phash: Tell the user when the graph is OK
[nasm/autotest.git] / nasm.h
blob2efc3eb593f671aeb626b4082ad7362d4b549b59
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #include <stdio.h>
15 #include <inttypes.h>
16 #include "version.h" /* generated NASM version macros */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif
22 #ifndef NULL
23 #define NULL 0
24 #endif
26 #ifndef FALSE
27 #define FALSE 0 /* comes in handy */
28 #endif
29 #ifndef TRUE
30 #define TRUE 1
31 #endif
33 #define NO_SEG -1L /* null segment value */
34 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
36 #ifndef FILENAME_MAX
37 #define FILENAME_MAX 256
38 #endif
40 #ifndef PREFIX_MAX
41 #define PREFIX_MAX 10
42 #endif
44 #ifndef POSTFIX_MAX
45 #define POSTFIX_MAX 10
46 #endif
48 #define IDLEN_MAX 4096
51 * Name pollution problems: <time.h> on Digital UNIX pulls in some
52 * strange hardware header file which sees fit to define R_SP. We
53 * undefine it here so as not to break the enum below.
55 #ifdef R_SP
56 #undef R_SP
57 #endif
60 * We must declare the existence of this structure type up here,
61 * since we have to reference it before we define it...
63 struct ofmt;
66 * -------------------------
67 * Error reporting functions
68 * -------------------------
72 * An error reporting function should look like this.
74 typedef void (*efunc) (int severity, const char *fmt, ...);
77 * These are the error severity codes which get passed as the first
78 * argument to an efunc.
81 #define ERR_DEBUG 0x00000008 /* put out debugging message */
82 #define ERR_WARNING 0x00000000 /* warn only: no further action */
83 #define ERR_NONFATAL 0x00000001 /* terminate assembly after phase */
84 #define ERR_FATAL 0x00000002 /* instantly fatal: exit with error */
85 #define ERR_PANIC 0x00000003 /* internal error: panic instantly
86 * and dump core for reference */
87 #define ERR_MASK 0x0000000F /* mask off the above codes */
88 #define ERR_NOFILE 0x00000010 /* don't give source file name/line */
89 #define ERR_USAGE 0x00000020 /* print a usage message */
90 #define ERR_PASS1 0x00000040 /* only print this error on pass one */
93 * These codes define specific types of suppressible warning.
96 #define ERR_WARN_MASK 0x0000FF00 /* the mask for this feature */
97 #define ERR_WARN_SHR 8 /* how far to shift right */
99 #define ERR_WARN_MNP 0x00000100 /* macro-num-parameters warning */
100 #define ERR_WARN_MSR 0x00000200 /* macro self-reference */
101 #define ERR_WARN_OL 0x00000300 /* orphan label (no colon, and
102 * alone on line) */
103 #define ERR_WARN_NOV 0x00000400 /* numeric overflow */
104 #define ERR_WARN_GNUELF 0x00000500 /* using GNU ELF extensions */
105 #define ERR_WARN_MAX 5 /* the highest numbered one */
108 * -----------------------
109 * Other function typedefs
110 * -----------------------
114 * A label-lookup function should look like this.
116 typedef int (*lfunc) (char *label, int32_t *segment, int32_t *offset);
119 * And a label-definition function like this. The boolean parameter
120 * `is_norm' states whether the label is a `normal' label (which
121 * should affect the local-label system), or something odder like
122 * an EQU or a segment-base symbol, which shouldn't.
124 typedef void (*ldfunc) (char *label, int32_t segment, int32_t offset,
125 char *special, int is_norm, int isextrn,
126 struct ofmt * ofmt, efunc error);
129 * List-file generators should look like this:
131 typedef struct {
133 * Called to initialize the listing file generator. Before this
134 * is called, the other routines will silently do nothing when
135 * called. The `char *' parameter is the file name to write the
136 * listing to.
138 void (*init) (char *, efunc);
141 * Called to clear stuff up and close the listing file.
143 void (*cleanup) (void);
146 * Called to output binary data. Parameters are: the offset;
147 * the data; the data type. Data types are similar to the
148 * output-format interface, only OUT_ADDRESS will _always_ be
149 * displayed as if it's relocatable, so ensure that any non-
150 * relocatable address has been converted to OUT_RAWDATA by
151 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
152 * dummy call used to give the listing generator an offset to
153 * work with when doing things like uplevel(LIST_TIMES) or
154 * uplevel(LIST_INCBIN).
156 void (*output) (int32_t, const void *, uint32_t);
159 * Called to send a text line to the listing generator. The
160 * `int' parameter is LIST_READ or LIST_MACRO depending on
161 * whether the line came directly from an input file or is the
162 * result of a multi-line macro expansion.
164 void (*line) (int, char *);
167 * Called to change one of the various levelled mechanisms in
168 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
169 * used to increase the nesting level of include files and
170 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
171 * two binary-output-suppression mechanisms for large-scale
172 * pseudo-instructions.
174 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
175 * it indicates the beginning of the expansion of a `nolist'
176 * macro, so anything under that level won't be expanded unless
177 * it includes another file.
179 void (*uplevel) (int);
182 * Reverse the effects of uplevel.
184 void (*downlevel) (int);
185 } ListGen;
188 * The expression evaluator must be passed a scanner function; a
189 * standard scanner is provided as part of nasmlib.c. The
190 * preprocessor will use a different one. Scanners, and the
191 * token-value structures they return, look like this.
193 * The return value from the scanner is always a copy of the
194 * `t_type' field in the structure.
196 struct tokenval {
197 int t_type;
198 int64_t t_integer, t_inttwo;
199 char *t_charptr;
201 typedef int (*scanner) (void *private_data, struct tokenval * tv);
204 * Token types returned by the scanner, in addition to ordinary
205 * ASCII character values, and zero for end-of-string.
207 enum { /* token types, other than chars */
208 TOKEN_INVALID = -1, /* a placeholder value */
209 TOKEN_EOS = 0, /* end of string */
210 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
211 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
212 TOKEN_ERRNUM, /* numeric constant with error in */
213 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
214 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
215 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
216 TOKEN_SHL, TOKEN_SHR, /* << and >> */
217 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
218 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
219 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
220 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
221 TOKEN_FLOAT /* floating-point constant */
224 typedef struct {
225 int32_t segment;
226 int64_t offset;
227 int known;
228 } loc_t;
231 * Expression-evaluator datatype. Expressions, within the
232 * evaluator, are stored as an array of these beasts, terminated by
233 * a record with type==0. Mostly, it's a vector type: each type
234 * denotes some kind of a component, and the value denotes the
235 * multiple of that component present in the expression. The
236 * exception is the WRT type, whose `value' field denotes the
237 * segment to which the expression is relative. These segments will
238 * be segment-base types, i.e. either odd segment values or SEG_ABS
239 * types. So it is still valid to assume that anything with a
240 * `value' field of zero is insignificant.
242 typedef struct {
243 int32_t type; /* a register, or EXPR_xxx */
244 int64_t value; /* must be >= 32 bits */
245 } expr;
248 * The evaluator can also return hints about which of two registers
249 * used in an expression should be the base register. See also the
250 * `operand' structure.
252 struct eval_hints {
253 int64_t base;
254 int type;
258 * The actual expression evaluator function looks like this. When
259 * called, it expects the first token of its expression to already
260 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
261 * it will start by calling the scanner.
263 * If a forward reference happens during evaluation, the evaluator
264 * must set `*fwref' to TRUE if `fwref' is non-NULL.
266 * `critical' is non-zero if the expression may not contain forward
267 * references. The evaluator will report its own error if this
268 * occurs; if `critical' is 1, the error will be "symbol not
269 * defined before use", whereas if `critical' is 2, the error will
270 * be "symbol undefined".
272 * If `critical' has bit 8 set (in addition to its main value: 0x101
273 * and 0x102 correspond to 1 and 2) then an extended expression
274 * syntax is recognised, in which relational operators such as =, <
275 * and >= are accepted, as well as low-precedence logical operators
276 * &&, ^^ and ||.
278 * If `hints' is non-NULL, it gets filled in with some hints as to
279 * the base register in complex effective addresses.
281 #define CRITICAL 0x100
282 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
283 struct tokenval * tv, int *fwref, int critical,
284 efunc error, struct eval_hints * hints);
287 * Special values for expr->type. These come after EXPR_REG_END
288 * as defined in regs.h.
291 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
292 #define EXPR_SIMPLE (EXPR_REG_END+2)
293 #define EXPR_WRT (EXPR_REG_END+3)
294 #define EXPR_SEGBASE (EXPR_REG_END+4)
297 * Preprocessors ought to look like this:
299 typedef struct preproc_ops {
301 * Called at the start of a pass; given a file name, the number
302 * of the pass, an error reporting function, an evaluator
303 * function, and a listing generator to talk to.
305 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
308 * Called to fetch a line of preprocessed source. The line
309 * returned has been malloc'ed, and so should be freed after
310 * use.
312 char *(*getline) (void);
315 * Called at the end of a pass.
317 void (*cleanup) (int);
318 } Preproc;
320 extern Preproc nasmpp;
323 * ----------------------------------------------------------------
324 * Some lexical properties of the NASM source language, included
325 * here because they are shared between the parser and preprocessor
326 * ----------------------------------------------------------------
330 * isidstart matches any character that may start an identifier, and isidchar
331 * matches any character that may appear at places other than the start of an
332 * identifier. E.g. a period may only appear at the start of an identifier
333 * (for local labels), whereas a number may appear anywhere *but* at the
334 * start.
337 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
338 || (c)=='@' )
339 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
340 || (c)=='~' )
342 /* Ditto for numeric constants. */
344 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
345 #define isnumchar(c) ( isalnum(c) )
347 /* This returns the numeric value of a given 'digit'. */
349 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
352 * Data-type flags that get passed to listing-file routines.
354 enum {
355 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
356 LIST_INCBIN, LIST_TIMES
360 * -----------------------------------------------------------
361 * Format of the `insn' structure returned from `parser.c' and
362 * passed into `assemble.c'
363 * -----------------------------------------------------------
367 * Here we define the operand types. These are implemented as bit
368 * masks, since some are subsets of others; e.g. AX in a MOV
369 * instruction is a special operand type, whereas AX in other
370 * contexts is just another 16-bit register. (Also, consider CL in
371 * shift instructions, DX in OUT, etc.)
373 * The basic concept here is that
374 * (class & ~operand) == 0
376 * if and only if "operand" belongs to class type "class".
378 * The bits are assigned as follows:
380 * Bits 0-7: sizes
381 * 0: 8 bits (BYTE)
382 * 1: 16 bits (WORD)
383 * 2: 32 bits (DWORD)
384 * 3: 64 bits (QWORD)
385 * 4: 80 bits (TWORD)
386 * 5: FAR
387 * 6: NEAR
388 * 7: SHORT
390 * Bits 8-11 modifiers
391 * 8: TO
392 * 9: COLON
393 * 10: STRICT
394 * 11: (reserved)
396 * Bits 12-15: type of operand
397 * 12: REGISTER
398 * 13: IMMEDIATE
399 * 14: MEMORY (always has REGMEM attribute as well)
400 * 15: REGMEM (valid EA operand)
402 * Bits 16-19: subclasses
403 * With REG_CDT:
404 * 16: REG_CREG (CRx)
405 * 17: REG_DREG (DRx)
406 * 18: REG_TREG (TRx)
408 * With REG_GPR:
409 * 16: REG_ACCUM (AL, AX, EAX, RAX)
410 * 17: REG_COUNT (CL, CX, ECX, RCX)
411 * 18: REG_DATA (DL, DX, EDX, RDX)
412 * 19: REG_HIGH (AH, CH, DH, BH)
414 * With REG_SREG:
415 * 16: REG_CS
416 * 17: REG_DESS (DS, ES, SS)
417 * 18: REG_FSGS
418 * 19: REG_SEG67
420 * With FPUREG:
421 * 16: FPU0
423 * With MEMORY:
424 * 16: MEM_OFFS (this is a simple offset)
425 * 17: IP_REL (IP-relative offset)
427 * With IMMEDIATE:
428 * 16: UNITY (1)
429 * 17: BYTENESS (-128..127)
431 * Bits 20-26: register classes
432 * 20: REG_CDT (CRx, DRx, TRx)
433 * 21: REG_GPR (integer register)
434 * 22: REG_SREG
435 * 23: IP_REG (RIP or EIP) [unused]
436 * 24: FPUREG
437 * 25: MMXREG
438 * 26: XMMREG
440 * Bits 27-31 are currently unallocated.
443 /* Size, and other attributes, of the operand */
444 #define BITS8 0x00000001L
445 #define BITS16 0x00000002L
446 #define BITS32 0x00000004L
447 #define BITS64 0x00000008L /* x64 and FPU only */
448 #define BITS80 0x00000010L /* FPU only */
449 #define FAR 0x00000020L /* grotty: this means 16:16 or */
450 /* 16:32, like in CALL/JMP */
451 #define NEAR 0x00000040L
452 #define SHORT 0x00000080L /* and this means what it says :) */
454 #define SIZE_MASK 0x000000FFL /* all the size attributes */
456 /* Modifiers */
457 #define MODIFIER_MASK 0x00000f00L
458 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
459 #define COLON 0x00000200L /* operand is followed by a colon */
460 #define STRICT 0x00000400L /* do not optimize this operand */
462 /* Type of operand: memory reference, register, etc. */
463 #define OPTYPE_MASK 0x0000f000L
464 #define REGISTER 0x00001000L /* register number in 'basereg' */
465 #define IMMEDIATE 0x00002000L
466 #define MEMORY 0x0000c000L
467 #define REGMEM 0x00008000L /* for r/m, ie EA, operands */
469 /* Register classes */
470 #define REG_EA 0x00009000L /* 'normal' reg, qualifies as EA */
471 #define REG_GPR 0x00209000L /* integer register */
472 #define REG8 0x00209001L /* 8-bit GPR */
473 #define REG16 0x00209002L /* 16-bit GPR */
474 #define REG32 0x00209004L /* 32-bit GPR */
475 #define REG64 0x00209008L /* 64-bit GPR */
476 #define IP_REG 0x00801000L /* RIP or EIP register */
477 #define RIPREG 0x00801008L /* RIP */
478 #define EIPREG 0x00801004L /* EIP */
479 #define FPUREG 0x01001000L /* floating point stack registers */
480 #define FPU0 0x01011000L /* FPU stack register zero */
481 #define MMXREG 0x02009000L /* MMX registers */
482 #define XMMREG 0x04009000L /* XMM Katmai reg */
483 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
484 #define REG_CREG 0x00111004L /* CRn */
485 #define REG_DREG 0x00121004L /* DRn */
486 #define REG_TREG 0x00141004L /* TRn */
487 #define REG_SREG 0x00401002L /* any segment register */
488 #define REG_CS 0x00411002L /* CS */
489 #define REG_DESS 0x00421002L /* DS, ES, SS */
490 #define REG_FSGS 0x00441002L /* FS, GS */
491 #define REG_SEG67 0x00481002L /* Unimplemented segment registers */
493 #define REG_RIP 0x00801008L /* RIP relative addressing */
494 #define REG_EIP 0x00801004L /* EIP relative addressing */
496 /* Special GPRs */
497 #define REG_SMASK 0x000f0000L /* a mask for the following */
498 #define REG_ACCUM 0x00219000L /* accumulator: AL, AX, EAX, RAX */
499 #define REG_AL 0x00219001L
500 #define REG_AX 0x00219002L
501 #define REG_EAX 0x00219004L
502 #define REG_RAX 0x00219008L
503 #define REG_COUNT 0x00229000L /* counter: CL, CX, ECX, RCX */
504 #define REG_CL 0x00229001L
505 #define REG_CX 0x00229002L
506 #define REG_ECX 0x00229004L
507 #define REG_RCX 0x00229008L
508 #define REG_DL 0x00249001L /* data: DL, DX, EDX, RDX */
509 #define REG_DX 0x00249002L
510 #define REG_EDX 0x00249004L
511 #define REG_RDX 0x00249008L
512 #define REG_HIGH 0x00289001L /* high regs: AH, CH, DH, BH */
514 /* special types of EAs */
515 #define MEM_OFFS 0x00214000L /* simple [address] offset - absolute! */
516 #define IP_REL 0x00224000L /* IP-relative offset */
518 /* special type of immediate operand */
519 #define UNITY 0x00012000L /* for shift/rotate instructions */
520 #define SBYTE 0x00022000L /* for op r16/32,immediate instrs. */
522 /* Register names automatically generated from regs.dat */
523 #include "regs.h"
525 enum { /* condition code names */
526 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
527 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
528 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z
532 * REX flags
534 #define REX_H 0x80 /* High register present, REX forbidden */
535 #define REX_P 0x40 /* REX prefix present/required */
536 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
537 #define REX_W 0x08 /* 64-bit operand size */
538 #define REX_R 0x04 /* ModRM reg extension */
539 #define REX_X 0x02 /* SIB index extension */
540 #define REX_B 0x01 /* ModRM r/m extension */
541 #define REX_REAL 0x4f /* Actual REX prefix bits */
544 * Note that because segment registers may be used as instruction
545 * prefixes, we must ensure the enumerations for prefixes and
546 * register names do not overlap.
548 enum prefixes { /* instruction prefixes */
549 PREFIX_ENUM_START = REG_ENUM_LIMIT,
550 P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32,
551 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES
554 enum { /* extended operand types */
555 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
558 enum { /* special EA flags */
559 EAF_BYTEOFFS = 1, /* force offset part to byte size */
560 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
561 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
562 EAF_REL = 8, /* IP-relative addressing */
563 EAF_ABS = 16, /* non-IP-relative addressing */
564 EAF_FSGS = 32 /* fs/gs segment override present */
567 enum eval_hint { /* values for `hinttype' */
568 EAH_NOHINT = 0, /* no hint at all - our discretion */
569 EAH_MAKEBASE = 1, /* try to make given reg the base */
570 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
573 typedef struct { /* operand to an instruction */
574 int32_t type; /* type of operand */
575 int addr_size; /* 0 means default; 16; 32; 64 */
576 enum reg_enum basereg, indexreg; /* address registers */
577 int scale; /* index scale */
578 int hintbase;
579 enum eval_hint hinttype; /* hint as to real base register */
580 int32_t segment; /* immediate segment, if needed */
581 int64_t offset; /* any immediate number */
582 int32_t wrt; /* segment base it's relative to */
583 int eaflags; /* special EA flags */
584 int opflags; /* see OPFLAG_* defines below */
585 } operand;
587 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
588 #define OPFLAG_EXTERN 2 /* operand is an external reference */
590 typedef struct extop { /* extended operand */
591 struct extop *next; /* linked list */
592 int32_t type; /* defined above */
593 char *stringval; /* if it's a string, then here it is */
594 int stringlen; /* ... and here's how long it is */
595 int32_t segment; /* if it's a number/address, then... */
596 int64_t offset; /* ... it's given here ... */
597 int32_t wrt; /* ... and here */
598 } extop;
600 #define MAXPREFIX 4
602 typedef struct { /* an instruction itself */
603 char *label; /* the label defined, or NULL */
604 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
605 int nprefix; /* number of entries in above */
606 int opcode; /* the opcode - not just the string */
607 int condition; /* the condition code, if Jcc/SETcc */
608 int operands; /* how many operands? 0-3
609 * (more if db et al) */
610 operand oprs[3]; /* the operands, defined as above */
611 extop *eops; /* extended operands */
612 int eops_float; /* true if DD and floating */
613 int32_t times; /* repeat count (TIMES prefix) */
614 int forw_ref; /* is there a forward reference? */
615 uint8_t rex; /* Special REX Prefix */
616 } insn;
618 enum geninfo { GI_SWITCH };
620 * ------------------------------------------------------------
621 * The data structure defining an output format driver, and the
622 * interfaces to the functions therein.
623 * ------------------------------------------------------------
626 struct ofmt {
628 * This is a short (one-liner) description of the type of
629 * output generated by the driver.
631 const char *fullname;
634 * This is a single keyword used to select the driver.
636 const char *shortname;
640 * this is reserved for out module specific help.
641 * It is set to NULL in all the out modules and is not implemented
642 * in the main program
644 const char *helpstring;
647 * this is a pointer to the first element of the debug information
649 struct dfmt **debug_formats;
652 * and a pointer to the element that is being used
653 * note: this is set to the default at compile time and changed if the
654 * -F option is selected. If developing a set of new debug formats for
655 * an output format, be sure to set this to whatever default you want
658 struct dfmt *current_dfmt;
661 * This, if non-NULL, is a NULL-terminated list of `char *'s
662 * pointing to extra standard macros supplied by the object
663 * format (e.g. a sensible initial default value of __SECT__,
664 * and user-level equivalents for any format-specific
665 * directives).
667 const char **stdmac;
670 * This procedure is called at the start of an output session.
671 * It tells the output format what file it will be writing to,
672 * what routine to report errors through, and how to interface
673 * to the label manager and expression evaluator if necessary.
674 * It also gives it a chance to do other initialisation.
676 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
679 * This procedure is called to pass generic information to the
680 * object file. The first parameter gives the information type
681 * (currently only command line switches)
682 * and the second parameter gives the value. This function returns
683 * 1 if recognized, 0 if unrecognized
685 int (*setinfo) (enum geninfo type, char **string);
688 * This procedure is called by assemble() to write actual
689 * generated code or data to the object file. Typically it
690 * doesn't have to actually _write_ it, just store it for
691 * later.
693 * The `type' argument specifies the type of output data, and
694 * usually the size as well: its contents are described below.
696 void (*output) (int32_t segto, const void *data, uint32_t type,
697 int32_t segment, int32_t wrt);
700 * This procedure is called once for every symbol defined in
701 * the module being assembled. It gives the name and value of
702 * the symbol, in NASM's terms, and indicates whether it has
703 * been declared to be global. Note that the parameter "name",
704 * when passed, will point to a piece of static storage
705 * allocated inside the label manager - it's safe to keep using
706 * that pointer, because the label manager doesn't clean up
707 * until after the output driver has.
709 * Values of `is_global' are: 0 means the symbol is local; 1
710 * means the symbol is global; 2 means the symbol is common (in
711 * which case `offset' holds the _size_ of the variable).
712 * Anything else is available for the output driver to use
713 * internally.
715 * This routine explicitly _is_ allowed to call the label
716 * manager to define further symbols, if it wants to, even
717 * though it's been called _from_ the label manager. That much
718 * re-entrancy is guaranteed in the label manager. However, the
719 * label manager will in turn call this routine, so it should
720 * be prepared to be re-entrant itself.
722 * The `special' parameter contains special information passed
723 * through from the command that defined the label: it may have
724 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
725 * be obvious to the output format from the other parameters.
727 void (*symdef) (char *name, int32_t segment, int32_t offset, int is_global,
728 char *special);
731 * This procedure is called when the source code requests a
732 * segment change. It should return the corresponding segment
733 * _number_ for the name, or NO_SEG if the name is not a valid
734 * segment name.
736 * It may also be called with NULL, in which case it is to
737 * return the _default_ section number for starting assembly in.
739 * It is allowed to modify the string it is given a pointer to.
741 * It is also allowed to specify a default instruction size for
742 * the segment, by setting `*bits' to 16 or 32. Or, if it
743 * doesn't wish to define a default, it can leave `bits' alone.
745 int32_t (*section) (char *name, int pass, int *bits);
748 * This procedure is called to modify the segment base values
749 * returned from the SEG operator. It is given a segment base
750 * value (i.e. a segment value with the low bit set), and is
751 * required to produce in return a segment value which may be
752 * different. It can map segment bases to absolute numbers by
753 * means of returning SEG_ABS types.
755 * It should return NO_SEG if the segment base cannot be
756 * determined; the evaluator (which calls this routine) is
757 * responsible for throwing an error condition if that occurs
758 * in pass two or in a critical expression.
760 int32_t (*segbase) (int32_t segment);
763 * This procedure is called to allow the output driver to
764 * process its own specific directives. When called, it has the
765 * directive word in `directive' and the parameter string in
766 * `value'. It is called in both assembly passes, and `pass'
767 * will be either 1 or 2.
769 * This procedure should return zero if it does not _recognise_
770 * the directive, so that the main program can report an error.
771 * If it recognises the directive but then has its own errors,
772 * it should report them itself and then return non-zero. It
773 * should also return non-zero if it correctly processes the
774 * directive.
776 int (*directive) (char *directive, char *value, int pass);
779 * This procedure is called before anything else - even before
780 * the "init" routine - and is passed the name of the input
781 * file from which this output file is being generated. It
782 * should return its preferred name for the output file in
783 * `outname', if outname[0] is not '\0', and do nothing to
784 * `outname' otherwise. Since it is called before the driver is
785 * properly initialized, it has to be passed its error handler
786 * separately.
788 * This procedure may also take its own copy of the input file
789 * name for use in writing the output file: it is _guaranteed_
790 * that it will be called before the "init" routine.
792 * The parameter `outname' points to an area of storage
793 * guaranteed to be at least FILENAME_MAX in size.
795 void (*filename) (char *inname, char *outname, efunc error);
798 * This procedure is called after assembly finishes, to allow
799 * the output driver to clean itself up and free its memory.
800 * Typically, it will also be the point at which the object
801 * file actually gets _written_.
803 * One thing the cleanup routine should always do is to close
804 * the output file pointer.
806 void (*cleanup) (int debuginfo);
810 * values for the `type' parameter to an output function. Each one
811 * must have the actual number of _bytes_ added to it.
813 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
814 * which will be a relative jump. For this we need to know the
815 * distance in bytes from the start of the relocated record until
816 * the end of the containing instruction. _This_ is what is stored
817 * in the size part of the parameter, in this case.
819 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
820 * and the contents of the "data" parameter is irrelevant.
822 * The "data" parameter for the output function points to a "int32_t",
823 * containing the address in question, unless the type is
824 * OUT_RAWDATA, in which case it points to an "uint8_t"
825 * array.
827 #define OUT_RAWDATA 0x00000000UL
828 #define OUT_ADDRESS 0x10000000UL
829 #define OUT_REL2ADR 0x20000000UL
830 #define OUT_REL4ADR 0x30000000UL
831 #define OUT_RESERVE 0x40000000UL
832 #define OUT_TYPMASK 0xF0000000UL
833 #define OUT_SIZMASK 0x0FFFFFFFUL
836 * ------------------------------------------------------------
837 * The data structure defining a debug format driver, and the
838 * interfaces to the functions therein.
839 * ------------------------------------------------------------
842 struct dfmt {
845 * This is a short (one-liner) description of the type of
846 * output generated by the driver.
848 const char *fullname;
851 * This is a single keyword used to select the driver.
853 const char *shortname;
856 * init - called initially to set up local pointer to object format,
857 * void pointer to implementation defined data, file pointer (which
858 * probably won't be used, but who knows?), and error function.
860 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
863 * linenum - called any time there is output with a change of
864 * line number or file.
866 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
869 * debug_deflabel - called whenever a label is defined. Parameters
870 * are the same as to 'symdef()' in the output format. This function
871 * would be called before the output format version.
874 void (*debug_deflabel) (char *name, int32_t segment, int32_t offset,
875 int is_global, char *special);
877 * debug_directive - called whenever a DEBUG directive other than 'LINE'
878 * is encountered. 'directive' contains the first parameter to the
879 * DEBUG directive, and params contains the rest. For example,
880 * 'DEBUG VAR _somevar:int' would translate to a call to this
881 * function with 'directive' equal to "VAR" and 'params' equal to
882 * "_somevar:int".
884 void (*debug_directive) (const char *directive, const char *params);
887 * typevalue - called whenever the assembler wishes to register a type
888 * for the last defined label. This routine MUST detect if a type was
889 * already registered and not re-register it.
891 void (*debug_typevalue) (int32_t type);
894 * debug_output - called whenever output is required
895 * 'type' is the type of info required, and this is format-specific
897 void (*debug_output) (int type, void *param);
900 * cleanup - called after processing of file is complete
902 void (*cleanup) (void);
906 * The type definition macros
907 * for debugging
909 * low 3 bits: reserved
910 * next 5 bits: type
911 * next 24 bits: number of elements for arrays (0 for labels)
914 #define TY_UNKNOWN 0x00
915 #define TY_LABEL 0x08
916 #define TY_BYTE 0x10
917 #define TY_WORD 0x18
918 #define TY_DWORD 0x20
919 #define TY_FLOAT 0x28
920 #define TY_QWORD 0x30
921 #define TY_TBYTE 0x38
922 #define TY_COMMON 0xE0
923 #define TY_SEG 0xE8
924 #define TY_EXTERN 0xF0
925 #define TY_EQU 0xF8
927 #define TYM_TYPE(x) ((x) & 0xF8)
928 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
930 #define TYS_ELEMENTS(x) ((x) << 8)
933 * -----
934 * Special tokens
935 * -----
938 enum special_tokens {
939 S_ABS, S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT, S_QWORD, S_REL,
940 S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD
944 * -----
945 * Other
946 * -----
950 * This is a useful #define which I keep meaning to use more often:
951 * the number of elements of a statically defined array.
954 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
957 * -----
958 * Global modes
959 * -----
963 * This declaration passes the "pass" number to all other modules
964 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
965 * where 0 = optimizing pass
966 * 1 = pass 1
967 * 2 = pass 2
970 extern int pass0;
972 extern int tasm_compatible_mode;
973 extern int optimizing;
974 extern int globalbits; /* 16, 32 or 64-bit mode */
975 extern int globalrel; /* default to relative addressing? */
976 extern int maxbits; /* max bits supported by output */
978 #endif