1 /* disasm.c where all the _work_ gets done in the Netwide Disassembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version 27/iii/95 by Simon Tatham
26 * Flags that go into the `segment' field of `insn' structures
29 #define SEG_RELATIVE 1
36 #define SEG_SIGNED 128
45 uint8_t osize
; /* Operand size */
46 uint8_t asize
; /* Address size */
47 uint8_t osp
; /* Operand size prefix present */
48 uint8_t asp
; /* Address size prefix present */
49 uint8_t rep
; /* Rep prefix present */
50 uint8_t seg
; /* Segment override prefix present */
51 uint8_t lock
; /* Lock prefix present */
52 uint8_t rex
; /* Rex prefix present */
55 #define getu8(x) (*(uint8_t *)(x))
57 /* Littleendian CPU which can handle unaligned references */
58 #define getu16(x) (*(uint16_t *)(x))
59 #define getu32(x) (*(uint32_t *)(x))
60 #define getu64(x) (*(uint64_t *)(x))
62 static uint16_t getu16(uint8_t *data
)
64 return (uint16_t)data
[0] + ((uint16_t)data
[1] << 8);
66 static uint32_t getu32(uint8_t *data
)
68 return (uint32_t)getu16(data
) + ((uint32_t)getu16(data
+2) << 16);
70 static uint64_t getu64(uint8_t *data
)
72 return (uint64_t)getu32(data
) + ((uint64_t)getu32(data
+4) << 32);
76 #define gets8(x) ((int8_t)getu8(x))
77 #define gets16(x) ((int16_t)getu16(x))
78 #define gets32(x) ((int32_t)getu32(x))
79 #define gets64(x) ((int64_t)getu64(x))
81 /* Important: regval must already have been adjusted for rex extensions */
82 static enum reg_enum
whichreg(int32_t regflags
, int regval
, int rex
)
84 if (!(regflags
& (REGISTER
|REGMEM
)))
85 return 0; /* Registers not permissible?! */
89 if (!(REG_AL
& ~regflags
))
91 if (!(REG_AX
& ~regflags
))
93 if (!(REG_EAX
& ~regflags
))
95 if (!(REG_RAX
& ~regflags
))
97 if (!(REG_DL
& ~regflags
))
99 if (!(REG_DX
& ~regflags
))
101 if (!(REG_EDX
& ~regflags
))
103 if (!(REG_RDX
& ~regflags
))
105 if (!(REG_CL
& ~regflags
))
107 if (!(REG_CX
& ~regflags
))
109 if (!(REG_ECX
& ~regflags
))
111 if (!(REG_RCX
& ~regflags
))
113 if (!(FPU0
& ~regflags
))
115 if (!(REG_CS
& ~regflags
))
116 return (regval
== 1) ? R_CS
: 0;
117 if (!(REG_DESS
& ~regflags
))
118 return (regval
== 0 || regval
== 2
119 || regval
== 3 ? rd_sreg
[regval
] : 0);
120 if (!(REG_FSGS
& ~regflags
))
121 return (regval
== 4 || regval
== 5 ? rd_sreg
[regval
] : 0);
122 if (!(REG_SEG67
& ~regflags
))
123 return (regval
== 6 || regval
== 7 ? rd_sreg
[regval
] : 0);
125 /* All the entries below look up regval in an 16-entry array */
126 if (regval
< 0 || regval
> 15)
129 if (!(REG8
& ~regflags
)) {
131 return rd_reg8_rex
[regval
];
133 return rd_reg8
[regval
];
135 if (!(REG16
& ~regflags
))
136 return rd_reg16
[regval
];
137 if (!(REG32
& ~regflags
))
138 return rd_reg32
[regval
];
139 if (!(REG64
& ~regflags
))
140 return rd_reg64
[regval
];
141 if (!(REG_SREG
& ~regflags
))
142 return rd_sreg
[regval
& 7]; /* Ignore REX */
143 if (!(REG_CREG
& ~regflags
))
144 return rd_creg
[regval
];
145 if (!(REG_DREG
& ~regflags
))
146 return rd_dreg
[regval
];
147 if (!(REG_TREG
& ~regflags
)) {
149 return 0; /* TR registers are ill-defined with rex */
150 return rd_treg
[regval
];
152 if (!(FPUREG
& ~regflags
))
153 return rd_fpureg
[regval
& 7]; /* Ignore REX */
154 if (!(MMXREG
& ~regflags
))
155 return rd_mmxreg
[regval
& 7]; /* Ignore REX */
156 if (!(XMMREG
& ~regflags
))
157 return rd_xmmreg
[regval
];
162 static const char *whichcond(int condval
)
164 static int conds
[] = {
165 C_O
, C_NO
, C_C
, C_NC
, C_Z
, C_NZ
, C_NA
, C_A
,
166 C_S
, C_NS
, C_PE
, C_PO
, C_L
, C_NL
, C_NG
, C_G
168 return conditions
[conds
[condval
]];
172 * Process a DREX suffix
174 static uint8_t *do_drex(uint8_t *data
, insn
*ins
)
176 uint8_t drex
= *data
++;
177 operand
*dst
= &ins
->oprs
[ins
->drexdst
];
179 if ((drex
& 8) != ((ins
->rex
& REX_OC
) ? 8 : 0))
180 return NULL
; /* OC0 mismatch */
181 ins
->rex
= (ins
->rex
& ~7) | (drex
& 7);
183 dst
->segment
= SEG_RMREG
;
184 dst
->basereg
= drex
>> 4;
190 * Process an effective address (ModRM) specification.
192 static uint8_t *do_ea(uint8_t *data
, int modrm
, int asize
,
193 int segsize
, operand
* op
, insn
*ins
)
195 int mod
, rm
, scale
, index
, base
;
199 mod
= (modrm
>> 6) & 03;
202 if (mod
!= 3 && rm
== 4 && asize
!= 16)
205 if (ins
->rex
& REX_D
) {
206 data
= do_drex(data
, ins
);
212 if (mod
== 3) { /* pure register version */
213 op
->basereg
= rm
+(rex
& REX_B
? 8 : 0);
214 op
->segment
|= SEG_RMREG
;
223 * <mod> specifies the displacement size (none, byte or
224 * word), and <rm> specifies the register combination.
225 * Exception: mod=0,rm=6 does not specify [BP] as one might
226 * expect, but instead specifies [disp16].
228 op
->indexreg
= op
->basereg
= -1;
229 op
->scale
= 1; /* always, in 16 bits */
260 if (rm
== 6 && mod
== 0) { /* special case */
264 mod
= 2; /* fake disp16 */
268 op
->segment
|= SEG_NODISP
;
271 op
->segment
|= SEG_DISP8
;
272 op
->offset
= (int8_t)*data
++;
275 op
->segment
|= SEG_DISP16
;
276 op
->offset
= *data
++;
277 op
->offset
|= ((unsigned)*data
++) << 8;
283 * Once again, <mod> specifies displacement size (this time
284 * none, byte or *dword*), while <rm> specifies the base
285 * register. Again, [EBP] is missing, replaced by a pure
286 * disp32 (this time that's mod=0,rm=*5*) in 32-bit mode,
287 * and RIP-relative addressing in 64-bit mode.
290 * indicates not a single base register, but instead the
291 * presence of a SIB byte...
293 int a64
= asize
== 64;
298 op
->basereg
= rd_reg64
[rm
| ((rex
& REX_B
) ? 8 : 0)];
300 op
->basereg
= rd_reg32
[rm
| ((rex
& REX_B
) ? 8 : 0)];
302 if (rm
== 5 && mod
== 0) {
304 op
->eaflags
|= EAF_REL
;
305 op
->segment
|= SEG_RELATIVE
;
306 mod
= 2; /* fake disp32 */
310 op
->disp_size
= asize
;
313 mod
= 2; /* fake disp32 */
316 if (rm
== 4) { /* process SIB */
317 scale
= (sib
>> 6) & 03;
318 index
= (sib
>> 3) & 07;
321 op
->scale
= 1 << scale
;
324 op
->indexreg
= -1; /* ESP/RSP/R12 cannot be an index */
326 op
->indexreg
= rd_reg64
[index
| ((rex
& REX_X
) ? 8 : 0)];
328 op
->indexreg
= rd_reg64
[index
| ((rex
& REX_X
) ? 8 : 0)];
330 if (base
== 5 && mod
== 0) {
332 mod
= 2; /* Fake disp32 */
334 op
->basereg
= rd_reg64
[base
| ((rex
& REX_B
) ? 8 : 0)];
336 op
->basereg
= rd_reg32
[base
| ((rex
& REX_B
) ? 8 : 0)];
344 op
->segment
|= SEG_NODISP
;
347 op
->segment
|= SEG_DISP8
;
348 op
->offset
= gets8(data
);
352 op
->segment
|= SEG_DISP32
;
353 op
->offset
= getu32(data
);
362 * Determine whether the instruction template in t corresponds to the data
363 * stream in data. Return the number of bytes matched if so.
365 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
367 static int matches(const struct itemplate
*t
, uint8_t *data
,
368 const struct prefix_info
*prefix
, int segsize
, insn
*ins
)
370 uint8_t *r
= (uint8_t *)(t
->code
);
371 uint8_t *origdata
= data
;
372 bool a_used
= false, o_used
= false;
373 enum prefixes drep
= 0;
374 uint8_t lock
= prefix
->lock
;
375 int osize
= prefix
->osize
;
376 int asize
= prefix
->asize
;
379 int s_field_for
= -1; /* No 144/154 series code encountered */
381 for (i
= 0; i
< MAX_OPERANDS
; i
++) {
382 ins
->oprs
[i
].segment
= ins
->oprs
[i
].disp_size
=
383 (segsize
== 64 ? SEG_64BIT
: segsize
== 32 ? SEG_32BIT
: 0);
386 ins
->rex
= prefix
->rex
;
387 memset(ins
->prefixes
, 0, sizeof ins
->prefixes
);
389 if (t
->flags
& (segsize
== 64 ? IF_NOLONG
: IF_LONG
))
392 if (prefix
->rep
== 0xF2)
394 else if (prefix
->rep
== 0xF3)
397 while ((c
= *r
++) != 0) {
398 opx
= &ins
->oprs
[c
& 3];
412 ins
->oprs
[0].basereg
= 0;
415 ins
->oprs
[0].basereg
= 2;
418 ins
->oprs
[0].basereg
= 3;
428 ins
->oprs
[0].basereg
= 4;
431 ins
->oprs
[0].basereg
= 5;
441 ins
->oprs
[0].basereg
= 0;
444 ins
->oprs
[0].basereg
= 1;
447 ins
->oprs
[0].basereg
= 2;
450 ins
->oprs
[0].basereg
= 3;
460 ins
->oprs
[0].basereg
= 4;
463 ins
->oprs
[0].basereg
= 5;
472 int t
= *r
++, d
= *data
++;
473 if (d
< t
|| d
> t
+ 7)
476 opx
->basereg
= (d
-t
)+
477 (ins
->rex
& REX_B
? 8 : 0);
478 opx
->segment
|= SEG_RMREG
;
484 opx
->offset
= (int8_t)*data
++;
485 opx
->segment
|= SEG_SIGNED
;
489 opx
->offset
= *data
++;
493 opx
->offset
= *data
++;
497 opx
->offset
= getu16(data
);
503 opx
->offset
= getu32(data
);
506 opx
->offset
= getu16(data
);
509 if (segsize
!= asize
)
510 opx
->disp_size
= asize
;
514 opx
->offset
= getu32(data
);
521 opx
->offset
= getu16(data
);
527 opx
->offset
= getu32(data
);
533 opx
->offset
= getu64(data
);
541 opx
->offset
= gets8(data
++);
542 opx
->segment
|= SEG_RELATIVE
;
546 opx
->offset
= getu64(data
);
551 opx
->offset
= gets16(data
);
553 opx
->segment
|= SEG_RELATIVE
;
554 opx
->segment
&= ~SEG_32BIT
;
558 opx
->segment
|= SEG_RELATIVE
;
560 opx
->offset
= getu16(data
);
562 opx
->segment
&= ~(SEG_32BIT
|SEG_64BIT
);
563 } else if (osize
== 32) {
564 opx
->offset
= getu32(data
);
566 opx
->segment
&= ~SEG_64BIT
;
567 opx
->segment
|= SEG_32BIT
;
569 if (segsize
!= osize
) {
571 (opx
->type
& ~SIZE_MASK
)
572 | ((osize
== 16) ? BITS16
: BITS32
);
577 opx
->offset
= getu32(data
);
579 opx
->segment
|= SEG_32BIT
| SEG_RELATIVE
;
588 opx
->segment
|= SEG_RMREG
;
589 data
= do_ea(data
, modrm
, asize
, segsize
,
590 &ins
->oprs
[(c
>> 3) & 3], ins
);
593 opx
->basereg
= ((modrm
>> 3)&7)+
594 (ins
->rex
& REX_R
? 8 : 0);
599 if (s_field_for
== (c
& 3)) {
600 opx
->offset
= gets8(data
);
603 opx
->offset
= getu16(data
);
610 s_field_for
= (*data
& 0x02) ? c
& 3 : -1;
611 if ((*data
++ & ~0x02) != *r
++)
616 if (s_field_for
== (c
& 3)) {
617 opx
->offset
= gets8(data
);
620 opx
->offset
= getu32(data
);
627 ins
->drexdst
= c
& 3;
631 ins
->rex
|= REX_D
|REX_OC
;
632 ins
->drexdst
= c
& 3;
641 data
= do_drex(data
, ins
);
656 if (((modrm
>> 3) & 07) != (c
& 07))
657 return false; /* spare field doesn't match up */
658 data
= do_ea(data
, modrm
, asize
, segsize
,
659 &ins
->oprs
[(c
>> 3) & 07], ins
);
680 if (asize
!= segsize
)
694 if (prefix
->rex
& REX_B
)
699 if (prefix
->rex
& REX_X
)
704 if (prefix
->rex
& REX_R
)
709 if (prefix
->rex
& REX_W
)
728 if (osize
!= (segsize
== 16) ? 16 : 32)
735 ins
->rex
|= REX_W
; /* 64-bit only instruction */
741 if (!(ins
->rex
& (REX_P
|REX_W
)) || osize
!= 64)
748 int t
= *r
++, d
= *data
++;
749 if (d
< t
|| d
> t
+ 15)
752 ins
->condition
= d
- t
;
762 if (prefix
->rep
!= 0xF2)
768 if (prefix
->rep
!= 0xF3)
811 return false; /* Unknown code */
815 /* REX cannot be combined with DREX */
816 if ((ins
->rex
& REX_D
) && (prefix
->rex
))
820 * Check for unused rep or a/o prefixes.
822 for (i
= 0; i
< t
->operands
; i
++) {
823 if (ins
->oprs
[i
].segment
!= SEG_RMREG
)
828 if (ins
->prefixes
[PPS_LREP
])
830 ins
->prefixes
[PPS_LREP
] = P_LOCK
;
833 if (ins
->prefixes
[PPS_LREP
])
835 ins
->prefixes
[PPS_LREP
] = drep
;
838 if (osize
!= ((segsize
== 16) ? 16 : 32)) {
839 enum prefixes pfx
= 0;
853 if (ins
->prefixes
[PPS_OSIZE
])
855 ins
->prefixes
[PPS_OSIZE
] = pfx
;
858 if (!a_used
&& asize
!= segsize
) {
859 if (ins
->prefixes
[PPS_ASIZE
])
861 ins
->prefixes
[PPS_ASIZE
] = asize
== 16 ? P_A16
: P_A32
;
864 /* Fix: check for redundant REX prefixes */
866 return data
- origdata
;
869 int32_t disasm(uint8_t *data
, char *output
, int outbufsize
, int segsize
,
870 int32_t offset
, int autosync
, uint32_t prefer
)
872 const struct itemplate
* const *p
, * const *best_p
;
873 const struct disasm_index
*ix
;
875 int length
, best_length
= 0;
877 int i
, slen
, colon
, n
;
881 uint32_t goodness
, best
;
883 struct prefix_info prefix
;
886 memset(&ins
, 0, sizeof ins
);
891 memset(&prefix
, 0, sizeof prefix
);
892 prefix
.asize
= segsize
;
893 prefix
.osize
= (segsize
== 64) ? 32 : segsize
;
897 for (end_prefix
= false; !end_prefix
; ) {
901 prefix
.rep
= *data
++;
904 prefix
.lock
= *data
++;
907 segover
= "cs", prefix
.seg
= *data
++;
910 segover
= "ss", prefix
.seg
= *data
++;
913 segover
= "ds", prefix
.seg
= *data
++;
916 segover
= "es", prefix
.seg
= *data
++;
919 segover
= "fs", prefix
.seg
= *data
++;
922 segover
= "gs", prefix
.seg
= *data
++;
925 prefix
.osize
= (segsize
== 16) ? 32 : 16;
926 prefix
.osp
= *data
++;
929 prefix
.asize
= (segsize
== 32) ? 16 : 32;
930 prefix
.asp
= *data
++;
933 if (segsize
== 64 && (*data
& 0xf0) == REX_P
) {
934 prefix
.rex
= *data
++;
935 if (prefix
.rex
& REX_W
)
944 best
= -1; /* Worst possible */
950 while (ix
->n
== -1) {
951 ix
= (const struct disasm_index
*)ix
->p
+ *dp
++;
954 p
= (const struct itemplate
* const *)ix
->p
;
955 for (n
= ix
->n
; n
; n
--, p
++) {
956 if ((length
= matches(*p
, data
, &prefix
, segsize
, &tmp_ins
))) {
959 * Final check to make sure the types of r/m match up.
960 * XXX: Need to make sure this is actually correct.
962 for (i
= 0; i
< (*p
)->operands
; i
++) {
963 if (!((*p
)->opd
[i
] & SAME_AS
) &&
965 /* If it's a mem-only EA but we have a
967 ((tmp_ins
.oprs
[i
].segment
& SEG_RMREG
) &&
968 !(MEMORY
& ~(*p
)->opd
[i
])) ||
969 /* If it's a reg-only EA but we have a memory
971 (!(tmp_ins
.oprs
[i
].segment
& SEG_RMREG
) &&
972 !(REG_EA
& ~(*p
)->opd
[i
]) &&
973 !((*p
)->opd
[i
] & REG_SMASK
)) ||
974 /* Register type mismatch (eg FS vs REG_DESS):
976 ((((*p
)->opd
[i
] & (REGISTER
| FPUREG
)) ||
977 (tmp_ins
.oprs
[i
].segment
& SEG_RMREG
)) &&
978 !whichreg((*p
)->opd
[i
],
979 tmp_ins
.oprs
[i
].basereg
, tmp_ins
.rex
))
987 * Note: we always prefer instructions which incorporate
988 * prefixes in the instructions themselves. This is to allow
989 * e.g. PAUSE to be preferred to REP NOP, and deal with
990 * MMX/SSE instructions where prefixes are used to select
991 * between MMX and SSE register sets or outright opcode
996 goodness
= ((*p
)->flags
& IF_PFMASK
) ^ prefer
;
998 for (i
= 0; i
< MAXPREFIX
; i
++)
999 if (tmp_ins
.prefixes
[i
])
1001 if (nprefix
< best_pref
||
1002 (nprefix
== best_pref
&& goodness
< best
)) {
1003 /* This is the best one found so far */
1006 best_pref
= nprefix
;
1007 best_length
= length
;
1015 return 0; /* no instruction was matched */
1017 /* Pick the best match */
1019 length
= best_length
;
1023 /* TODO: snprintf returns the value that the string would have if
1024 * the buffer were long enough, and not the actual length of
1025 * the returned string, so each instance of using the return
1026 * value of snprintf should actually be checked to assure that
1027 * the return value is "sane." Maybe a macro wrapper could
1028 * be used for that purpose.
1030 for (i
= 0; i
< MAXPREFIX
; i
++)
1031 switch (ins
.prefixes
[i
]) {
1033 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "lock ");
1036 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "rep ");
1039 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "repe ");
1042 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "repne ");
1045 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "a16 ");
1048 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "a32 ");
1051 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "a64 ");
1054 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "o16 ");
1057 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "o32 ");
1060 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "o64 ");
1066 for (i
= 0; i
< (int)elements(ico
); i
++)
1067 if ((*p
)->opcode
== ico
[i
]) {
1069 snprintf(output
+ slen
, outbufsize
- slen
, "%s%s", icn
[i
],
1070 whichcond(ins
.condition
));
1073 if (i
>= (int)elements(ico
))
1075 snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1076 insn_names
[(*p
)->opcode
]);
1078 length
+= data
- origdata
; /* fix up for prefixes */
1079 for (i
= 0; i
< (*p
)->operands
; i
++) {
1080 opflags_t t
= (*p
)->opd
[i
];
1081 const operand
*o
= &ins
.oprs
[i
];
1085 o
= &ins
.oprs
[t
& ~SAME_AS
];
1086 t
= (*p
)->opd
[t
& ~SAME_AS
];
1089 output
[slen
++] = (colon
? ':' : i
== 0 ? ' ' : ',');
1092 if (o
->segment
& SEG_RELATIVE
) {
1093 offs
+= offset
+ length
;
1095 * sort out wraparound
1097 if (!(o
->segment
& (SEG_32BIT
|SEG_64BIT
)))
1100 * add sync marker, if autosync is on
1111 if ((t
& (REGISTER
| FPUREG
)) ||
1112 (o
->segment
& SEG_RMREG
)) {
1114 reg
= whichreg(t
, o
->basereg
, ins
.rex
);
1116 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "to ");
1117 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1118 reg_names
[reg
- EXPR_REG_START
]);
1119 } else if (!(UNITY
& ~t
)) {
1120 output
[slen
++] = '1';
1121 } else if (t
& IMMEDIATE
) {
1124 snprintf(output
+ slen
, outbufsize
- slen
, "byte ");
1125 if (o
->segment
& SEG_SIGNED
) {
1128 output
[slen
++] = '-';
1130 output
[slen
++] = '+';
1132 } else if (t
& BITS16
) {
1134 snprintf(output
+ slen
, outbufsize
- slen
, "word ");
1135 } else if (t
& BITS32
) {
1137 snprintf(output
+ slen
, outbufsize
- slen
, "dword ");
1138 } else if (t
& BITS64
) {
1140 snprintf(output
+ slen
, outbufsize
- slen
, "qword ");
1141 } else if (t
& NEAR
) {
1143 snprintf(output
+ slen
, outbufsize
- slen
, "near ");
1144 } else if (t
& SHORT
) {
1146 snprintf(output
+ slen
, outbufsize
- slen
, "short ");
1149 snprintf(output
+ slen
, outbufsize
- slen
, "0x%"PRIx64
"",
1151 } else if (!(MEM_OFFS
& ~t
)) {
1153 snprintf(output
+ slen
, outbufsize
- slen
,
1154 "[%s%s%s0x%"PRIx64
"]",
1155 (segover
? segover
: ""),
1156 (segover
? ":" : ""),
1157 (o
->disp_size
== 64 ? "qword " :
1158 o
->disp_size
== 32 ? "dword " :
1159 o
->disp_size
== 16 ? "word " : ""), offs
);
1161 } else if (!(REGMEM
& ~t
)) {
1162 int started
= false;
1165 snprintf(output
+ slen
, outbufsize
- slen
, "byte ");
1168 snprintf(output
+ slen
, outbufsize
- slen
, "word ");
1171 snprintf(output
+ slen
, outbufsize
- slen
, "dword ");
1174 snprintf(output
+ slen
, outbufsize
- slen
, "qword ");
1177 snprintf(output
+ slen
, outbufsize
- slen
, "tword ");
1180 snprintf(output
+ slen
, outbufsize
- slen
, "oword ");
1182 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "far ");
1185 snprintf(output
+ slen
, outbufsize
- slen
, "near ");
1186 output
[slen
++] = '[';
1188 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1189 (o
->disp_size
== 64 ? "qword " :
1190 o
->disp_size
== 32 ? "dword " :
1191 o
->disp_size
== 16 ? "word " :
1193 if (o
->eaflags
& EAF_REL
)
1194 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "rel ");
1197 snprintf(output
+ slen
, outbufsize
- slen
, "%s:",
1201 if (o
->basereg
!= -1) {
1202 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1203 reg_names
[(o
->basereg
-
1207 if (o
->indexreg
!= -1) {
1209 output
[slen
++] = '+';
1210 slen
+= snprintf(output
+ slen
, outbufsize
- slen
, "%s",
1211 reg_names
[(o
->indexreg
-
1215 snprintf(output
+ slen
, outbufsize
- slen
, "*%d",
1221 if (o
->segment
& SEG_DISP8
) {
1223 uint8_t offset
= offs
;
1224 if ((int8_t)offset
< 0) {
1231 snprintf(output
+ slen
, outbufsize
- slen
, "%s0x%"PRIx8
"",
1233 } else if (o
->segment
& SEG_DISP16
) {
1235 uint16_t offset
= offs
;
1236 if ((int16_t)offset
< 0 && started
) {
1240 prefix
= started
? "+" : "";
1243 snprintf(output
+ slen
, outbufsize
- slen
,
1244 "%s0x%"PRIx16
"", prefix
, offset
);
1245 } else if (o
->segment
& SEG_DISP32
) {
1246 if (prefix
.asize
== 64) {
1248 uint64_t offset
= (int64_t)(int32_t)offs
;
1249 if ((int32_t)offs
< 0 && started
) {
1253 prefix
= started
? "+" : "";
1256 snprintf(output
+ slen
, outbufsize
- slen
,
1257 "%s0x%"PRIx64
"", prefix
, offset
);
1260 uint32_t offset
= offs
;
1261 if ((int32_t) offset
< 0 && started
) {
1265 prefix
= started
? "+" : "";
1268 snprintf(output
+ slen
, outbufsize
- slen
,
1269 "%s0x%"PRIx32
"", prefix
, offset
);
1272 output
[slen
++] = ']';
1275 snprintf(output
+ slen
, outbufsize
- slen
, "<operand%d>",
1279 output
[slen
] = '\0';
1280 if (segover
) { /* unused segment override */
1282 int count
= slen
+ 1;
1284 p
[count
+ 3] = p
[count
];
1285 strncpy(output
, segover
, 2);
1291 int32_t eatbyte(uint8_t *data
, char *output
, int outbufsize
)
1293 snprintf(output
, outbufsize
, "db 0x%02X", *data
);