expressions, within the
232 * evaluator, are stored as an array of these beasts, terminated by
233 * a record with type==0. Mostly, it's a vector type: each type
234 * denotes some kind of a component, and the value denotes the
235 * multiple of that component present in the expression. The
236 * exception is the WRT type, whose `value' field denotes the
237 * segment to which the expression is relative. These segments will
238 * be segment-base types, i.e. either odd segment values or SEG_ABS
239 * types. So it is still valid to assume that anything with a
240 * `value' field of zero is insignificant.
242 typedef struct {
243 int32_t type; /* a register, or EXPR_xxx */
244 int64_t value; /* must be >= 32 bits */
245 } expr;
248 * The evaluator can also return hints about which of two registers
249 * used in an expression should be the base register. See also the
250 * `operand' structure.
252 struct eval_hints {
253 int64_t base;
254 int type;
258 * The actual expression evaluator function looks like this. When
259 * called, it expects the first token of its expression to already
260 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
261 * it will start by calling the scanner.
263 * If a forward reference happens during evaluation, the evaluator
264 * must set `*fwref' to TRUE if `fwref' is non-NULL.
266 * `critical' is non-zero if the expression may not contain forward
267 * references. The evaluator will report its own error if this
268 * occurs; if `critical' is 1, the error will be "symbol not
269 * defined before use", whereas if `critical' is 2, the error will
270 * be "symbol undefined".
272 * If `critical' has bit 8 set (in addition to its main value: 0x101
273 * and 0x102 correspond to 1 and 2) then an extended expression
274 * syntax is recognised, in which relational operators such as =, <
275 * and >= are accepted, as well as low-precedence logical operators
276 * &&, ^^ and ||.
278 * If `hints' is non-NULL, it gets filled in with some hints as to
279 * the base register in complex effective addresses.
281 #define CRITICAL 0x100
282 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
283 struct tokenval * tv, int *fwref, int critical,
284 efunc error, struct eval_hints * hints);
287 * Special values for expr->type. These come after EXPR_REG_END
288 * as defined in regs.h.
291 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
292 #define EXPR_SIMPLE (EXPR_REG_END+2)
293 #define EXPR_WRT (EXPR_REG_END+3)
294 #define EXPR_SEGBASE (EXPR_REG_END+4)
297 * Preprocessors ought to look like this:
299 typedef struct {
301 * Called at the start of a pass; given a file name, the number
302 * of the pass, an error reporting function, an evaluator
303 * function, and a listing generator to talk to.
305 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
308 * Called to fetch a line of preprocessed source. The line
309 * returned has been malloc'ed, and so should be freed after
310 * use.
312 char *(*getline) (void);
315 * Called at the end of a pass.
317 void (*cleanup) (int);
318 } Preproc;
321 * ----------------------------------------------------------------
322 * Some lexical properties of the NASM source language, included
323 * here because they are shared between the parser and preprocessor
324 * ----------------------------------------------------------------
328 * isidstart matches any character that may start an identifier, and isidchar
329 * matches any character that may appear at places other than the start of an
330 * identifier. E.g. a period may only appear at the start of an identifier
331 * (for local labels), whereas a number may appear anywhere *but* at the
332 * start.
335 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
336 || (c)=='@' )
337 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
338 || (c)=='~' )
340 /* Ditto for numeric constants. */
342 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
343 #define isnumchar(c) ( isalnum(c) )
345 /* This returns the numeric value of a given 'digit'. */
347 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
350 * Data-type flags that get passed to listing-file routines.
352 enum {
353 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
354 LIST_INCBIN, LIST_TIMES
358 * -----------------------------------------------------------
359 * Format of the `insn' structure returned from `parser.c' and
360 * passed into `assemble.c'
361 * -----------------------------------------------------------
365 * Here we define the operand types. These are implemented as bit
366 * masks, since some are subsets of others; e.g. AX in a MOV
367 * instruction is a special operand type, whereas AX in other
368 * contexts is just another 16-bit register. (Also, consider CL in
369 * shift instructions, DX in OUT, etc.)
371 * The basic concept here is that
372 * (class & ~operand) == 0
374 * if and only if "operand" belongs to class type "class".
376 * The bits are assigned as follows:
378 * Bits 0-7: sizes
379 * 0: 8 bits (BYTE)
380 * 1: 16 bits (WORD)
381 * 2: 32 bits (DWORD)
382 * 3: 64 bits (QWORD)
383 * 4: 80 bits (TWORD)
384 * 5: FAR
385 * 6: NEAR
386 * 7: SHORT
388 * Bits 8-11: modifiers
389 * 8: TO
390 * 9: COLON
391 * 10: STRICT
392 * 11: (reserved)
394 * Bits 12-15: type of operand
395 * 12: REGISTER
396 * 13: IMMEDIATE
397 * 14: MEMORY (always has REGMEM attribute as well)
398 * 15: REGMEM (valid EA operand)
400 * Bits 16-19: subclasses
401 * With REG_CDT:
402 * 16: REG_CREG (CRx)
403 * 17: REG_DREG (DRx)
404 * 18: REG_TREG (TRx)
406 * With REG_GPR:
407 * 16: REG_ACCUM (AL, AX, EAX, RAX)
408 * 17: REG_COUNT (CL, CX, ECX, RCX)
409 * 18: REG_DATA (DL, DX, EDX, RDX)
410 * 19: REG_HIGH (AH, CH, DH, BH)
412 * With REG_SREG:
413 * 16: REG_CS
414 * 17: REG_DESS (DS, ES, SS)
415 * 18: REG_FSGS
416 * 19: REG_SEG67
418 * With FPUREG:
419 * 16: FPU0
421 * With MEMORY:
422 * 16: MEM_OFFS (this is a simple offset)
424 * With IMMEDIATE:
425 * 16: UNITY (1)
426 * 17: BYTENESS (-128..127)
428 * Bits 20-26: register classes
429 * 20: REG_CDT (CRx, DRx, TRx)
430 * 21: REG_GPR (integer register)
431 * 22: REG_SREG
432 * 23: IP_REG (RIP or EIP)
433 * 24: FPUREG
434 * 25: MMXREG
435 * 26: XMMREG
437 * Bits 27-31 are currently unallocated.
440 /* Size, and other attributes, of the operand */
441 #define BITS8 0x00000001L
442 #define BITS16 0x00000002L
443 #define BITS32 0x00000004L
444 #define BITS64 0x00000008L /* x64 and FPU only */
445 #define BITS80 0x00000010L /* FPU only */
446 #define FAR 0x00000020L /* grotty: this means 16:16 or */
447 /* 16:32, like in CALL/JMP */
448 #define NEAR 0x00000040L
449 #define SHORT 0x00000080L /* and this means what it says :) */
451 #define SIZE_MASK 0x000000FFL /* all the size attributes */
453 /* Modifiers */
454 #define MODIFIER_MASK 0x00000f00L
455 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
456 #define COLON 0x00000200L /* operand is followed by a colon */
457 #define STRICT 0x00000400L /* do not optimize this operand */
459 /* Type of operand: memory reference, register, etc. */
460 #define OPTYPE_MASK 0x0000f000L
461 #define REGISTER 0x00001000L /* register number in 'basereg' */
462 #define IMMEDIATE 0x00002000L
463 #define MEMORY 0x0000c000L
464 #define REGMEM 0x00008000L /* for r/m, ie EA, operands */
466 /* Register classes */
467 #define REG_EA 0x00009000L /* 'normal' reg, qualifies as EA */
468 #define REG_GPR 0x00209000L /* integer register */
469 #define REG8 0x00209001L /* 8-bit GPR */
470 #define REG16 0x00209002L /* 16-bit GPR */
471 #define REG32 0x00209004L /* 32-bit GPR */
472 #define REG64 0x00209008L /* 64-bit GPR */
473 #define IP_REG 0x00801000L /* RIP or EIP register */
474 #define RIPREG 0x00801008L /* RIP */
475 #define EIPREG 0x00801004L /* EIP */
476 #define FPUREG 0x01001000L /* floating point stack registers */
477 #define FPU0 0x01011000L /* FPU stack register zero */
478 #define MMXREG 0x04009001L /* MMX registers */
479 #define XMMREG 0x04009002L /* XMM Katmai reg */
480 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
481 #define REG_CREG 0x00111004L /* CRn */
482 #define REG_DREG 0x00121004L /* DRn */
483 #define REG_TREG 0x00141004L /* TRn */
484 #define REG_SREG 0x00401002L /* any segment register */
485 #define REG_CS 0x00411002L /* CS */
486 #define REG_DESS 0x00421002L /* DS, ES, SS */
487 #define REG_FSGS 0x00441002L /* FS, GS */
488 #define REG_SEG67 0x00481002L /* Unimplemented segment registers */
490 #define REG_RIP 0x00801008L /* RIP relative addressing */
491 #define REG_EIP 0x00801004L /* EIP relative addressing */
493 /* Special GPRs */
494 #define REG_SMASK 0x000f0000L /* a mask for the following */
495 #define REG_ACCUM 0x00219000L /* accumulator: AL, AX, EAX, RAX */
496 #define REG_AL 0x00219001L
497 #define REG_AX 0x00219002L
498 #define REG_EAX 0x00219004L
499 #define REG_RAX 0x00219008L
500 #define REG_COUNT 0x00229000L /* counter: CL, CX, ECX, RCX */
501 #define REG_CL 0x00229001L
502 #define REG_CX 0x00229002L
503 #define REG_ECX 0x00229004L
504 #define REG_RCX 0x00229008L
505 #define REG_DL 0x00249001L /* data: DL, DX, EDX, RDX */
506 #define REG_DX 0x00249002L
507 #define REG_EDX 0x00249004L
508 #define REG_RDX 0x00249008L
509 #define REG_HIGH 0x00289001L /* high regs: AH, CH, DH, BH */
511 /* special type of EA */
512 #define MEM_OFFS 0x00214000L /* simple [address] offset */
514 /* special type of immediate operand */
515 #define UNITY 0x00012000L /* for shift/rotate instructions */
516 #define SBYTE 0x00022000L /* for op r16/32,immediate instrs. */
518 /* Register names automatically generated from regs.dat */
519 #include "regs.h"
521 enum { /* condition code names */
522 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
523 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
524 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z
528 * REX flags
530 #define REX_H 0x80 /* High register present, REX forbidden */
531 #define REX_P 0x40 /* REX prefix present/required */
532 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
533 #define REX_W 0x08 /* 64-bit operand size */
534 #define REX_R 0x04 /* ModRM reg extension */
535 #define REX_X 0x02 /* SIB index extension */
536 #define REX_B 0x01 /* ModRM r/m extension */
537 #define REX_REAL 0x4f /* Actual REX prefix bits */
540 * Note that because segment registers may be used as instruction
541 * prefixes, we must ensure the enumerations for prefixes and
542 * register names do not overlap.
544 enum { /* instruction prefixes */
545 PREFIX_ENUM_START = REG_ENUM_LIMIT,
546 P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32,
547 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES
550 enum { /* extended operand types */
551 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
554 enum { /* special EA flags */
555 EAF_BYTEOFFS = 1, /* force offset part to byte size */
556 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
557 EAF_TIMESTWO = 4 /* really do EAX*2 not EAX+EAX */
560 enum { /* values for `hinttype' */
561 EAH_NOHINT = 0, /* no hint at all - our discretion */
562 EAH_MAKEBASE = 1, /* try to make given reg the base */
563 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
566 typedef struct { /* operand to an instruction */
567 int32_t type; /* type of operand */
568 int addr_size; /* 0 means default; 16; 32; 64 */
569 int basereg, indexreg, scale; /* registers and scale involved */
570 int hintbase, hinttype; /* hint as to real base register */
571 int32_t segment; /* immediate segment, if needed */
572 int64_t offset; /* any immediate number */
573 int32_t wrt; /* segment base it's relative to */
574 int eaflags; /* special EA flags */
575 int opflags; /* see OPFLAG_* defines below */
576 } operand;
578 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
579 #define OPFLAG_EXTERN 2 /* operand is an external reference */
581 typedef struct extop { /* extended operand */
582 struct extop *next; /* linked list */
583 int32_t type; /* defined above */
584 char *stringval; /* if it's a string, then here it is */
585 int stringlen; /* ... and here's how long it is */
586 int32_t segment; /* if it's a number/address, then... */
587 int64_t offset; /* ... it's given here ... */
588 int32_t wrt; /* ... and here */
589 } extop;
591 #define MAXPREFIX 4
593 typedef struct { /* an instruction itself */
594 char *label; /* the label defined, or NULL */
595 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
596 int nprefix; /* number of entries in above */
597 int opcode; /* the opcode - not just the string */
598 int condition; /* the condition code, if Jcc/SETcc */
599 int operands; /* how many operands? 0-3
600 * (more if db et al) */
601 operand oprs[3]; /* the operands, defined as above */
602 extop *eops; /* extended operands */
603 int eops_float; /* true if DD and floating */
604 int32_t times; /* repeat count (TIMES prefix) */
605 int forw_ref; /* is there a forward reference? */
606 uint8_t rex; /* Special REX Prefix */
607 } insn;
609 enum geninfo { GI_SWITCH };
611 * ------------------------------------------------------------
612 * The data structure defining an output format driver, and the
613 * interfaces to the functions therein.
614 * ------------------------------------------------------------
617 struct ofmt {
619 * This is a short (one-liner) description of the type of
620 * output generated by the driver.
622 const char *fullname;
625 * This is a single keyword used to select the driver.
627 const char *shortname;
631 * this is reserved for out module specific help.
632 * It is set to NULL in all the out modules and is not implemented
633 * in the main program
635 const char *helpstring;
638 * this is a pointer to the first element of the debug information
640 struct dfmt **debug_formats;
643 * and a pointer to the element that is being used
644 * note: this is set to the default at compile time and changed if the
645 * -F option is selected. If developing a set of new debug formats for
646 * an output format, be sure to set this to whatever default you want
649 struct dfmt *current_dfmt;
652 * This, if non-NULL, is a NULL-terminated list of `char *'s
653 * pointing to extra standard macros supplied by the object
654 * format (e.g. a sensible initial default value of __SECT__,
655 * and user-level equivalents for any format-specific
656 * directives).
658 const char **stdmac;
661 * This procedure is called at the start of an output session.
662 * It tells the output format what file it will be writing to,
663 * what routine to report errors through, and how to interface
664 * to the label manager and expression evaluator if necessary.
665 * It also gives it a chance to do other initialisation.
667 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
670 * This procedure is called to pass generic information to the
671 * object file. The first parameter gives the information type
672 * (currently only command line switches)
673 * and the second parameter gives the value. This function returns
674 * 1 if recognized, 0 if unrecognized
676 int (*setinfo) (enum geninfo type, char **string);
679 * This procedure is called by assemble() to write actual
680 * generated code or data to the object file. Typically it
681 * doesn't have to actually _write_ it, just store it for
682 * later.
684 * The `type' argument specifies the type of output data, and
685 * usually the size as well: its contents are described below.
687 void (*output) (int32_t segto, const void *data, uint32_t type,
688 int32_t segment, int32_t wrt);
691 * This procedure is called once for every symbol defined in
692 * the module being assembled. It gives the name and value of
693 * the symbol, in NASM's terms, and indicates whether it has
694 * been declared to be global. Note that the parameter "name",
695 * when passed, will point to a piece of static storage
696 * allocated inside the label manager - it's safe to keep using
697 * that pointer, because the label manager doesn't clean up
698 * until after the output driver has.
700 * Values of `is_global' are: 0 means the symbol is local; 1
701 * means the symbol is global; 2 means the symbol is common (in
702 * which case `offset' holds the _size_ of the variable).
703 * Anything else is available for the output driver to use
704 * internally.
706 * This routine explicitly _is_ allowed to call the label
707 * manager to define further symbols, if it wants to, even
708 * though it's been called _from_ the label manager. That much
709 * re-entrancy is guaranteed in the label manager. However, the
710 * label manager will in turn call this routine, so it should
711 * be prepared to be re-entrant itself.
713 * The `special' parameter contains special information passed
714 * through from the command that defined the label: it may have
715 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
716 * be obvious to the output format from the other parameters.
718 void (*symdef) (char *name, int32_t segment, int32_t offset, int is_global,
719 char *special);
722 * This procedure is called when the source code requests a
723 * segment change. It should return the corresponding segment
724 * _number_ for the name, or NO_SEG if the name is not a valid
725 * segment name.
727 * It may also be called with NULL, in which case it is to
728 * return the _default_ section number for starting assembly in.
730 * It is allowed to modify the string it is given a pointer to.
732 * It is also allowed to specify a default instruction size for
733 * the segment, by setting `*bits' to 16 or 32. Or, if it
734 * doesn't wish to define a default, it can leave `bits' alone.
736 int32_t (*section) (char *name, int pass, int *bits);
739 * This procedure is called to modify the segment base values
740 * returned from the SEG operator. It is given a segment base
741 * value (i.e. a segment value with the low bit set), and is
742 * required to produce in return a segment value which may be
743 * different. It can map segment bases to absolute numbers by
744 * means of returning SEG_ABS types.
746 * It should return NO_SEG if the segment base cannot be
747 * determined; the evaluator (which calls this routine) is
748 * responsible for throwing an error condition if that occurs
749 * in pass two or in a critical expression.
751 int32_t (*segbase) (int32_t segment);
754 * This procedure is called to allow the output driver to
755 * process its own specific directives. When called, it has the
756 * directive word in `directive' and the parameter string in
757 * `value'. It is called in both assembly passes, and `pass'
758 * will be either 1 or 2.
760 * This procedure should return zero if it does not _recognise_
761 * the directive, so that the main program can report an error.
762 * If it recognises the directive but then has its own errors,
763 * it should report them itself and then return non-zero. It
764 * should also return non-zero if it correctly processes the
765 * directive.
767 int (*directive) (char *directive, char *value, int pass);
770 * This procedure is called before anything else - even before
771 * the "init" routine - and is passed the name of the input
772 * file from which this output file is being generated. It
773 * should return its preferred name for the output file in
774 * `outname', if outname[0] is not '\0', and do nothing to
775 * `outname' otherwise. Since it is called before the driver is
776 * properly initialized, it has to be passed its error handler
777 * separately.
779 * This procedure may also take its own copy of the input file
780 * name for use in writing the output file: it is _guaranteed_
781 * that it will be called before the "init" routine.
783 * The parameter `outname' points to an area of storage
784 * guaranteed to be at least FILENAME_MAX in size.
786 void (*filename) (char *inname, char *outname, efunc error);
789 * This procedure is called after assembly finishes, to allow
790 * the output driver to clean itself up and free its memory.
791 * Typically, it will also be the point at which the object
792 * file actually gets _written_.
794 * One thing the cleanup routine should always do is to close
795 * the output file pointer.
797 void (*cleanup) (int debuginfo);
801 * values for the `type' parameter to an output function. Each one
802 * must have the actual number of _bytes_ added to it.
804 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
805 * which will be a relative jump. For this we need to know the
806 * distance in bytes from the start of the relocated record until
807 * the end of the containing instruction. _This_ is what is stored
808 * in the size part of the parameter, in this case.
810 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
811 * and the contents of the "data" parameter is irrelevant.
813 * The "data" parameter for the output function points to a "int32_t",
814 * containing the address in question, unless the type is
815 * OUT_RAWDATA, in which case it points to an "uint8_t"
816 * array.
818 #define OUT_RAWDATA 0x00000000UL
819 #define OUT_ADDRESS 0x10000000UL
820 #define OUT_REL2ADR 0x20000000UL
821 #define OUT_REL4ADR 0x30000000UL
822 #define OUT_RESERVE 0x40000000UL
823 #define OUT_TYPMASK 0xF0000000UL
824 #define OUT_SIZMASK 0x0FFFFFFFUL
827 * ------------------------------------------------------------
828 * The data structure defining a debug format driver, and the
829 * interfaces to the functions therein.
830 * ------------------------------------------------------------
833 struct dfmt {
836 * This is a short (one-liner) description of the type of
837 * output generated by the driver.
839 const char *fullname;
842 * This is a single keyword used to select the driver.
844 const char *shortname;
847 * init - called initially to set up local pointer to object format,
848 * void pointer to implementation defined data, file pointer (which
849 * probably won't be used, but who knows?), and error function.
851 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
854 * linenum - called any time there is output with a change of
855 * line number or file.
857 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
860 * debug_deflabel - called whenever a label is defined. Parameters
861 * are the same as to 'symdef()' in the output format. This function
862 * would be called before the output format version.
865 void (*debug_deflabel) (char *name, int32_t segment, int32_t offset,
866 int is_global, char *special);
868 * debug_directive - called whenever a DEBUG directive other than 'LINE'
869 * is encountered. 'directive' contains the first parameter to the
870 * DEBUG directive, and params contains the rest. For example,
871 * 'DEBUG VAR _somevar:int' would translate to a call to this
872 * function with 'directive' equal to "VAR" and 'params' equal to
873 * "_somevar:int".
875 void (*debug_directive) (const char *directive, const char *params);
878 * typevalue - called whenever the assembler wishes to register a type
879 * for the last defined label. This routine MUST detect if a type was
880 * already registered and not re-register it.
882 void (*debug_typevalue) (int32_t type);
885 * debug_output - called whenever output is required
886 * 'type' is the type of info required, and this is format-specific
888 void (*debug_output) (int type, void *param);
891 * cleanup - called after processing of file is complete
893 void (*cleanup) (void);
897 * The type definition macros
898 * for debugging
900 * low 3 bits: reserved
901 * next 5 bits: type
902 * next 24 bits: number of elements for arrays (0 for labels)
905 #define TY_UNKNOWN 0x00
906 #define TY_LABEL 0x08
907 #define TY_BYTE 0x10
908 #define TY_WORD 0x18
909 #define TY_DWORD 0x20
910 #define TY_FLOAT 0x28
911 #define TY_QWORD 0x30
912 #define TY_TBYTE 0x38
913 #define TY_COMMON 0xE0
914 #define TY_SEG 0xE8
915 #define TY_EXTERN 0xF0
916 #define TY_EQU 0xF8
918 #define TYM_TYPE(x) ((x) & 0xF8)
919 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
921 #define TYS_ELEMENTS(x) ((x) << 8)
923 * -----
924 * Other
925 * -----
929 * This is a useful #define which I keep meaning to use more often:
930 * the number of elements of a statically defined array.
933 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
935 extern int tasm_compatible_mode;
938 * This declaration passes the "pass" number to all other modules
939 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
940 * where 0 = optimizing pass
941 * 1 = pass 1
942 * 2 = pass 2
945 extern int pass0; /* this is globally known */
946 extern int optimizing;
947 extern int globalbits; /* this is globally known */
948 extern int maxbits; /* this is globally known */
950 #endif