1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2013 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * assemble.c code generation for the Netwide Assembler
37 * the actual codes (C syntax, i.e. octal):
38 * \0 - terminates the code. (Unless it's a literal of course.)
39 * \1..\4 - that many literal bytes follow in the code stream
40 * \5 - add 4 to the primary operand number (b, low octdigit)
41 * \6 - add 4 to the secondary operand number (a, middle octdigit)
42 * \7 - add 4 to both the primary and the secondary operand number
43 * \10..\13 - a literal byte follows in the code stream, to be added
44 * to the register value of operand 0..3
45 * \20..\23 - a byte immediate operand, from operand 0..3
46 * \24..\27 - a zero-extended byte immediate operand, from operand 0..3
47 * \30..\33 - a word immediate operand, from operand 0..3
48 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
49 * assembly mode or the operand-size override on the operand
50 * \40..\43 - a long immediate operand, from operand 0..3
51 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
52 * depending on the address size of the instruction.
53 * \50..\53 - a byte relative operand, from operand 0..3
54 * \54..\57 - a qword immediate operand, from operand 0..3
55 * \60..\63 - a word relative operand, from operand 0..3
56 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
57 * assembly mode or the operand-size override on the operand
58 * \70..\73 - a long relative operand, from operand 0..3
59 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
60 * \1ab - a ModRM, calculated on EA in operand a, with the spare
61 * field the register value of operand b.
62 * \172\ab - the register number from operand a in bits 7..4, with
63 * the 4-bit immediate from operand b in bits 3..0.
64 * \173\xab - the register number from operand a in bits 7..4, with
65 * the value b in bits 3..0.
66 * \174..\177 - the register number from operand 0..3 in bits 7..4, and
67 * an arbitrary value in bits 3..0 (assembled as zero.)
68 * \2ab - a ModRM, calculated on EA in operand a, with the spare
69 * field equal to digit b.
71 * \240..\243 - this instruction uses EVEX rather than REX or VEX/XOP, with the
72 * V field taken from operand 0..3.
73 * \250 - this instruction uses EVEX rather than REX or VEX/XOP, with the
74 * V field set to 1111b.
75 * EVEX prefixes are followed by the sequence:
76 * \cm\wlp\tup where cm is:
78 * c = 2 for EVEX and m is the legacy escape (0f, 0f38, 0f3a)
81 * [l0] ll = 0 (.128, .lz)
84 * [lig] ll = 3 for EVEX.L'L don't care (always assembled as 0)
86 * [w0] ww = 0 for W = 0
87 * [w1] ww = 1 for W = 1
88 * [wig] ww = 2 for W don't care (always assembled as 0)
89 * [ww] ww = 3 for W used as REX.W
91 * [p0] pp = 0 for no prefix
92 * [60] pp = 1 for legacy prefix 60
96 * tup is tuple type for Disp8*N from %tuple_codes in insns.pl
97 * (compressed displacement encoding)
99 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
100 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
101 * V field taken from operand 0..3.
102 * \270 - this instruction uses VEX/XOP rather than REX, with the
103 * V field set to 1111b.
105 * VEX/XOP prefixes are followed by the sequence:
106 * \tmm\wlp where mm is the M field; and wlp is:
108 * [l0] ll = 0 for L = 0 (.128, .lz)
109 * [l1] ll = 1 for L = 1 (.256)
110 * [lig] ll = 2 for L don't care (always assembled as 0)
112 * [w0] ww = 0 for W = 0
113 * [w1 ] ww = 1 for W = 1
114 * [wig] ww = 2 for W don't care (always assembled as 0)
115 * [ww] ww = 3 for W used as REX.W
117 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
119 * \271 - instruction takes XRELEASE (F3) with or without lock
120 * \272 - instruction takes XACQUIRE/XRELEASE with or without lock
121 * \273 - instruction takes XACQUIRE/XRELEASE with lock only
122 * \274..\277 - a byte immediate operand, from operand 0..3, sign-extended
123 * to the operand size (if o16/o32/o64 present) or the bit size
124 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
125 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
126 * \312 - (disassembler only) invalid with non-default address size.
127 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
128 * \314 - (disassembler only) invalid with REX.B
129 * \315 - (disassembler only) invalid with REX.X
130 * \316 - (disassembler only) invalid with REX.R
131 * \317 - (disassembler only) invalid with REX.W
132 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
133 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
134 * \322 - indicates that this instruction is only valid when the
135 * operand size is the default (instruction to disassembler,
136 * generates no code in the assembler)
137 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
138 * \324 - indicates 64-bit operand size requiring REX prefix.
139 * \325 - instruction which always uses spl/bpl/sil/dil
140 * \326 - instruction not valid with 0xF3 REP prefix. Hint for
141 disassembler only; for SSE instructions.
142 * \330 - a literal byte follows in the code stream, to be added
143 * to the condition code value of the instruction.
144 * \331 - instruction not valid with REP prefix. Hint for
145 * disassembler only; for SSE instructions.
146 * \332 - REP prefix (0xF2 byte) used as opcode extension.
147 * \333 - REP prefix (0xF3 byte) used as opcode extension.
148 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
149 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
150 * \336 - force a REP(E) prefix (0xF3) even if not specified.
151 * \337 - force a REPNE prefix (0xF2) even if not specified.
152 * \336-\337 are still listed as prefixes in the disassembler.
153 * \340 - reserve <operand 0> bytes of uninitialized storage.
154 * Operand 0 had better be a segmentless constant.
155 * \341 - this instruction needs a WAIT "prefix"
156 * \360 - no SSE prefix (== \364\331)
157 * \361 - 66 SSE prefix (== \366\331)
158 * \364 - operand-size prefix (0x66) not permitted
159 * \365 - address-size prefix (0x67) not permitted
160 * \366 - operand-size prefix (0x66) used as opcode extension
161 * \367 - address-size prefix (0x67) used as opcode extension
162 * \370,\371 - match only if operand 0 meets byte jump criteria.
163 * 370 is used for Jcc, 371 is used for JMP.
164 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
165 * used for conditional jump over longer jump
166 * \374 - this instruction takes an XMM VSIB memory EA
167 * \375 - this instruction takes an YMM VSIB memory EA
168 * \376 - this instruction takes an ZMM VSIB memory EA
171 #include "compiler.h"
175 #include <inttypes.h>
179 #include "assemble.h"
185 * Matching errors. These should be sorted so that more specific
186 * errors come later in the sequence.
195 * Matching success; the conditional ones first
197 MOK_JUMP
, /* Matching OK but needs jmp_match() */
198 MOK_GOOD
/* Matching unconditionally OK */
202 enum ea_type type
; /* what kind of EA is this? */
203 int sib_present
; /* is a SIB byte necessary? */
204 int bytes
; /* # of bytes of offset needed */
205 int size
; /* lazy - this is sib+bytes+1 */
206 uint8_t modrm
, sib
, rex
, rip
; /* the bytes themselves */
207 int8_t disp8
; /* compressed displacement for EVEX */
210 #define GEN_SIB(scale, index, base) \
211 (((scale) << 6) | ((index) << 3) | ((base)))
213 #define GEN_MODRM(mod, reg, rm) \
214 (((mod) << 6) | (((reg) & 7) << 3) | ((rm) & 7))
216 static uint32_t cpu
; /* cpu level received from nasm.c */
217 static efunc errfunc
;
218 static struct ofmt
*outfmt
;
219 static ListGen
*list
;
221 static int64_t calcsize(int32_t, int64_t, int, insn
*,
222 const struct itemplate
*);
223 static void gencode(int32_t segment
, int64_t offset
, int bits
,
224 insn
* ins
, const struct itemplate
*temp
,
226 static enum match_result
find_match(const struct itemplate
**tempp
,
228 int32_t segment
, int64_t offset
, int bits
);
229 static enum match_result
matches(const struct itemplate
*, insn
*, int bits
);
230 static opflags_t
regflag(const operand
*);
231 static int32_t regval(const operand
*);
232 static int rexflags(int, opflags_t
, int);
233 static int op_rexflags(const operand
*, int);
234 static int op_evexflags(const operand
*, int, uint8_t);
235 static void add_asp(insn
*, int);
237 static enum ea_type
process_ea(operand
*, ea
*, int, int, opflags_t
, insn
*);
239 static int has_prefix(insn
* ins
, enum prefix_pos pos
, int prefix
)
241 return ins
->prefixes
[pos
] == prefix
;
244 static void assert_no_prefix(insn
* ins
, enum prefix_pos pos
)
246 if (ins
->prefixes
[pos
])
247 errfunc(ERR_NONFATAL
, "invalid %s prefix",
248 prefix_name(ins
->prefixes
[pos
]));
251 static const char *size_name(int size
)
273 static void warn_overflow(int pass
, int size
)
275 errfunc(ERR_WARNING
| pass
| ERR_WARN_NOV
,
276 "%s data exceeds bounds", size_name(size
));
279 static void warn_overflow_const(int64_t data
, int size
)
281 if (overflow_general(data
, size
))
282 warn_overflow(ERR_PASS1
, size
);
285 static void warn_overflow_opd(const struct operand
*o
, int size
)
287 if (o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
) {
288 if (overflow_general(o
->offset
, size
))
289 warn_overflow(ERR_PASS2
, size
);
294 * This routine wrappers the real output format's output routine,
295 * in order to pass a copy of the data off to the listing file
296 * generator at the same time.
298 static void out(int64_t offset
, int32_t segto
, const void *data
,
299 enum out_type type
, uint64_t size
,
300 int32_t segment
, int32_t wrt
)
302 static int32_t lineno
= 0; /* static!!! */
303 static char *lnfname
= NULL
;
306 if (type
== OUT_ADDRESS
&& segment
== NO_SEG
&& wrt
== NO_SEG
) {
308 * This is a non-relocated address, and we're going to
309 * convert it into RAWDATA format.
314 errfunc(ERR_PANIC
, "OUT_ADDRESS with size > 8");
318 WRITEADDR(q
, *(int64_t *)data
, size
);
323 list
->output(offset
, data
, type
, size
);
326 * this call to src_get determines when we call the
327 * debug-format-specific "linenum" function
328 * it updates lineno and lnfname to the current values
329 * returning 0 if "same as last time", -2 if lnfname
330 * changed, and the amount by which lineno changed,
331 * if it did. thus, these variables must be static
334 if (src_get(&lineno
, &lnfname
))
335 outfmt
->current_dfmt
->linenum(lnfname
, lineno
, segto
);
337 outfmt
->output(segto
, data
, type
, size
, segment
, wrt
);
340 static void out_imm8(int64_t offset
, int32_t segment
, struct operand
*opx
)
342 if (opx
->segment
!= NO_SEG
) {
343 uint64_t data
= opx
->offset
;
344 out(offset
, segment
, &data
, OUT_ADDRESS
, 1, opx
->segment
, opx
->wrt
);
346 uint8_t byte
= opx
->offset
;
347 out(offset
, segment
, &byte
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
351 static bool jmp_match(int32_t segment
, int64_t offset
, int bits
,
352 insn
* ins
, const struct itemplate
*temp
)
355 const uint8_t *code
= temp
->code
;
358 if (((c
& ~1) != 0370) || (ins
->oprs
[0].type
& STRICT
))
362 if (optimizing
< 0 && c
== 0371)
365 isize
= calcsize(segment
, offset
, bits
, ins
, temp
);
367 if (ins
->oprs
[0].opflags
& OPFLAG_UNKNOWN
)
368 /* Be optimistic in pass 1 */
371 if (ins
->oprs
[0].segment
!= segment
)
374 isize
= ins
->oprs
[0].offset
- offset
- isize
; /* isize is delta */
375 return (isize
>= -128 && isize
<= 127); /* is it byte size? */
378 int64_t assemble(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
379 insn
* instruction
, struct ofmt
*output
, efunc error
,
382 const struct itemplate
*temp
;
387 int64_t start
= offset
;
388 int64_t wsize
; /* size for DB etc. */
390 errfunc
= error
; /* to pass to other functions */
392 outfmt
= output
; /* likewise */
393 list
= listgen
; /* and again */
395 wsize
= idata_bytes(instruction
->opcode
);
401 int32_t t
= instruction
->times
;
404 "instruction->times < 0 (%ld) in assemble()", t
);
406 while (t
--) { /* repeat TIMES times */
407 list_for_each(e
, instruction
->eops
) {
408 if (e
->type
== EOT_DB_NUMBER
) {
410 errfunc(ERR_NONFATAL
,
411 "integer supplied to a DT, DO or DY"
414 out(offset
, segment
, &e
->offset
,
415 OUT_ADDRESS
, wsize
, e
->segment
, e
->wrt
);
418 } else if (e
->type
== EOT_DB_STRING
||
419 e
->type
== EOT_DB_STRING_FREE
) {
422 out(offset
, segment
, e
->stringval
,
423 OUT_RAWDATA
, e
->stringlen
, NO_SEG
, NO_SEG
);
424 align
= e
->stringlen
% wsize
;
427 align
= wsize
- align
;
428 out(offset
, segment
, zero_buffer
,
429 OUT_RAWDATA
, align
, NO_SEG
, NO_SEG
);
431 offset
+= e
->stringlen
+ align
;
434 if (t
> 0 && t
== instruction
->times
- 1) {
436 * Dummy call to list->output to give the offset to the
439 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
440 list
->uplevel(LIST_TIMES
);
443 if (instruction
->times
> 1)
444 list
->downlevel(LIST_TIMES
);
445 return offset
- start
;
448 if (instruction
->opcode
== I_INCBIN
) {
449 const char *fname
= instruction
->eops
->stringval
;
452 fp
= fopen(fname
, "rb");
454 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
456 } else if (fseek(fp
, 0L, SEEK_END
) < 0) {
457 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
461 static char buf
[4096];
462 size_t t
= instruction
->times
;
467 if (instruction
->eops
->next
) {
468 base
= instruction
->eops
->next
->offset
;
470 if (instruction
->eops
->next
->next
&&
471 len
> (size_t)instruction
->eops
->next
->next
->offset
)
472 len
= (size_t)instruction
->eops
->next
->next
->offset
;
475 * Dummy call to list->output to give the offset to the
478 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
479 list
->uplevel(LIST_INCBIN
);
483 fseek(fp
, base
, SEEK_SET
);
487 m
= fread(buf
, 1, l
> sizeof(buf
) ? sizeof(buf
) : l
, fp
);
490 * This shouldn't happen unless the file
491 * actually changes while we are reading
495 "`incbin': unexpected EOF while"
496 " reading file `%s'", fname
);
497 t
= 0; /* Try to exit cleanly */
500 out(offset
, segment
, buf
, OUT_RAWDATA
, m
,
505 list
->downlevel(LIST_INCBIN
);
506 if (instruction
->times
> 1) {
508 * Dummy call to list->output to give the offset to the
511 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
512 list
->uplevel(LIST_TIMES
);
513 list
->downlevel(LIST_TIMES
);
516 return instruction
->times
* len
;
518 return 0; /* if we're here, there's an error */
521 /* Check to see if we need an address-size prefix */
522 add_asp(instruction
, bits
);
524 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
528 int64_t insn_size
= calcsize(segment
, offset
, bits
, instruction
, temp
);
529 itimes
= instruction
->times
;
530 if (insn_size
< 0) /* shouldn't be, on pass two */
531 error(ERR_PANIC
, "errors made it through from pass one");
534 for (j
= 0; j
< MAXPREFIX
; j
++) {
536 switch (instruction
->prefixes
[j
]) {
556 error(ERR_WARNING
| ERR_PASS2
,
557 "cs segment base generated, but will be ignored in 64-bit mode");
563 error(ERR_WARNING
| ERR_PASS2
,
564 "ds segment base generated, but will be ignored in 64-bit mode");
570 error(ERR_WARNING
| ERR_PASS2
,
571 "es segment base generated, but will be ignored in 64-bit mode");
583 error(ERR_WARNING
| ERR_PASS2
,
584 "ss segment base generated, but will be ignored in 64-bit mode");
591 "segr6 and segr7 cannot be used as prefixes");
596 "16-bit addressing is not supported "
598 } else if (bits
!= 16)
608 "64-bit addressing is only supported "
632 error(ERR_PANIC
, "invalid instruction prefix");
635 out(offset
, segment
, &c
, OUT_RAWDATA
, 1,
640 insn_end
= offset
+ insn_size
;
641 gencode(segment
, offset
, bits
, instruction
,
644 if (itimes
> 0 && itimes
== instruction
->times
- 1) {
646 * Dummy call to list->output to give the offset to the
649 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
650 list
->uplevel(LIST_TIMES
);
653 if (instruction
->times
> 1)
654 list
->downlevel(LIST_TIMES
);
655 return offset
- start
;
659 case MERR_OPSIZEMISSING
:
660 error(ERR_NONFATAL
, "operation size not specified");
662 case MERR_OPSIZEMISMATCH
:
663 error(ERR_NONFATAL
, "mismatch in operand sizes");
666 error(ERR_NONFATAL
, "no instruction for this cpu level");
669 error(ERR_NONFATAL
, "instruction not supported in %d-bit mode",
674 "invalid combination of opcode and operands");
681 int64_t insn_size(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
682 insn
* instruction
, efunc error
)
684 const struct itemplate
*temp
;
687 errfunc
= error
; /* to pass to other functions */
690 if (instruction
->opcode
== I_none
)
693 if (instruction
->opcode
== I_DB
|| instruction
->opcode
== I_DW
||
694 instruction
->opcode
== I_DD
|| instruction
->opcode
== I_DQ
||
695 instruction
->opcode
== I_DT
|| instruction
->opcode
== I_DO
||
696 instruction
->opcode
== I_DY
) {
698 int32_t isize
, osize
, wsize
;
701 wsize
= idata_bytes(instruction
->opcode
);
703 list_for_each(e
, instruction
->eops
) {
707 if (e
->type
== EOT_DB_NUMBER
) {
709 warn_overflow_const(e
->offset
, wsize
);
710 } else if (e
->type
== EOT_DB_STRING
||
711 e
->type
== EOT_DB_STRING_FREE
)
712 osize
= e
->stringlen
;
714 align
= (-osize
) % wsize
;
717 isize
+= osize
+ align
;
719 return isize
* instruction
->times
;
722 if (instruction
->opcode
== I_INCBIN
) {
723 const char *fname
= instruction
->eops
->stringval
;
728 fp
= fopen(fname
, "rb");
730 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
732 else if (fseek(fp
, 0L, SEEK_END
) < 0)
733 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
737 if (instruction
->eops
->next
) {
738 len
-= instruction
->eops
->next
->offset
;
739 if (instruction
->eops
->next
->next
&&
740 len
> (size_t)instruction
->eops
->next
->next
->offset
) {
741 len
= (size_t)instruction
->eops
->next
->next
->offset
;
744 val
= instruction
->times
* len
;
751 /* Check to see if we need an address-size prefix */
752 add_asp(instruction
, bits
);
754 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
756 /* we've matched an instruction. */
760 isize
= calcsize(segment
, offset
, bits
, instruction
, temp
);
763 for (j
= 0; j
< MAXPREFIX
; j
++) {
764 switch (instruction
->prefixes
[j
]) {
790 return isize
* instruction
->times
;
792 return -1; /* didn't match any instruction */
796 static void bad_hle_warn(const insn
* ins
, uint8_t hleok
)
798 enum prefixes rep_pfx
= ins
->prefixes
[PPS_REP
];
799 enum whatwarn
{ w_none
, w_lock
, w_inval
} ww
;
800 static const enum whatwarn warn
[2][4] =
802 { w_inval
, w_inval
, w_none
, w_lock
}, /* XACQUIRE */
803 { w_inval
, w_none
, w_none
, w_lock
}, /* XRELEASE */
807 n
= (unsigned int)rep_pfx
- P_XACQUIRE
;
809 return; /* Not XACQUIRE/XRELEASE */
812 if (!is_class(MEMORY
, ins
->oprs
[0].type
))
813 ww
= w_inval
; /* HLE requires operand 0 to be memory */
820 if (ins
->prefixes
[PPS_LOCK
] != P_LOCK
) {
821 errfunc(ERR_WARNING
| ERR_WARN_HLE
| ERR_PASS2
,
822 "%s with this instruction requires lock",
823 prefix_name(rep_pfx
));
828 errfunc(ERR_WARNING
| ERR_WARN_HLE
| ERR_PASS2
,
829 "%s invalid with this instruction",
830 prefix_name(rep_pfx
));
835 /* Common construct */
836 #define case3(x) case (x): case (x)+1: case (x)+2
837 #define case4(x) case3(x): case (x)+3
839 static int64_t calcsize(int32_t segment
, int64_t offset
, int bits
,
840 insn
* ins
, const struct itemplate
*temp
)
842 const uint8_t *codes
= temp
->code
;
851 bool lockcheck
= true;
853 ins
->rex
= 0; /* Ensure REX is reset */
854 eat
= EA_SCALAR
; /* Expect a scalar EA */
855 memset(ins
->evex_p
, 0, 3); /* Ensure EVEX is reset */
857 if (ins
->prefixes
[PPS_OSIZE
] == P_O64
)
860 (void)segment
; /* Don't warn that this parameter is unused */
861 (void)offset
; /* Don't warn that this parameter is unused */
865 op1
= (c
& 3) + ((opex
& 1) << 2);
866 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
867 opx
= &ins
->oprs
[op1
];
868 opex
= 0; /* For the next iteration */
872 codes
+= c
, length
+= c
;
881 op_rexflags(opx
, REX_B
|REX_H
|REX_P
|REX_W
);
895 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
896 length
+= (opx
->type
& BITS16
) ? 2 : 4;
898 length
+= (bits
== 16) ? 2 : 4;
906 length
+= ins
->addr_size
>> 3;
914 length
+= 8; /* MOV reg64/imm */
922 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
923 length
+= (opx
->type
& BITS16
) ? 2 : 4;
925 length
+= (bits
== 16) ? 2 : 4;
948 ins
->vexreg
= regval(opx
);
949 ins
->evex_p
[2] |= op_evexflags(opx
, EVEX_P2VP
, 2); /* High-16 NDS */
950 ins
->vex_cm
= *codes
++;
951 ins
->vex_wlp
= *codes
++;
952 ins
->evex_tuple
= (*codes
++ - 0300);
958 ins
->vex_cm
= *codes
++;
959 ins
->vex_wlp
= *codes
++;
960 ins
->evex_tuple
= (*codes
++ - 0300);
969 ins
->vexreg
= regval(opx
);
970 ins
->vex_cm
= *codes
++;
971 ins
->vex_wlp
= *codes
++;
977 ins
->vex_cm
= *codes
++;
978 ins
->vex_wlp
= *codes
++;
995 length
+= (bits
!= 16) && !has_prefix(ins
, PPS_ASIZE
, P_A16
);
999 length
+= (bits
!= 32) && !has_prefix(ins
, PPS_ASIZE
, P_A32
);
1006 if (bits
!= 64 || has_prefix(ins
, PPS_ASIZE
, P_A16
) ||
1007 has_prefix(ins
, PPS_ASIZE
, P_A32
))
1016 enum prefixes pfx
= ins
->prefixes
[PPS_OSIZE
];
1020 errfunc(ERR_WARNING
| ERR_PASS2
, "invalid operand size prefix");
1022 ins
->prefixes
[PPS_OSIZE
] = P_O16
;
1028 enum prefixes pfx
= ins
->prefixes
[PPS_OSIZE
];
1032 errfunc(ERR_WARNING
| ERR_PASS2
, "invalid operand size prefix");
1034 ins
->prefixes
[PPS_OSIZE
] = P_O32
;
1076 if (!ins
->prefixes
[PPS_REP
])
1077 ins
->prefixes
[PPS_REP
] = P_REP
;
1081 if (!ins
->prefixes
[PPS_REP
])
1082 ins
->prefixes
[PPS_REP
] = P_REPNE
;
1086 if (ins
->oprs
[0].segment
!= NO_SEG
)
1087 errfunc(ERR_NONFATAL
, "attempt to reserve non-constant"
1088 " quantity of BSS space");
1090 length
+= ins
->oprs
[0].offset
;
1094 if (!ins
->prefixes
[PPS_WAIT
])
1095 ins
->prefixes
[PPS_WAIT
] = P_WAIT
;
1149 struct operand
*opy
= &ins
->oprs
[op2
];
1150 struct operand
*oplast
;
1152 ea_data
.rex
= 0; /* Ensure ea.REX is initially 0 */
1155 /* pick rfield from operand b (opx) */
1156 rflags
= regflag(opx
);
1157 rfield
= nasm_regvals
[opx
->basereg
];
1158 /* find the last SIMD operand where ER decorator resides */
1159 oplast
= &ins
->oprs
[op1
> op2
? op1
: op2
];
1166 if (oplast
->decoflags
& ER
) {
1167 /* set EVEX.RC (rounding control) and b */
1168 ins
->evex_p
[2] |= (((ins
->evex_rm
- BRC_RN
) << 5) & EVEX_P2LL
) |
1171 /* set EVEX.L'L (vector length) */
1172 ins
->evex_p
[2] |= ((ins
->vex_wlp
<< (5 - 2)) & EVEX_P2LL
);
1173 if ((oplast
->decoflags
& SAE
) ||
1174 (opy
->decoflags
& BRDCAST_MASK
)) {
1176 ins
->evex_p
[2] |= EVEX_P2B
;
1180 if (process_ea(opy
, &ea_data
, bits
,
1181 rfield
, rflags
, ins
) != eat
) {
1182 errfunc(ERR_NONFATAL
, "invalid effective address");
1185 ins
->rex
|= ea_data
.rex
;
1186 length
+= ea_data
.size
;
1192 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1193 ": instruction code \\%o (0x%02X) given", c
, c
);
1198 ins
->rex
&= rex_mask
;
1200 if (ins
->rex
& REX_NH
) {
1201 if (ins
->rex
& REX_H
) {
1202 errfunc(ERR_NONFATAL
, "instruction cannot use high registers");
1205 ins
->rex
&= ~REX_P
; /* Don't force REX prefix due to high reg */
1208 if (ins
->rex
& (REX_V
| REX_EV
)) {
1209 int bad32
= REX_R
|REX_W
|REX_X
|REX_B
;
1211 if (ins
->rex
& REX_H
) {
1212 errfunc(ERR_NONFATAL
, "cannot use high register in AVX instruction");
1215 switch (ins
->vex_wlp
& 060) {
1229 if (bits
!= 64 && ((ins
->rex
& bad32
) || ins
->vexreg
> 7)) {
1230 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1233 if (ins
->rex
& REX_EV
)
1235 else if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
)))
1239 } else if (ins
->rex
& REX_REAL
) {
1240 if (ins
->rex
& REX_H
) {
1241 errfunc(ERR_NONFATAL
, "cannot use high register in rex instruction");
1243 } else if (bits
== 64) {
1245 } else if ((ins
->rex
& REX_L
) &&
1246 !(ins
->rex
& (REX_P
|REX_W
|REX_X
|REX_B
)) &&
1249 assert_no_prefix(ins
, PPS_LOCK
);
1250 lockcheck
= false; /* Already errored, no need for warning */
1253 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1258 if (has_prefix(ins
, PPS_LOCK
, P_LOCK
) && lockcheck
&&
1259 (!(temp
->flags
& IF_LOCK
) || !is_class(MEMORY
, ins
->oprs
[0].type
))) {
1260 errfunc(ERR_WARNING
| ERR_WARN_LOCK
| ERR_PASS2
,
1261 "instruction is not lockable");
1264 bad_hle_warn(ins
, hleok
);
1269 static inline unsigned int emit_rex(insn
*ins
, int32_t segment
, int64_t offset
, int bits
)
1272 if ((ins
->rex
& REX_REAL
) && !(ins
->rex
& (REX_V
| REX_EV
))) {
1273 ins
->rex
= (ins
->rex
& REX_REAL
) | REX_P
;
1274 out(offset
, segment
, &ins
->rex
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1283 static void gencode(int32_t segment
, int64_t offset
, int bits
,
1284 insn
* ins
, const struct itemplate
*temp
,
1292 struct operand
*opx
;
1293 const uint8_t *codes
= temp
->code
;
1295 enum ea_type eat
= EA_SCALAR
;
1299 op1
= (c
& 3) + ((opex
& 1) << 2);
1300 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
1301 opx
= &ins
->oprs
[op1
];
1302 opex
= 0; /* For the next iteration */
1309 offset
+= emit_rex(ins
, segment
, offset
, bits
);
1310 out(offset
, segment
, codes
, OUT_RAWDATA
, c
, NO_SEG
, NO_SEG
);
1322 offset
+= emit_rex(ins
, segment
, offset
, bits
);
1323 bytes
[0] = *codes
++ + (regval(opx
) & 7);
1324 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1329 if (opx
->offset
< -256 || opx
->offset
> 255) {
1330 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1331 "byte value exceeds bounds");
1333 out_imm8(offset
, segment
, opx
);
1338 if (opx
->offset
< 0 || opx
->offset
> 255)
1339 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1340 "unsigned byte value exceeds bounds");
1341 out_imm8(offset
, segment
, opx
);
1346 warn_overflow_opd(opx
, 2);
1348 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1349 opx
->segment
, opx
->wrt
);
1354 if (opx
->type
& (BITS16
| BITS32
))
1355 size
= (opx
->type
& BITS16
) ? 2 : 4;
1357 size
= (bits
== 16) ? 2 : 4;
1358 warn_overflow_opd(opx
, size
);
1360 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1361 opx
->segment
, opx
->wrt
);
1366 warn_overflow_opd(opx
, 4);
1368 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1369 opx
->segment
, opx
->wrt
);
1375 size
= ins
->addr_size
>> 3;
1376 warn_overflow_opd(opx
, size
);
1377 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1378 opx
->segment
, opx
->wrt
);
1383 if (opx
->segment
!= segment
) {
1385 out(offset
, segment
, &data
,
1386 OUT_REL1ADR
, insn_end
- offset
,
1387 opx
->segment
, opx
->wrt
);
1389 data
= opx
->offset
- insn_end
;
1390 if (data
> 127 || data
< -128)
1391 errfunc(ERR_NONFATAL
, "short jump is out of range");
1392 out(offset
, segment
, &data
,
1393 OUT_ADDRESS
, 1, NO_SEG
, NO_SEG
);
1399 data
= (int64_t)opx
->offset
;
1400 out(offset
, segment
, &data
, OUT_ADDRESS
, 8,
1401 opx
->segment
, opx
->wrt
);
1406 if (opx
->segment
!= segment
) {
1408 out(offset
, segment
, &data
,
1409 OUT_REL2ADR
, insn_end
- offset
,
1410 opx
->segment
, opx
->wrt
);
1412 data
= opx
->offset
- insn_end
;
1413 out(offset
, segment
, &data
,
1414 OUT_ADDRESS
, 2, NO_SEG
, NO_SEG
);
1420 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
1421 size
= (opx
->type
& BITS16
) ? 2 : 4;
1423 size
= (bits
== 16) ? 2 : 4;
1424 if (opx
->segment
!= segment
) {
1426 out(offset
, segment
, &data
,
1427 size
== 2 ? OUT_REL2ADR
: OUT_REL4ADR
,
1428 insn_end
- offset
, opx
->segment
, opx
->wrt
);
1430 data
= opx
->offset
- insn_end
;
1431 out(offset
, segment
, &data
,
1432 OUT_ADDRESS
, size
, NO_SEG
, NO_SEG
);
1438 if (opx
->segment
!= segment
) {
1440 out(offset
, segment
, &data
,
1441 OUT_REL4ADR
, insn_end
- offset
,
1442 opx
->segment
, opx
->wrt
);
1444 data
= opx
->offset
- insn_end
;
1445 out(offset
, segment
, &data
,
1446 OUT_ADDRESS
, 4, NO_SEG
, NO_SEG
);
1452 if (opx
->segment
== NO_SEG
)
1453 errfunc(ERR_NONFATAL
, "value referenced by FAR is not"
1456 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1457 outfmt
->segbase(1 + opx
->segment
),
1464 opx
= &ins
->oprs
[c
>> 3];
1465 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1466 opx
= &ins
->oprs
[c
& 7];
1467 if (opx
->segment
!= NO_SEG
|| opx
->wrt
!= NO_SEG
) {
1468 errfunc(ERR_NONFATAL
,
1469 "non-absolute expression not permitted as argument %d",
1472 if (opx
->offset
& ~15) {
1473 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1474 "four-bit argument exceeds bounds");
1476 bytes
[0] |= opx
->offset
& 15;
1478 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1484 opx
= &ins
->oprs
[c
>> 4];
1485 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1487 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1492 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1493 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1499 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1500 (int32_t)data
!= (int64_t)data
) {
1501 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1502 "signed dword immediate exceeds bounds");
1504 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1505 opx
->segment
, opx
->wrt
);
1512 ins
->evex_p
[2] |= op_evexflags(&ins
->oprs
[0],
1513 EVEX_P2Z
| EVEX_P2AAA
, 2);
1514 ins
->evex_p
[2] ^= EVEX_P2VP
; /* 1's complement */
1516 /* EVEX.X can be set by either REX or EVEX for different reasons */
1517 bytes
[1] = (~(((ins
->rex
& 7) << 5) |
1518 (ins
->evex_p
[0] & (EVEX_P0X
| EVEX_P0RP
))) & 0xf0) |
1520 bytes
[2] = ((ins
->rex
& REX_W
) << (7 - 3)) |
1521 ((~ins
->vexreg
& 15) << 3) |
1522 (1 << 2) | (ins
->vex_wlp
& 3);
1523 bytes
[3] = ins
->evex_p
[2];
1524 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 4, NO_SEG
, NO_SEG
);
1531 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
))) {
1532 bytes
[0] = (ins
->vex_cm
>> 6) ? 0x8f : 0xc4;
1533 bytes
[1] = (ins
->vex_cm
& 31) | ((~ins
->rex
& 7) << 5);
1534 bytes
[2] = ((ins
->rex
& REX_W
) << (7-3)) |
1535 ((~ins
->vexreg
& 15)<< 3) | (ins
->vex_wlp
& 07);
1536 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 3, NO_SEG
, NO_SEG
);
1540 bytes
[1] = ((~ins
->rex
& REX_R
) << (7-2)) |
1541 ((~ins
->vexreg
& 15) << 3) | (ins
->vex_wlp
& 07);
1542 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 2, NO_SEG
, NO_SEG
);
1557 if (ins
->rex
& REX_W
)
1559 else if (ins
->prefixes
[PPS_OSIZE
] == P_O16
)
1561 else if (ins
->prefixes
[PPS_OSIZE
] == P_O32
)
1566 um
= (uint64_t)2 << (s
-1);
1569 if (uv
> 127 && uv
< (uint64_t)-128 &&
1570 (uv
< um
-128 || uv
> um
-1)) {
1571 /* If this wasn't explicitly byte-sized, warn as though we
1572 * had fallen through to the imm16/32/64 case.
1574 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1575 "%s value exceeds bounds",
1576 (opx
->type
& BITS8
) ? "signed byte" :
1581 if (opx
->segment
!= NO_SEG
) {
1583 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1584 opx
->segment
, opx
->wrt
);
1587 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1598 if (bits
== 32 && !has_prefix(ins
, PPS_ASIZE
, P_A16
)) {
1600 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1607 if (bits
!= 32 && !has_prefix(ins
, PPS_ASIZE
, P_A32
)) {
1609 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1644 *bytes
= *codes
++ ^ get_cond_opcode(ins
->condition
);
1645 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1654 *bytes
= c
- 0332 + 0xF2;
1655 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1660 if (ins
->rex
& REX_R
) {
1662 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1665 ins
->rex
&= ~(REX_L
|REX_R
);
1676 if (ins
->oprs
[0].segment
!= NO_SEG
)
1677 errfunc(ERR_PANIC
, "non-constant BSS size in pass two");
1679 int64_t size
= ins
->oprs
[0].offset
;
1681 out(offset
, segment
, NULL
,
1682 OUT_RESERVE
, size
, NO_SEG
, NO_SEG
);
1695 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1705 *bytes
= c
- 0366 + 0x66;
1706 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1715 *bytes
= bits
== 16 ? 3 : 5;
1716 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1750 struct operand
*opy
= &ins
->oprs
[op2
];
1753 /* pick rfield from operand b (opx) */
1754 rflags
= regflag(opx
);
1755 rfield
= nasm_regvals
[opx
->basereg
];
1757 /* rfield is constant */
1762 if (process_ea(opy
, &ea_data
, bits
,
1763 rfield
, rflags
, ins
) != eat
)
1764 errfunc(ERR_NONFATAL
, "invalid effective address");
1767 *p
++ = ea_data
.modrm
;
1768 if (ea_data
.sib_present
)
1772 out(offset
, segment
, bytes
, OUT_RAWDATA
, s
, NO_SEG
, NO_SEG
);
1775 * Make sure the address gets the right offset in case
1776 * the line breaks in the .lst file (BR 1197827)
1781 switch (ea_data
.bytes
) {
1788 /* use compressed displacement, if available */
1789 data
= ea_data
.disp8
? ea_data
.disp8
: opy
->offset
;
1792 if (opy
->segment
== segment
) {
1794 if (overflow_signed(data
, ea_data
.bytes
))
1795 warn_overflow(ERR_PASS2
, ea_data
.bytes
);
1796 out(offset
, segment
, &data
, OUT_ADDRESS
,
1797 ea_data
.bytes
, NO_SEG
, NO_SEG
);
1799 /* overflow check in output/linker? */
1800 out(offset
, segment
, &data
, OUT_REL4ADR
,
1801 insn_end
- offset
, opy
->segment
, opy
->wrt
);
1804 if (overflow_general(data
, ins
->addr_size
>> 3) ||
1805 signed_bits(data
, ins
->addr_size
) !=
1806 signed_bits(data
, ea_data
.bytes
* 8))
1807 warn_overflow(ERR_PASS2
, ea_data
.bytes
);
1809 out(offset
, segment
, &data
, OUT_ADDRESS
,
1810 ea_data
.bytes
, opy
->segment
, opy
->wrt
);
1816 "Invalid amount of bytes (%d) for offset?!",
1825 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1826 ": instruction code \\%o (0x%02X) given", c
, c
);
1832 static opflags_t
regflag(const operand
* o
)
1834 if (!is_register(o
->basereg
))
1835 errfunc(ERR_PANIC
, "invalid operand passed to regflag()");
1836 return nasm_reg_flags
[o
->basereg
];
1839 static int32_t regval(const operand
* o
)
1841 if (!is_register(o
->basereg
))
1842 errfunc(ERR_PANIC
, "invalid operand passed to regval()");
1843 return nasm_regvals
[o
->basereg
];
1846 static int op_rexflags(const operand
* o
, int mask
)
1851 if (!is_register(o
->basereg
))
1852 errfunc(ERR_PANIC
, "invalid operand passed to op_rexflags()");
1854 flags
= nasm_reg_flags
[o
->basereg
];
1855 val
= nasm_regvals
[o
->basereg
];
1857 return rexflags(val
, flags
, mask
);
1860 static int rexflags(int val
, opflags_t flags
, int mask
)
1865 rex
|= REX_B
|REX_X
|REX_R
;
1868 if (!(REG_HIGH
& ~flags
)) /* AH, CH, DH, BH */
1870 else if (!(REG8
& ~flags
) && val
>= 4) /* SPL, BPL, SIL, DIL */
1876 static int evexflags(int val
, decoflags_t deco
,
1877 int mask
, uint8_t byte
)
1884 evex
|= (EVEX_P0RP
| EVEX_P0X
);
1891 if (deco
& OPMASK_MASK
)
1892 evex
|= deco
& EVEX_P2AAA
;
1898 static int op_evexflags(const operand
* o
, int mask
, uint8_t byte
)
1902 if (!is_register(o
->basereg
))
1903 errfunc(ERR_PANIC
, "invalid operand passed to op_evexflags()");
1905 val
= nasm_regvals
[o
->basereg
];
1907 return evexflags(val
, o
->decoflags
, mask
, byte
);
1910 static enum match_result
find_match(const struct itemplate
**tempp
,
1912 int32_t segment
, int64_t offset
, int bits
)
1914 const struct itemplate
*temp
;
1915 enum match_result m
, merr
;
1916 opflags_t xsizeflags
[MAX_OPERANDS
];
1917 bool opsizemissing
= false;
1918 int8_t broadcast
= -1;
1921 /* find the position of broadcasting operand */
1922 for (i
= 0; i
< instruction
->operands
; i
++)
1923 if (instruction
->oprs
[i
].decoflags
& BRDCAST_MASK
) {
1928 /* broadcasting uses a different data element size */
1929 for (i
= 0; i
< instruction
->operands
; i
++)
1931 xsizeflags
[i
] = instruction
->oprs
[i
].decoflags
& BRSIZE_MASK
;
1933 xsizeflags
[i
] = instruction
->oprs
[i
].type
& SIZE_MASK
;
1935 merr
= MERR_INVALOP
;
1937 for (temp
= nasm_instructions
[instruction
->opcode
];
1938 temp
->opcode
!= I_none
; temp
++) {
1939 m
= matches(temp
, instruction
, bits
);
1940 if (m
== MOK_JUMP
) {
1941 if (jmp_match(segment
, offset
, bits
, instruction
, temp
))
1945 } else if (m
== MERR_OPSIZEMISSING
&&
1946 (temp
->flags
& IF_SMASK
) != IF_SX
) {
1948 * Missing operand size and a candidate for fuzzy matching...
1950 for (i
= 0; i
< temp
->operands
; i
++)
1952 xsizeflags
[i
] |= temp
->deco
[i
] & BRSIZE_MASK
;
1954 xsizeflags
[i
] |= temp
->opd
[i
] & SIZE_MASK
;
1955 opsizemissing
= true;
1959 if (merr
== MOK_GOOD
)
1963 /* No match, but see if we can get a fuzzy operand size match... */
1967 for (i
= 0; i
< instruction
->operands
; i
++) {
1969 * We ignore extrinsic operand sizes on registers, so we should
1970 * never try to fuzzy-match on them. This also resolves the case
1971 * when we have e.g. "xmmrm128" in two different positions.
1973 if (is_class(REGISTER
, instruction
->oprs
[i
].type
))
1976 /* This tests if xsizeflags[i] has more than one bit set */
1977 if ((xsizeflags
[i
] & (xsizeflags
[i
]-1)))
1978 goto done
; /* No luck */
1981 instruction
->oprs
[i
].decoflags
|= xsizeflags
[i
];
1983 instruction
->oprs
[i
].type
|= xsizeflags
[i
]; /* Set the size */
1986 /* Try matching again... */
1987 for (temp
= nasm_instructions
[instruction
->opcode
];
1988 temp
->opcode
!= I_none
; temp
++) {
1989 m
= matches(temp
, instruction
, bits
);
1990 if (m
== MOK_JUMP
) {
1991 if (jmp_match(segment
, offset
, bits
, instruction
, temp
))
1998 if (merr
== MOK_GOOD
)
2007 static enum match_result
matches(const struct itemplate
*itemp
,
2008 insn
*instruction
, int bits
)
2010 opflags_t size
[MAX_OPERANDS
], asize
;
2011 bool opsizemissing
= false;
2017 if (itemp
->opcode
!= instruction
->opcode
)
2018 return MERR_INVALOP
;
2021 * Count the operands
2023 if (itemp
->operands
!= instruction
->operands
)
2024 return MERR_INVALOP
;
2029 if (!(optimizing
> 0) && (itemp
->flags
& IF_OPT
))
2030 return MERR_INVALOP
;
2033 * Check that no spurious colons or TOs are present
2035 for (i
= 0; i
< itemp
->operands
; i
++)
2036 if (instruction
->oprs
[i
].type
& ~itemp
->opd
[i
] & (COLON
| TO
))
2037 return MERR_INVALOP
;
2040 * Process size flags
2042 switch (itemp
->flags
& IF_SMASK
) {
2085 if (itemp
->flags
& IF_ARMASK
) {
2086 /* S- flags only apply to a specific operand */
2087 i
= ((itemp
->flags
& IF_ARMASK
) >> IF_ARSHFT
) - 1;
2088 memset(size
, 0, sizeof size
);
2091 /* S- flags apply to all operands */
2092 for (i
= 0; i
< MAX_OPERANDS
; i
++)
2097 * Check that the operand flags all match up,
2098 * it's a bit tricky so lets be verbose:
2100 * 1) Find out the size of operand. If instruction
2101 * doesn't have one specified -- we're trying to
2102 * guess it either from template (IF_S* flag) or
2105 * 2) If template operand do not match the instruction OR
2106 * template has an operand size specified AND this size differ
2107 * from which instruction has (perhaps we got it from code bits)
2109 * a) Check that only size of instruction and operand is differ
2110 * other characteristics do match
2111 * b) Perhaps it's a register specified in instruction so
2112 * for such a case we just mark that operand as "size
2113 * missing" and this will turn on fuzzy operand size
2114 * logic facility (handled by a caller)
2116 for (i
= 0; i
< itemp
->operands
; i
++) {
2117 opflags_t type
= instruction
->oprs
[i
].type
;
2118 decoflags_t deco
= instruction
->oprs
[i
].decoflags
;
2119 if (!(type
& SIZE_MASK
))
2122 if ((itemp
->opd
[i
] & ~type
& ~SIZE_MASK
) ||
2123 (itemp
->deco
[i
] & deco
) != deco
) {
2124 return MERR_INVALOP
;
2125 } else if ((itemp
->opd
[i
] & SIZE_MASK
) &&
2126 (itemp
->opd
[i
] & SIZE_MASK
) != (type
& SIZE_MASK
)) {
2127 if (type
& SIZE_MASK
) {
2129 * when broadcasting, the element size depends on
2130 * the instruction type. decorator flag should match.
2132 #define MATCH_BRSZ(bits) (((type & SIZE_MASK) == BITS##bits) && \
2133 ((itemp->deco[i] & BRSIZE_MASK) == BR_BITS##bits))
2134 if (!((deco
& BRDCAST_MASK
) &&
2135 (MATCH_BRSZ(32) || MATCH_BRSZ(64)))) {
2136 return MERR_INVALOP
;
2138 } else if (!is_class(REGISTER
, type
)) {
2140 * Note: we don't honor extrinsic operand sizes for registers,
2141 * so "missing operand size" for a register should be
2142 * considered a wildcard match rather than an error.
2144 opsizemissing
= true;
2150 return MERR_OPSIZEMISSING
;
2153 * Check operand sizes
2155 if (itemp
->flags
& (IF_SM
| IF_SM2
)) {
2156 oprs
= (itemp
->flags
& IF_SM2
? 2 : itemp
->operands
);
2157 for (i
= 0; i
< oprs
; i
++) {
2158 asize
= itemp
->opd
[i
] & SIZE_MASK
;
2160 for (i
= 0; i
< oprs
; i
++)
2166 oprs
= itemp
->operands
;
2169 for (i
= 0; i
< itemp
->operands
; i
++) {
2170 if (!(itemp
->opd
[i
] & SIZE_MASK
) &&
2171 (instruction
->oprs
[i
].type
& SIZE_MASK
& ~size
[i
]))
2172 return MERR_OPSIZEMISMATCH
;
2176 * Check template is okay at the set cpu level
2178 if (((itemp
->flags
& IF_PLEVEL
) > cpu
))
2182 * Verify the appropriate long mode flag.
2184 if ((itemp
->flags
& (bits
== 64 ? IF_NOLONG
: IF_LONG
)))
2185 return MERR_BADMODE
;
2188 * If we have a HLE prefix, look for the NOHLE flag
2190 if ((itemp
->flags
& IF_NOHLE
) &&
2191 (has_prefix(instruction
, PPS_REP
, P_XACQUIRE
) ||
2192 has_prefix(instruction
, PPS_REP
, P_XRELEASE
)))
2196 * Check if special handling needed for Jumps
2198 if ((itemp
->code
[0] & ~1) == 0370)
2205 * Check if offset is a multiple of N with corresponding tuple type
2206 * if Disp8*N is available, compressed displacement is stored in compdisp
2208 static bool is_disp8n(operand
*input
, insn
*ins
, int8_t *compdisp
)
2210 const uint8_t fv_n
[2][2][VLMAX
] = {{{16, 32, 64}, {4, 4, 4}},
2211 {{16, 32, 64}, {8, 8, 8}}};
2212 const uint8_t hv_n
[2][VLMAX
] = {{8, 16, 32}, {4, 4, 4}};
2213 const uint8_t dup_n
[VLMAX
] = {8, 32, 64};
2215 bool evex_b
= input
->decoflags
& BRDCAST_MASK
;
2216 enum ttypes tuple
= ins
->evex_tuple
;
2217 /* vex_wlp composed as [wwllpp] */
2218 enum vectlens vectlen
= (ins
->vex_wlp
& 0x0c) >> 2;
2219 /* wig(=2) is treated as w0(=0) */
2220 bool evex_w
= (ins
->vex_wlp
& 0x10) >> 4;
2221 int32_t off
= input
->offset
;
2227 n
= fv_n
[evex_w
][evex_b
][vectlen
];
2230 n
= hv_n
[evex_b
][vectlen
];
2234 /* 16, 32, 64 for VL 128, 256, 512 respectively*/
2235 n
= 1 << (vectlen
+ 4);
2237 case T1S8
: /* N = 1 */
2238 case T1S16
: /* N = 2 */
2239 n
= tuple
- T1S8
+ 1;
2242 /* N = 4 for 32bit, 8 for 64bit */
2247 /* N = 4 for 32bit, 8 for 64bit */
2248 n
= (tuple
== T1F32
? 4 : 8);
2253 if (vectlen
+ 7 <= (evex_w
+ 5) + (tuple
- T2
+ 1))
2256 n
= 1 << (tuple
- T2
+ evex_w
+ 4);
2261 n
= 1 << (OVM
- tuple
+ vectlen
+ 1);
2274 if (n
&& !(off
& (n
- 1))) {
2276 /* if it fits in Disp8 */
2277 if (disp8
>= -128 && disp8
<= 127) {
2288 * Check if ModR/M.mod should/can be 01.
2289 * - EAF_BYTEOFFS is set
2290 * - offset can fit in a byte when EVEX is not used
2291 * - offset can be compressed when EVEX is used
2293 #define IS_MOD_01() (input->eaflags & EAF_BYTEOFFS || \
2294 (o >= -128 && o <= 127 && \
2295 seg == NO_SEG && !forw_ref && \
2296 !(input->eaflags & EAF_WORDOFFS) && \
2297 !(ins->rex & REX_EV)) || \
2298 (ins->rex & REX_EV && \
2299 is_disp8n(input, ins, &output->disp8)))
2301 static enum ea_type
process_ea(operand
*input
, ea
*output
, int bits
,
2302 int rfield
, opflags_t rflags
, insn
*ins
)
2304 bool forw_ref
= !!(input
->opflags
& OPFLAG_UNKNOWN
);
2305 int addrbits
= ins
->addr_size
;
2307 output
->type
= EA_SCALAR
;
2308 output
->rip
= false;
2310 /* REX flags for the rfield operand */
2311 output
->rex
|= rexflags(rfield
, rflags
, REX_R
| REX_P
| REX_W
| REX_H
);
2312 /* EVEX.R' flag for the REG operand */
2313 ins
->evex_p
[0] |= evexflags(rfield
, 0, EVEX_P0RP
, 0);
2315 if (is_class(REGISTER
, input
->type
)) {
2317 * It's a direct register.
2319 if (!is_register(input
->basereg
))
2322 if (!is_reg_class(REG_EA
, input
->basereg
))
2325 /* broadcasting is not available with a direct register operand. */
2326 if (input
->decoflags
& BRDCAST_MASK
) {
2327 nasm_error(ERR_NONFATAL
, "Broadcasting not allowed from a register");
2331 output
->rex
|= op_rexflags(input
, REX_B
| REX_P
| REX_W
| REX_H
);
2332 ins
->evex_p
[0] |= op_evexflags(input
, EVEX_P0X
, 0);
2333 output
->sib_present
= false; /* no SIB necessary */
2334 output
->bytes
= 0; /* no offset necessary either */
2335 output
->modrm
= GEN_MODRM(3, rfield
, nasm_regvals
[input
->basereg
]);
2338 * It's a memory reference.
2341 /* Embedded rounding or SAE is not available with a mem ref operand. */
2342 if (input
->decoflags
& (ER
| SAE
)) {
2343 nasm_error(ERR_NONFATAL
,
2344 "Embedded rounding is available only with reg-reg op.");
2348 if (input
->basereg
== -1 &&
2349 (input
->indexreg
== -1 || input
->scale
== 0)) {
2351 * It's a pure offset.
2353 if (bits
== 64 && ((input
->type
& IP_REL
) == IP_REL
) &&
2354 input
->segment
== NO_SEG
) {
2355 nasm_error(ERR_WARNING
| ERR_PASS1
, "absolute address can not be RIP-relative");
2356 input
->type
&= ~IP_REL
;
2357 input
->type
|= MEMORY
;
2360 if (input
->eaflags
& EAF_BYTEOFFS
||
2361 (input
->eaflags
& EAF_WORDOFFS
&&
2362 input
->disp_size
!= (addrbits
!= 16 ? 32 : 16))) {
2363 nasm_error(ERR_WARNING
| ERR_PASS1
, "displacement size ignored on absolute address");
2366 if (bits
== 64 && (~input
->type
& IP_REL
)) {
2367 output
->sib_present
= true;
2368 output
->sib
= GEN_SIB(0, 4, 5);
2370 output
->modrm
= GEN_MODRM(0, rfield
, 4);
2371 output
->rip
= false;
2373 output
->sib_present
= false;
2374 output
->bytes
= (addrbits
!= 16 ? 4 : 2);
2375 output
->modrm
= GEN_MODRM(0, rfield
, (addrbits
!= 16 ? 5 : 6));
2376 output
->rip
= bits
== 64;
2380 * It's an indirection.
2382 int i
= input
->indexreg
, b
= input
->basereg
, s
= input
->scale
;
2383 int32_t seg
= input
->segment
;
2384 int hb
= input
->hintbase
, ht
= input
->hinttype
;
2385 int t
, it
, bt
; /* register numbers */
2386 opflags_t x
, ix
, bx
; /* register flags */
2389 i
= -1; /* make this easy, at least */
2391 if (is_register(i
)) {
2392 it
= nasm_regvals
[i
];
2393 ix
= nasm_reg_flags
[i
];
2399 if (is_register(b
)) {
2400 bt
= nasm_regvals
[b
];
2401 bx
= nasm_reg_flags
[b
];
2407 /* if either one are a vector register... */
2408 if ((ix
|bx
) & (XMMREG
|YMMREG
|ZMMREG
) & ~REG_EA
) {
2409 opflags_t sok
= BITS32
| BITS64
;
2410 int32_t o
= input
->offset
;
2411 int mod
, scale
, index
, base
;
2414 * For a vector SIB, one has to be a vector and the other,
2415 * if present, a GPR. The vector must be the index operand.
2417 if (it
== -1 || (bx
& (XMMREG
|YMMREG
|ZMMREG
) & ~REG_EA
)) {
2423 t
= bt
, bt
= it
, it
= t
;
2424 x
= bx
, bx
= ix
, ix
= x
;
2430 if (!(REG64
& ~bx
) || !(REG32
& ~bx
))
2437 * While we're here, ensure the user didn't specify
2440 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2443 if (addrbits
== 16 ||
2444 (addrbits
== 32 && !(sok
& BITS32
)) ||
2445 (addrbits
== 64 && !(sok
& BITS64
)))
2448 output
->type
= ((ix
& ZMMREG
& ~REG_EA
) ? EA_ZMMVSIB
2449 : ((ix
& YMMREG
& ~REG_EA
)
2450 ? EA_YMMVSIB
: EA_XMMVSIB
));
2452 output
->rex
|= rexflags(it
, ix
, REX_X
);
2453 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2454 ins
->evex_p
[2] |= evexflags(it
, 0, EVEX_P2VP
, 2);
2456 index
= it
& 7; /* it is known to be != -1 */
2471 default: /* then what the smeg is it? */
2472 goto err
; /* panic */
2480 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2481 seg
== NO_SEG
&& !forw_ref
&&
2482 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2484 else if (IS_MOD_01())
2490 output
->sib_present
= true;
2491 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2492 output
->modrm
= GEN_MODRM(mod
, rfield
, 4);
2493 output
->sib
= GEN_SIB(scale
, index
, base
);
2494 } else if ((ix
|bx
) & (BITS32
|BITS64
)) {
2496 * it must be a 32/64-bit memory reference. Firstly we have
2497 * to check that all registers involved are type E/Rxx.
2499 opflags_t sok
= BITS32
| BITS64
;
2500 int32_t o
= input
->offset
;
2503 if (!(REG64
& ~ix
) || !(REG32
& ~ix
))
2511 goto err
; /* Invalid register */
2512 if (~sok
& bx
& SIZE_MASK
)
2513 goto err
; /* Invalid size */
2518 * While we're here, ensure the user didn't specify
2521 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2524 if (addrbits
== 16 ||
2525 (addrbits
== 32 && !(sok
& BITS32
)) ||
2526 (addrbits
== 64 && !(sok
& BITS64
)))
2529 /* now reorganize base/index */
2530 if (s
== 1 && bt
!= it
&& bt
!= -1 && it
!= -1 &&
2531 ((hb
== b
&& ht
== EAH_NOTBASE
) ||
2532 (hb
== i
&& ht
== EAH_MAKEBASE
))) {
2533 /* swap if hints say so */
2534 t
= bt
, bt
= it
, it
= t
;
2535 x
= bx
, bx
= ix
, ix
= x
;
2537 if (bt
== it
) /* convert EAX+2*EAX to 3*EAX */
2538 bt
= -1, bx
= 0, s
++;
2539 if (bt
== -1 && s
== 1 && !(hb
== it
&& ht
== EAH_NOTBASE
)) {
2540 /* make single reg base, unless hint */
2541 bt
= it
, bx
= ix
, it
= -1, ix
= 0;
2543 if (((s
== 2 && it
!= REG_NUM_ESP
&& !(input
->eaflags
& EAF_TIMESTWO
)) ||
2544 s
== 3 || s
== 5 || s
== 9) && bt
== -1)
2545 bt
= it
, bx
= ix
, s
--; /* convert 3*EAX to EAX+2*EAX */
2546 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
&&
2547 (input
->eaflags
& EAF_TIMESTWO
))
2548 it
= bt
, ix
= bx
, bt
= -1, bx
= 0, s
= 1;
2549 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2550 if (s
== 1 && it
== REG_NUM_ESP
) {
2551 /* swap ESP into base if scale is 1 */
2552 t
= it
, it
= bt
, bt
= t
;
2553 x
= ix
, ix
= bx
, bx
= x
;
2555 if (it
== REG_NUM_ESP
||
2556 (s
!= 1 && s
!= 2 && s
!= 4 && s
!= 8 && it
!= -1))
2557 goto err
; /* wrong, for various reasons */
2559 output
->rex
|= rexflags(it
, ix
, REX_X
);
2560 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2562 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
) {
2571 if (rm
!= REG_NUM_EBP
&& o
== 0 &&
2572 seg
== NO_SEG
&& !forw_ref
&&
2573 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2575 else if (IS_MOD_01())
2581 output
->sib_present
= false;
2582 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2583 output
->modrm
= GEN_MODRM(mod
, rfield
, rm
);
2586 int mod
, scale
, index
, base
;
2606 default: /* then what the smeg is it? */
2607 goto err
; /* panic */
2615 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2616 seg
== NO_SEG
&& !forw_ref
&&
2617 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2619 else if (IS_MOD_01())
2625 output
->sib_present
= true;
2626 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2627 output
->modrm
= GEN_MODRM(mod
, rfield
, 4);
2628 output
->sib
= GEN_SIB(scale
, index
, base
);
2630 } else { /* it's 16-bit */
2632 int16_t o
= input
->offset
;
2634 /* check for 64-bit long mode */
2638 /* check all registers are BX, BP, SI or DI */
2639 if ((b
!= -1 && b
!= R_BP
&& b
!= R_BX
&& b
!= R_SI
&& b
!= R_DI
) ||
2640 (i
!= -1 && i
!= R_BP
&& i
!= R_BX
&& i
!= R_SI
&& i
!= R_DI
))
2643 /* ensure the user didn't specify DWORD/QWORD */
2644 if (input
->disp_size
== 32 || input
->disp_size
== 64)
2647 if (s
!= 1 && i
!= -1)
2648 goto err
; /* no can do, in 16-bit EA */
2649 if (b
== -1 && i
!= -1) {
2654 if ((b
== R_SI
|| b
== R_DI
) && i
!= -1) {
2659 /* have BX/BP as base, SI/DI index */
2661 goto err
; /* shouldn't ever happen, in theory */
2662 if (i
!= -1 && b
!= -1 &&
2663 (i
== R_BP
|| i
== R_BX
|| b
== R_SI
|| b
== R_DI
))
2664 goto err
; /* invalid combinations */
2665 if (b
== -1) /* pure offset: handled above */
2666 goto err
; /* so if it gets to here, panic! */
2670 switch (i
* 256 + b
) {
2671 case R_SI
* 256 + R_BX
:
2674 case R_DI
* 256 + R_BX
:
2677 case R_SI
* 256 + R_BP
:
2680 case R_DI
* 256 + R_BP
:
2698 if (rm
== -1) /* can't happen, in theory */
2699 goto err
; /* so panic if it does */
2701 if (o
== 0 && seg
== NO_SEG
&& !forw_ref
&& rm
!= 6 &&
2702 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2704 else if (IS_MOD_01())
2709 output
->sib_present
= false; /* no SIB - it's 16-bit */
2710 output
->bytes
= mod
; /* bytes of offset needed */
2711 output
->modrm
= GEN_MODRM(mod
, rfield
, rm
);
2716 output
->size
= 1 + output
->sib_present
+ output
->bytes
;
2717 return output
->type
;
2720 return output
->type
= EA_INVALID
;
2723 static void add_asp(insn
*ins
, int addrbits
)
2728 valid
= (addrbits
== 64) ? 64|32 : 32|16;
2730 switch (ins
->prefixes
[PPS_ASIZE
]) {
2741 valid
&= (addrbits
== 32) ? 16 : 32;
2747 for (j
= 0; j
< ins
->operands
; j
++) {
2748 if (is_class(MEMORY
, ins
->oprs
[j
].type
)) {
2751 /* Verify as Register */
2752 if (!is_register(ins
->oprs
[j
].indexreg
))
2755 i
= nasm_reg_flags
[ins
->oprs
[j
].indexreg
];
2757 /* Verify as Register */
2758 if (!is_register(ins
->oprs
[j
].basereg
))
2761 b
= nasm_reg_flags
[ins
->oprs
[j
].basereg
];
2763 if (ins
->oprs
[j
].scale
== 0)
2767 int ds
= ins
->oprs
[j
].disp_size
;
2768 if ((addrbits
!= 64 && ds
> 8) ||
2769 (addrbits
== 64 && ds
== 16))
2789 if (valid
& addrbits
) {
2790 ins
->addr_size
= addrbits
;
2791 } else if (valid
& ((addrbits
== 32) ? 16 : 32)) {
2792 /* Add an address size prefix */
2793 ins
->prefixes
[PPS_ASIZE
] = (addrbits
== 32) ? P_A16
: P_A32
;;
2794 ins
->addr_size
= (addrbits
== 32) ? 16 : 32;
2797 errfunc(ERR_NONFATAL
, "impossible combination of address sizes");
2798 ins
->addr_size
= addrbits
; /* Error recovery */
2801 defdisp
= ins
->addr_size
== 16 ? 16 : 32;
2803 for (j
= 0; j
< ins
->operands
; j
++) {
2804 if (!(MEM_OFFS
& ~ins
->oprs
[j
].type
) &&
2805 (ins
->oprs
[j
].disp_size
? ins
->oprs
[j
].disp_size
: defdisp
) != ins
->addr_size
) {
2807 * mem_offs sizes must match the address size; if not,
2808 * strip the MEM_OFFS bit and match only EA instructions
2810 ins
->oprs
[j
].type
&= ~(MEM_OFFS
& ~MEMORY
);