2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
74 int sysctl_tcp_timestamps __read_mostly
= 1;
75 int sysctl_tcp_window_scaling __read_mostly
= 1;
76 int sysctl_tcp_sack __read_mostly
= 1;
77 int sysctl_tcp_fack __read_mostly
= 1;
78 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
79 int sysctl_tcp_ecn __read_mostly
;
80 int sysctl_tcp_dsack __read_mostly
= 1;
81 int sysctl_tcp_app_win __read_mostly
= 31;
82 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
84 int sysctl_tcp_stdurg __read_mostly
;
85 int sysctl_tcp_rfc1337 __read_mostly
;
86 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
87 int sysctl_tcp_frto __read_mostly
= 2;
88 int sysctl_tcp_frto_response __read_mostly
;
89 int sysctl_tcp_nometrics_save __read_mostly
;
91 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
92 int sysctl_tcp_abc __read_mostly
;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 /* Adapt the MSS value used to make delayed ack decision to the
121 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
123 struct inet_connection_sock
*icsk
= inet_csk(sk
);
124 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
127 icsk
->icsk_ack
.last_seg_size
= 0;
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
132 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
133 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
134 icsk
->icsk_ack
.rcv_mss
= len
;
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
139 * "len" is invariant segment length, including TCP header.
141 len
+= skb
->data
- skb_transport_header(skb
);
142 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
148 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
149 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
154 len
-= tcp_sk(sk
)->tcp_header_len
;
155 icsk
->icsk_ack
.last_seg_size
= len
;
157 icsk
->icsk_ack
.rcv_mss
= len
;
161 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
162 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
163 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
167 static void tcp_incr_quickack(struct sock
*sk
)
169 struct inet_connection_sock
*icsk
= inet_csk(sk
);
170 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
174 if (quickacks
> icsk
->icsk_ack
.quick
)
175 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
178 void tcp_enter_quickack_mode(struct sock
*sk
)
180 struct inet_connection_sock
*icsk
= inet_csk(sk
);
181 tcp_incr_quickack(sk
);
182 icsk
->icsk_ack
.pingpong
= 0;
183 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
190 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
192 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
193 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
198 if (tp
->ecn_flags
& TCP_ECN_OK
)
199 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
204 if (tcp_hdr(skb
)->cwr
)
205 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
210 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
213 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
215 if (tp
->ecn_flags
& TCP_ECN_OK
) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
217 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
222 tcp_enter_quickack_mode((struct sock
*)tp
);
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
228 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
229 tp
->ecn_flags
&= ~TCP_ECN_OK
;
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
234 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
235 tp
->ecn_flags
&= ~TCP_ECN_OK
;
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
240 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
245 /* Buffer size and advertised window tuning.
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 static void tcp_fixup_sndbuf(struct sock
*sk
)
252 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
253 sizeof(struct sk_buff
);
255 if (sk
->sk_sndbuf
< 3 * sndmem
)
256 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
287 struct tcp_sock
*tp
= tcp_sk(sk
);
289 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
290 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
292 while (tp
->rcv_ssthresh
<= window
) {
293 if (truesize
<= skb
->len
)
294 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
302 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
304 struct tcp_sock
*tp
= tcp_sk(sk
);
307 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
308 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
309 !tcp_memory_pressure
) {
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
315 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
316 incr
= 2 * tp
->advmss
;
318 incr
= __tcp_grow_window(sk
, skb
);
321 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
323 inet_csk(sk
)->icsk_ack
.quick
|= 1;
328 /* 3. Tuning rcvbuf, when connection enters established state. */
330 static void tcp_fixup_rcvbuf(struct sock
*sk
)
332 struct tcp_sock
*tp
= tcp_sk(sk
);
333 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
341 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
342 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
345 /* 4. Try to fixup all. It is made immediately after connection enters
348 static void tcp_init_buffer_space(struct sock
*sk
)
350 struct tcp_sock
*tp
= tcp_sk(sk
);
353 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
354 tcp_fixup_rcvbuf(sk
);
355 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
356 tcp_fixup_sndbuf(sk
);
358 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
360 maxwin
= tcp_full_space(sk
);
362 if (tp
->window_clamp
>= maxwin
) {
363 tp
->window_clamp
= maxwin
;
365 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
366 tp
->window_clamp
= max(maxwin
-
367 (maxwin
>> sysctl_tcp_app_win
),
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win
&&
373 tp
->window_clamp
> 2 * tp
->advmss
&&
374 tp
->window_clamp
+ tp
->advmss
> maxwin
)
375 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
377 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
378 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock
*sk
)
384 struct tcp_sock
*tp
= tcp_sk(sk
);
385 struct inet_connection_sock
*icsk
= inet_csk(sk
);
387 icsk
->icsk_ack
.quick
= 0;
389 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
390 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
391 !tcp_memory_pressure
&&
392 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
393 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
396 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
397 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 void tcp_initialize_rcv_mss(struct sock
*sk
)
409 struct tcp_sock
*tp
= tcp_sk(sk
);
410 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
412 hint
= min(hint
, tp
->rcv_wnd
/ 2);
413 hint
= min(hint
, TCP_MIN_RCVMSS
);
414 hint
= max(hint
, TCP_MIN_MSS
);
416 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
419 /* Receiver "autotuning" code.
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
430 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
432 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
438 if (new_sample
!= 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
450 m
-= (new_sample
>> 3);
452 } else if (m
< new_sample
)
455 /* No previous measure. */
459 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
460 tp
->rcv_rtt_est
.rtt
= new_sample
;
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
465 if (tp
->rcv_rtt_est
.time
== 0)
467 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
469 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
472 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
473 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
476 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
477 const struct sk_buff
*skb
)
479 struct tcp_sock
*tp
= tcp_sk(sk
);
480 if (tp
->rx_opt
.rcv_tsecr
&&
481 (TCP_SKB_CB(skb
)->end_seq
-
482 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
483 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
490 void tcp_rcv_space_adjust(struct sock
*sk
)
492 struct tcp_sock
*tp
= tcp_sk(sk
);
496 if (tp
->rcvq_space
.time
== 0)
499 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
500 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
503 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
505 space
= max(tp
->rcvq_space
.space
, space
);
507 if (tp
->rcvq_space
.space
!= space
) {
510 tp
->rcvq_space
.space
= space
;
512 if (sysctl_tcp_moderate_rcvbuf
&&
513 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
514 int new_clamp
= space
;
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
523 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
524 16 + sizeof(struct sk_buff
));
525 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
528 space
= min(space
, sysctl_tcp_rmem
[2]);
529 if (space
> sk
->sk_rcvbuf
) {
530 sk
->sk_rcvbuf
= space
;
532 /* Make the window clamp follow along. */
533 tp
->window_clamp
= new_clamp
;
539 tp
->rcvq_space
.seq
= tp
->copied_seq
;
540 tp
->rcvq_space
.time
= tcp_time_stamp
;
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
553 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
555 struct tcp_sock
*tp
= tcp_sk(sk
);
556 struct inet_connection_sock
*icsk
= inet_csk(sk
);
559 inet_csk_schedule_ack(sk
);
561 tcp_measure_rcv_mss(sk
, skb
);
563 tcp_rcv_rtt_measure(tp
);
565 now
= tcp_time_stamp
;
567 if (!icsk
->icsk_ack
.ato
) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
571 tcp_incr_quickack(sk
);
572 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
574 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
576 if (m
<= TCP_ATO_MIN
/ 2) {
577 /* The fastest case is the first. */
578 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
579 } else if (m
< icsk
->icsk_ack
.ato
) {
580 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
581 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
582 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
583 } else if (m
> icsk
->icsk_rto
) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
587 tcp_incr_quickack(sk
);
591 icsk
->icsk_ack
.lrcvtime
= now
;
593 TCP_ECN_check_ce(tp
, skb
);
596 tcp_grow_window(sk
, skb
);
599 static u32
tcp_rto_min(struct sock
*sk
)
601 struct dst_entry
*dst
= __sk_dst_get(sk
);
602 u32 rto_min
= TCP_RTO_MIN
;
604 if (dst
&& dst_metric_locked(dst
, RTAX_RTO_MIN
))
605 rto_min
= dst_metric_rtt(dst
, RTAX_RTO_MIN
);
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
618 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
620 struct tcp_sock
*tp
= tcp_sk(sk
);
621 long m
= mrtt
; /* RTT */
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
642 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
643 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
645 m
= -m
; /* m is now abs(error) */
646 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
658 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
660 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp
->mdev
> tp
->mdev_max
) {
662 tp
->mdev_max
= tp
->mdev
;
663 if (tp
->mdev_max
> tp
->rttvar
)
664 tp
->rttvar
= tp
->mdev_max
;
666 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
667 if (tp
->mdev_max
< tp
->rttvar
)
668 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
669 tp
->rtt_seq
= tp
->snd_nxt
;
670 tp
->mdev_max
= tcp_rto_min(sk
);
673 /* no previous measure. */
674 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
675 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
676 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
677 tp
->rtt_seq
= tp
->snd_nxt
;
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
684 static inline void tcp_set_rto(struct sock
*sk
)
686 const struct tcp_sock
*tp
= tcp_sk(sk
);
687 /* Old crap is replaced with new one. 8)
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
697 inet_csk(sk
)->icsk_rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
705 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
706 * guarantees that rto is higher.
708 if (inet_csk(sk
)->icsk_rto
> TCP_RTO_MAX
)
709 inet_csk(sk
)->icsk_rto
= TCP_RTO_MAX
;
712 /* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716 void tcp_update_metrics(struct sock
*sk
)
718 struct tcp_sock
*tp
= tcp_sk(sk
);
719 struct dst_entry
*dst
= __sk_dst_get(sk
);
721 if (sysctl_tcp_nometrics_save
)
726 if (dst
&& (dst
->flags
& DST_HOST
)) {
727 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
731 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
736 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
737 dst
->metrics
[RTAX_RTT
- 1] = 0;
741 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
748 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
750 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
752 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
755 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
760 /* Scale deviation to rttvar fixed point */
765 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
769 var
-= (var
- m
) >> 2;
771 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
774 if (tp
->snd_ssthresh
>= 0xFFFF) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
777 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
778 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
779 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
780 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
781 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
782 dst
->metrics
[RTAX_CWND
- 1] = tp
->snd_cwnd
;
783 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
784 icsk
->icsk_ca_state
== TCP_CA_Open
) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
787 dst
->metrics
[RTAX_SSTHRESH
-1] =
788 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
789 if (!dst_metric_locked(dst
, RTAX_CWND
))
790 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_cwnd
) >> 1;
792 /* Else slow start did not finish, cwnd is non-sense,
793 ssthresh may be also invalid.
795 if (!dst_metric_locked(dst
, RTAX_CWND
))
796 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_ssthresh
) >> 1;
797 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
798 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
799 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
800 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
803 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
804 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
805 tp
->reordering
!= sysctl_tcp_reordering
)
806 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
811 /* Numbers are taken from RFC3390.
813 * John Heffner states:
815 * The RFC specifies a window of no more than 4380 bytes
816 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
817 * is a bit misleading because they use a clamp at 4380 bytes
818 * rather than use a multiplier in the relevant range.
820 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
822 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
825 if (tp
->mss_cache
> 1460)
828 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
830 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
836 struct tcp_sock
*tp
= tcp_sk(sk
);
837 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
839 tp
->prior_ssthresh
= 0;
841 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
844 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
845 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
846 tcp_packets_in_flight(tp
) + 1U);
847 tp
->snd_cwnd_cnt
= 0;
848 tp
->high_seq
= tp
->snd_nxt
;
849 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
850 TCP_ECN_queue_cwr(tp
);
852 tcp_set_ca_state(sk
, TCP_CA_CWR
);
857 * Packet counting of FACK is based on in-order assumptions, therefore TCP
858 * disables it when reordering is detected
860 static void tcp_disable_fack(struct tcp_sock
*tp
)
862 /* RFC3517 uses different metric in lost marker => reset on change */
864 tp
->lost_skb_hint
= NULL
;
865 tp
->rx_opt
.sack_ok
&= ~2;
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock
*tp
)
871 tp
->rx_opt
.sack_ok
|= 4;
874 /* Initialize metrics on socket. */
876 static void tcp_init_metrics(struct sock
*sk
)
878 struct tcp_sock
*tp
= tcp_sk(sk
);
879 struct dst_entry
*dst
= __sk_dst_get(sk
);
886 if (dst_metric_locked(dst
, RTAX_CWND
))
887 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
888 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
889 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
890 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
891 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
893 if (dst_metric(dst
, RTAX_REORDERING
) &&
894 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
895 tcp_disable_fack(tp
);
896 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
899 if (dst_metric(dst
, RTAX_RTT
) == 0)
902 if (!tp
->srtt
&& dst_metric_rtt(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
905 /* Initial rtt is determined from SYN,SYN-ACK.
906 * The segment is small and rtt may appear much
907 * less than real one. Use per-dst memory
908 * to make it more realistic.
910 * A bit of theory. RTT is time passed after "normal" sized packet
911 * is sent until it is ACKed. In normal circumstances sending small
912 * packets force peer to delay ACKs and calculation is correct too.
913 * The algorithm is adaptive and, provided we follow specs, it
914 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 * tricks sort of "quick acks" for time long enough to decrease RTT
916 * to low value, and then abruptly stops to do it and starts to delay
917 * ACKs, wait for troubles.
919 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
920 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
921 tp
->rtt_seq
= tp
->snd_nxt
;
923 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
924 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
925 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
928 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
932 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
933 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
941 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
943 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
944 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
949 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
952 struct tcp_sock
*tp
= tcp_sk(sk
);
953 if (metric
> tp
->reordering
) {
956 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
958 /* This exciting event is worth to be remembered. 8) */
960 mib_idx
= LINUX_MIB_TCPTSREORDER
;
961 else if (tcp_is_reno(tp
))
962 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
963 else if (tcp_is_fack(tp
))
964 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
966 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
968 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
969 #if FASTRETRANS_DEBUG > 1
970 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
971 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
975 tp
->undo_marker
? tp
->undo_retrans
: 0);
977 tcp_disable_fack(tp
);
981 /* This must be called before lost_out is incremented */
982 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
984 if ((tp
->retransmit_skb_hint
== NULL
) ||
985 before(TCP_SKB_CB(skb
)->seq
,
986 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
987 tp
->retransmit_skb_hint
= skb
;
990 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
991 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
994 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
996 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
997 tcp_verify_retransmit_hint(tp
, skb
);
999 tp
->lost_out
+= tcp_skb_pcount(skb
);
1000 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1004 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
1005 struct sk_buff
*skb
)
1007 tcp_verify_retransmit_hint(tp
, skb
);
1009 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1010 tp
->lost_out
+= tcp_skb_pcount(skb
);
1011 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1015 /* This procedure tags the retransmission queue when SACKs arrive.
1017 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1018 * Packets in queue with these bits set are counted in variables
1019 * sacked_out, retrans_out and lost_out, correspondingly.
1021 * Valid combinations are:
1022 * Tag InFlight Description
1023 * 0 1 - orig segment is in flight.
1024 * S 0 - nothing flies, orig reached receiver.
1025 * L 0 - nothing flies, orig lost by net.
1026 * R 2 - both orig and retransmit are in flight.
1027 * L|R 1 - orig is lost, retransmit is in flight.
1028 * S|R 1 - orig reached receiver, retrans is still in flight.
1029 * (L|S|R is logically valid, it could occur when L|R is sacked,
1030 * but it is equivalent to plain S and code short-curcuits it to S.
1031 * L|S is logically invalid, it would mean -1 packet in flight 8))
1033 * These 6 states form finite state machine, controlled by the following events:
1034 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1035 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1036 * 3. Loss detection event of one of three flavors:
1037 * A. Scoreboard estimator decided the packet is lost.
1038 * A'. Reno "three dupacks" marks head of queue lost.
1039 * A''. Its FACK modfication, head until snd.fack is lost.
1040 * B. SACK arrives sacking data transmitted after never retransmitted
1041 * hole was sent out.
1042 * C. SACK arrives sacking SND.NXT at the moment, when the
1043 * segment was retransmitted.
1044 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046 * It is pleasant to note, that state diagram turns out to be commutative,
1047 * so that we are allowed not to be bothered by order of our actions,
1048 * when multiple events arrive simultaneously. (see the function below).
1050 * Reordering detection.
1051 * --------------------
1052 * Reordering metric is maximal distance, which a packet can be displaced
1053 * in packet stream. With SACKs we can estimate it:
1055 * 1. SACK fills old hole and the corresponding segment was not
1056 * ever retransmitted -> reordering. Alas, we cannot use it
1057 * when segment was retransmitted.
1058 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1059 * for retransmitted and already SACKed segment -> reordering..
1060 * Both of these heuristics are not used in Loss state, when we cannot
1061 * account for retransmits accurately.
1063 * SACK block validation.
1064 * ----------------------
1066 * SACK block range validation checks that the received SACK block fits to
1067 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1068 * Note that SND.UNA is not included to the range though being valid because
1069 * it means that the receiver is rather inconsistent with itself reporting
1070 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1071 * perfectly valid, however, in light of RFC2018 which explicitly states
1072 * that "SACK block MUST reflect the newest segment. Even if the newest
1073 * segment is going to be discarded ...", not that it looks very clever
1074 * in case of head skb. Due to potentional receiver driven attacks, we
1075 * choose to avoid immediate execution of a walk in write queue due to
1076 * reneging and defer head skb's loss recovery to standard loss recovery
1077 * procedure that will eventually trigger (nothing forbids us doing this).
1079 * Implements also blockage to start_seq wrap-around. Problem lies in the
1080 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1081 * there's no guarantee that it will be before snd_nxt (n). The problem
1082 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1085 * <- outs wnd -> <- wrapzone ->
1086 * u e n u_w e_w s n_w
1088 * |<------------+------+----- TCP seqno space --------------+---------->|
1089 * ...-- <2^31 ->| |<--------...
1090 * ...---- >2^31 ------>| |<--------...
1092 * Current code wouldn't be vulnerable but it's better still to discard such
1093 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1094 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1095 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1096 * equal to the ideal case (infinite seqno space without wrap caused issues).
1098 * With D-SACK the lower bound is extended to cover sequence space below
1099 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1100 * again, D-SACK block must not to go across snd_una (for the same reason as
1101 * for the normal SACK blocks, explained above). But there all simplicity
1102 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1103 * fully below undo_marker they do not affect behavior in anyway and can
1104 * therefore be safely ignored. In rare cases (which are more or less
1105 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1106 * fragmentation and packet reordering past skb's retransmission. To consider
1107 * them correctly, the acceptable range must be extended even more though
1108 * the exact amount is rather hard to quantify. However, tp->max_window can
1109 * be used as an exaggerated estimate.
1111 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1112 u32 start_seq
, u32 end_seq
)
1114 /* Too far in future, or reversed (interpretation is ambiguous) */
1115 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1118 /* Nasty start_seq wrap-around check (see comments above) */
1119 if (!before(start_seq
, tp
->snd_nxt
))
1122 /* In outstanding window? ...This is valid exit for D-SACKs too.
1123 * start_seq == snd_una is non-sensical (see comments above)
1125 if (after(start_seq
, tp
->snd_una
))
1128 if (!is_dsack
|| !tp
->undo_marker
)
1131 /* ...Then it's D-SACK, and must reside below snd_una completely */
1132 if (!after(end_seq
, tp
->snd_una
))
1135 if (!before(start_seq
, tp
->undo_marker
))
1139 if (!after(end_seq
, tp
->undo_marker
))
1142 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1143 * start_seq < undo_marker and end_seq >= undo_marker.
1145 return !before(start_seq
, end_seq
- tp
->max_window
);
1148 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1149 * Event "C". Later note: FACK people cheated me again 8), we have to account
1150 * for reordering! Ugly, but should help.
1152 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1153 * less than what is now known to be received by the other end (derived from
1154 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1155 * retransmitted skbs to avoid some costly processing per ACKs.
1157 static void tcp_mark_lost_retrans(struct sock
*sk
)
1159 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1160 struct tcp_sock
*tp
= tcp_sk(sk
);
1161 struct sk_buff
*skb
;
1163 u32 new_low_seq
= tp
->snd_nxt
;
1164 u32 received_upto
= tcp_highest_sack_seq(tp
);
1166 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1167 !after(received_upto
, tp
->lost_retrans_low
) ||
1168 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1171 tcp_for_write_queue(skb
, sk
) {
1172 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1174 if (skb
== tcp_send_head(sk
))
1176 if (cnt
== tp
->retrans_out
)
1178 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1181 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1184 if (after(received_upto
, ack_seq
) &&
1186 !before(received_upto
,
1187 ack_seq
+ tp
->reordering
* tp
->mss_cache
))) {
1188 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1189 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1191 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1192 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1194 if (before(ack_seq
, new_low_seq
))
1195 new_low_seq
= ack_seq
;
1196 cnt
+= tcp_skb_pcount(skb
);
1200 if (tp
->retrans_out
)
1201 tp
->lost_retrans_low
= new_low_seq
;
1204 static int tcp_check_dsack(struct sock
*sk
, struct sk_buff
*ack_skb
,
1205 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1208 struct tcp_sock
*tp
= tcp_sk(sk
);
1209 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1210 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1213 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1216 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1217 } else if (num_sacks
> 1) {
1218 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1219 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1221 if (!after(end_seq_0
, end_seq_1
) &&
1222 !before(start_seq_0
, start_seq_1
)) {
1225 NET_INC_STATS_BH(sock_net(sk
),
1226 LINUX_MIB_TCPDSACKOFORECV
);
1230 /* D-SACK for already forgotten data... Do dumb counting. */
1232 !after(end_seq_0
, prior_snd_una
) &&
1233 after(end_seq_0
, tp
->undo_marker
))
1239 struct tcp_sacktag_state
{
1245 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1246 * the incoming SACK may not exactly match but we can find smaller MSS
1247 * aligned portion of it that matches. Therefore we might need to fragment
1248 * which may fail and creates some hassle (caller must handle error case
1251 * FIXME: this could be merged to shift decision code
1253 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1254 u32 start_seq
, u32 end_seq
)
1257 unsigned int pkt_len
;
1260 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1261 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1263 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1264 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1265 mss
= tcp_skb_mss(skb
);
1266 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1269 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1273 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1278 /* Round if necessary so that SACKs cover only full MSSes
1279 * and/or the remaining small portion (if present)
1281 if (pkt_len
> mss
) {
1282 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1283 if (!in_sack
&& new_len
< pkt_len
) {
1285 if (new_len
> skb
->len
)
1290 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1298 static u8
tcp_sacktag_one(struct sk_buff
*skb
, struct sock
*sk
,
1299 struct tcp_sacktag_state
*state
,
1300 int dup_sack
, int pcount
)
1302 struct tcp_sock
*tp
= tcp_sk(sk
);
1303 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1304 int fack_count
= state
->fack_count
;
1306 /* Account D-SACK for retransmitted packet. */
1307 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1308 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1310 if (sacked
& TCPCB_SACKED_ACKED
)
1311 state
->reord
= min(fack_count
, state
->reord
);
1314 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1315 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1318 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1319 if (sacked
& TCPCB_SACKED_RETRANS
) {
1320 /* If the segment is not tagged as lost,
1321 * we do not clear RETRANS, believing
1322 * that retransmission is still in flight.
1324 if (sacked
& TCPCB_LOST
) {
1325 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1326 tp
->lost_out
-= pcount
;
1327 tp
->retrans_out
-= pcount
;
1330 if (!(sacked
& TCPCB_RETRANS
)) {
1331 /* New sack for not retransmitted frame,
1332 * which was in hole. It is reordering.
1334 if (before(TCP_SKB_CB(skb
)->seq
,
1335 tcp_highest_sack_seq(tp
)))
1336 state
->reord
= min(fack_count
,
1339 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1340 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1341 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1344 if (sacked
& TCPCB_LOST
) {
1345 sacked
&= ~TCPCB_LOST
;
1346 tp
->lost_out
-= pcount
;
1350 sacked
|= TCPCB_SACKED_ACKED
;
1351 state
->flag
|= FLAG_DATA_SACKED
;
1352 tp
->sacked_out
+= pcount
;
1354 fack_count
+= pcount
;
1356 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1357 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1358 before(TCP_SKB_CB(skb
)->seq
,
1359 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1360 tp
->lost_cnt_hint
+= pcount
;
1362 if (fack_count
> tp
->fackets_out
)
1363 tp
->fackets_out
= fack_count
;
1366 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1367 * frames and clear it. undo_retrans is decreased above, L|R frames
1368 * are accounted above as well.
1370 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1371 sacked
&= ~TCPCB_SACKED_RETRANS
;
1372 tp
->retrans_out
-= pcount
;
1378 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1379 struct tcp_sacktag_state
*state
,
1380 unsigned int pcount
, int shifted
, int mss
,
1383 struct tcp_sock
*tp
= tcp_sk(sk
);
1384 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1388 /* Tweak before seqno plays */
1389 if (!tcp_is_fack(tp
) && tcp_is_sack(tp
) && tp
->lost_skb_hint
&&
1390 !before(TCP_SKB_CB(tp
->lost_skb_hint
)->seq
, TCP_SKB_CB(skb
)->seq
))
1391 tp
->lost_cnt_hint
+= pcount
;
1393 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1394 TCP_SKB_CB(skb
)->seq
+= shifted
;
1396 skb_shinfo(prev
)->gso_segs
+= pcount
;
1397 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1398 skb_shinfo(skb
)->gso_segs
-= pcount
;
1400 /* When we're adding to gso_segs == 1, gso_size will be zero,
1401 * in theory this shouldn't be necessary but as long as DSACK
1402 * code can come after this skb later on it's better to keep
1403 * setting gso_size to something.
1405 if (!skb_shinfo(prev
)->gso_size
) {
1406 skb_shinfo(prev
)->gso_size
= mss
;
1407 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1410 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1411 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1412 skb_shinfo(skb
)->gso_size
= 0;
1413 skb_shinfo(skb
)->gso_type
= 0;
1416 /* We discard results */
1417 tcp_sacktag_one(skb
, sk
, state
, dup_sack
, pcount
);
1419 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1420 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1423 BUG_ON(!tcp_skb_pcount(skb
));
1424 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1428 /* Whole SKB was eaten :-) */
1430 if (skb
== tp
->retransmit_skb_hint
)
1431 tp
->retransmit_skb_hint
= prev
;
1432 if (skb
== tp
->scoreboard_skb_hint
)
1433 tp
->scoreboard_skb_hint
= prev
;
1434 if (skb
== tp
->lost_skb_hint
) {
1435 tp
->lost_skb_hint
= prev
;
1436 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1439 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(prev
)->flags
;
1440 if (skb
== tcp_highest_sack(sk
))
1441 tcp_advance_highest_sack(sk
, skb
);
1443 tcp_unlink_write_queue(skb
, sk
);
1444 sk_wmem_free_skb(sk
, skb
);
1446 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1451 /* I wish gso_size would have a bit more sane initialization than
1452 * something-or-zero which complicates things
1454 static int tcp_skb_seglen(struct sk_buff
*skb
)
1456 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1459 /* Shifting pages past head area doesn't work */
1460 static int skb_can_shift(struct sk_buff
*skb
)
1462 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1465 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1468 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1469 struct tcp_sacktag_state
*state
,
1470 u32 start_seq
, u32 end_seq
,
1473 struct tcp_sock
*tp
= tcp_sk(sk
);
1474 struct sk_buff
*prev
;
1480 if (!sk_can_gso(sk
))
1483 /* Normally R but no L won't result in plain S */
1485 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1487 if (!skb_can_shift(skb
))
1489 /* This frame is about to be dropped (was ACKed). */
1490 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1493 /* Can only happen with delayed DSACK + discard craziness */
1494 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1496 prev
= tcp_write_queue_prev(sk
, skb
);
1498 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1501 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1502 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1506 pcount
= tcp_skb_pcount(skb
);
1507 mss
= tcp_skb_seglen(skb
);
1509 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1510 * drop this restriction as unnecessary
1512 if (mss
!= tcp_skb_seglen(prev
))
1515 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1517 /* CHECKME: This is non-MSS split case only?, this will
1518 * cause skipped skbs due to advancing loop btw, original
1519 * has that feature too
1521 if (tcp_skb_pcount(skb
) <= 1)
1524 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1526 /* TODO: head merge to next could be attempted here
1527 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1528 * though it might not be worth of the additional hassle
1530 * ...we can probably just fallback to what was done
1531 * previously. We could try merging non-SACKed ones
1532 * as well but it probably isn't going to buy off
1533 * because later SACKs might again split them, and
1534 * it would make skb timestamp tracking considerably
1540 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1542 BUG_ON(len
> skb
->len
);
1544 /* MSS boundaries should be honoured or else pcount will
1545 * severely break even though it makes things bit trickier.
1546 * Optimize common case to avoid most of the divides
1548 mss
= tcp_skb_mss(skb
);
1550 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1551 * drop this restriction as unnecessary
1553 if (mss
!= tcp_skb_seglen(prev
))
1558 } else if (len
< mss
) {
1566 if (!skb_shift(prev
, skb
, len
))
1568 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1571 /* Hole filled allows collapsing with the next as well, this is very
1572 * useful when hole on every nth skb pattern happens
1574 if (prev
== tcp_write_queue_tail(sk
))
1576 skb
= tcp_write_queue_next(sk
, prev
);
1578 if (!skb_can_shift(skb
) ||
1579 (skb
== tcp_send_head(sk
)) ||
1580 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1581 (mss
!= tcp_skb_seglen(skb
)))
1585 if (skb_shift(prev
, skb
, len
)) {
1586 pcount
+= tcp_skb_pcount(skb
);
1587 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1591 state
->fack_count
+= pcount
;
1598 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1602 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1603 struct tcp_sack_block
*next_dup
,
1604 struct tcp_sacktag_state
*state
,
1605 u32 start_seq
, u32 end_seq
,
1608 struct tcp_sock
*tp
= tcp_sk(sk
);
1609 struct sk_buff
*tmp
;
1611 tcp_for_write_queue_from(skb
, sk
) {
1613 int dup_sack
= dup_sack_in
;
1615 if (skb
== tcp_send_head(sk
))
1618 /* queue is in-order => we can short-circuit the walk early */
1619 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1622 if ((next_dup
!= NULL
) &&
1623 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1624 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1625 next_dup
->start_seq
,
1631 /* skb reference here is a bit tricky to get right, since
1632 * shifting can eat and free both this skb and the next,
1633 * so not even _safe variant of the loop is enough.
1636 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1637 start_seq
, end_seq
, dup_sack
);
1646 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1652 if (unlikely(in_sack
< 0))
1656 TCP_SKB_CB(skb
)->sacked
= tcp_sacktag_one(skb
, sk
,
1659 tcp_skb_pcount(skb
));
1661 if (!before(TCP_SKB_CB(skb
)->seq
,
1662 tcp_highest_sack_seq(tp
)))
1663 tcp_advance_highest_sack(sk
, skb
);
1666 state
->fack_count
+= tcp_skb_pcount(skb
);
1671 /* Avoid all extra work that is being done by sacktag while walking in
1674 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1675 struct tcp_sacktag_state
*state
,
1678 tcp_for_write_queue_from(skb
, sk
) {
1679 if (skb
== tcp_send_head(sk
))
1682 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1685 state
->fack_count
+= tcp_skb_pcount(skb
);
1690 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1692 struct tcp_sack_block
*next_dup
,
1693 struct tcp_sacktag_state
*state
,
1696 if (next_dup
== NULL
)
1699 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1700 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1701 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1702 next_dup
->start_seq
, next_dup
->end_seq
,
1709 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1711 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1715 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1718 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1719 struct tcp_sock
*tp
= tcp_sk(sk
);
1720 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1721 TCP_SKB_CB(ack_skb
)->sacked
);
1722 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1723 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1724 struct tcp_sack_block
*cache
;
1725 struct tcp_sacktag_state state
;
1726 struct sk_buff
*skb
;
1727 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1729 int found_dup_sack
= 0;
1731 int first_sack_index
;
1734 state
.reord
= tp
->packets_out
;
1736 if (!tp
->sacked_out
) {
1737 if (WARN_ON(tp
->fackets_out
))
1738 tp
->fackets_out
= 0;
1739 tcp_highest_sack_reset(sk
);
1742 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1743 num_sacks
, prior_snd_una
);
1745 state
.flag
|= FLAG_DSACKING_ACK
;
1747 /* Eliminate too old ACKs, but take into
1748 * account more or less fresh ones, they can
1749 * contain valid SACK info.
1751 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1754 if (!tp
->packets_out
)
1758 first_sack_index
= 0;
1759 for (i
= 0; i
< num_sacks
; i
++) {
1760 int dup_sack
= !i
&& found_dup_sack
;
1762 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1763 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1765 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1766 sp
[used_sacks
].start_seq
,
1767 sp
[used_sacks
].end_seq
)) {
1771 if (!tp
->undo_marker
)
1772 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1774 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1776 /* Don't count olds caused by ACK reordering */
1777 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1778 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1780 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1783 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1785 first_sack_index
= -1;
1789 /* Ignore very old stuff early */
1790 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1796 /* order SACK blocks to allow in order walk of the retrans queue */
1797 for (i
= used_sacks
- 1; i
> 0; i
--) {
1798 for (j
= 0; j
< i
; j
++) {
1799 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1800 struct tcp_sack_block tmp
;
1806 /* Track where the first SACK block goes to */
1807 if (j
== first_sack_index
)
1808 first_sack_index
= j
+ 1;
1813 skb
= tcp_write_queue_head(sk
);
1814 state
.fack_count
= 0;
1817 if (!tp
->sacked_out
) {
1818 /* It's already past, so skip checking against it */
1819 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1821 cache
= tp
->recv_sack_cache
;
1822 /* Skip empty blocks in at head of the cache */
1823 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1828 while (i
< used_sacks
) {
1829 u32 start_seq
= sp
[i
].start_seq
;
1830 u32 end_seq
= sp
[i
].end_seq
;
1831 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1832 struct tcp_sack_block
*next_dup
= NULL
;
1834 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1835 next_dup
= &sp
[i
+ 1];
1837 /* Event "B" in the comment above. */
1838 if (after(end_seq
, tp
->high_seq
))
1839 state
.flag
|= FLAG_DATA_LOST
;
1841 /* Skip too early cached blocks */
1842 while (tcp_sack_cache_ok(tp
, cache
) &&
1843 !before(start_seq
, cache
->end_seq
))
1846 /* Can skip some work by looking recv_sack_cache? */
1847 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1848 after(end_seq
, cache
->start_seq
)) {
1851 if (before(start_seq
, cache
->start_seq
)) {
1852 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1854 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1861 /* Rest of the block already fully processed? */
1862 if (!after(end_seq
, cache
->end_seq
))
1865 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1869 /* ...tail remains todo... */
1870 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1871 /* ...but better entrypoint exists! */
1872 skb
= tcp_highest_sack(sk
);
1875 state
.fack_count
= tp
->fackets_out
;
1880 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1881 /* Check overlap against next cached too (past this one already) */
1886 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1887 skb
= tcp_highest_sack(sk
);
1890 state
.fack_count
= tp
->fackets_out
;
1892 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1895 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1896 start_seq
, end_seq
, dup_sack
);
1899 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1900 * due to in-order walk
1902 if (after(end_seq
, tp
->frto_highmark
))
1903 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1908 /* Clear the head of the cache sack blocks so we can skip it next time */
1909 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1910 tp
->recv_sack_cache
[i
].start_seq
= 0;
1911 tp
->recv_sack_cache
[i
].end_seq
= 0;
1913 for (j
= 0; j
< used_sacks
; j
++)
1914 tp
->recv_sack_cache
[i
++] = sp
[j
];
1916 tcp_mark_lost_retrans(sk
);
1918 tcp_verify_left_out(tp
);
1920 if ((state
.reord
< tp
->fackets_out
) &&
1921 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1922 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1923 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1927 #if FASTRETRANS_DEBUG > 0
1928 WARN_ON((int)tp
->sacked_out
< 0);
1929 WARN_ON((int)tp
->lost_out
< 0);
1930 WARN_ON((int)tp
->retrans_out
< 0);
1931 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1936 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1937 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1939 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1943 holes
= max(tp
->lost_out
, 1U);
1944 holes
= min(holes
, tp
->packets_out
);
1946 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1947 tp
->sacked_out
= tp
->packets_out
- holes
;
1953 /* If we receive more dupacks than we expected counting segments
1954 * in assumption of absent reordering, interpret this as reordering.
1955 * The only another reason could be bug in receiver TCP.
1957 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1959 struct tcp_sock
*tp
= tcp_sk(sk
);
1960 if (tcp_limit_reno_sacked(tp
))
1961 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1964 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1966 static void tcp_add_reno_sack(struct sock
*sk
)
1968 struct tcp_sock
*tp
= tcp_sk(sk
);
1970 tcp_check_reno_reordering(sk
, 0);
1971 tcp_verify_left_out(tp
);
1974 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1976 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1978 struct tcp_sock
*tp
= tcp_sk(sk
);
1981 /* One ACK acked hole. The rest eat duplicate ACKs. */
1982 if (acked
- 1 >= tp
->sacked_out
)
1985 tp
->sacked_out
-= acked
- 1;
1987 tcp_check_reno_reordering(sk
, acked
);
1988 tcp_verify_left_out(tp
);
1991 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1996 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1998 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
2001 /* F-RTO can only be used if TCP has never retransmitted anything other than
2002 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2004 int tcp_use_frto(struct sock
*sk
)
2006 const struct tcp_sock
*tp
= tcp_sk(sk
);
2007 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2008 struct sk_buff
*skb
;
2010 if (!sysctl_tcp_frto
)
2013 /* MTU probe and F-RTO won't really play nicely along currently */
2014 if (icsk
->icsk_mtup
.probe_size
)
2017 if (tcp_is_sackfrto(tp
))
2020 /* Avoid expensive walking of rexmit queue if possible */
2021 if (tp
->retrans_out
> 1)
2024 skb
= tcp_write_queue_head(sk
);
2025 if (tcp_skb_is_last(sk
, skb
))
2027 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2028 tcp_for_write_queue_from(skb
, sk
) {
2029 if (skb
== tcp_send_head(sk
))
2031 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2033 /* Short-circuit when first non-SACKed skb has been checked */
2034 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2040 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2041 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2042 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2043 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2044 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2045 * bits are handled if the Loss state is really to be entered (in
2046 * tcp_enter_frto_loss).
2048 * Do like tcp_enter_loss() would; when RTO expires the second time it
2050 * "Reduce ssthresh if it has not yet been made inside this window."
2052 void tcp_enter_frto(struct sock
*sk
)
2054 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2055 struct tcp_sock
*tp
= tcp_sk(sk
);
2056 struct sk_buff
*skb
;
2058 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2059 tp
->snd_una
== tp
->high_seq
||
2060 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2061 !icsk
->icsk_retransmits
)) {
2062 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2063 /* Our state is too optimistic in ssthresh() call because cwnd
2064 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2065 * recovery has not yet completed. Pattern would be this: RTO,
2066 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2068 * RFC4138 should be more specific on what to do, even though
2069 * RTO is quite unlikely to occur after the first Cumulative ACK
2070 * due to back-off and complexity of triggering events ...
2072 if (tp
->frto_counter
) {
2074 stored_cwnd
= tp
->snd_cwnd
;
2076 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2077 tp
->snd_cwnd
= stored_cwnd
;
2079 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2081 /* ... in theory, cong.control module could do "any tricks" in
2082 * ssthresh(), which means that ca_state, lost bits and lost_out
2083 * counter would have to be faked before the call occurs. We
2084 * consider that too expensive, unlikely and hacky, so modules
2085 * using these in ssthresh() must deal these incompatibility
2086 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2088 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2091 tp
->undo_marker
= tp
->snd_una
;
2092 tp
->undo_retrans
= 0;
2094 skb
= tcp_write_queue_head(sk
);
2095 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2096 tp
->undo_marker
= 0;
2097 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2098 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2099 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2101 tcp_verify_left_out(tp
);
2103 /* Too bad if TCP was application limited */
2104 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2106 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2107 * The last condition is necessary at least in tp->frto_counter case.
2109 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2110 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2111 after(tp
->high_seq
, tp
->snd_una
)) {
2112 tp
->frto_highmark
= tp
->high_seq
;
2114 tp
->frto_highmark
= tp
->snd_nxt
;
2116 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2117 tp
->high_seq
= tp
->snd_nxt
;
2118 tp
->frto_counter
= 1;
2121 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2122 * which indicates that we should follow the traditional RTO recovery,
2123 * i.e. mark everything lost and do go-back-N retransmission.
2125 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2127 struct tcp_sock
*tp
= tcp_sk(sk
);
2128 struct sk_buff
*skb
;
2131 tp
->retrans_out
= 0;
2132 if (tcp_is_reno(tp
))
2133 tcp_reset_reno_sack(tp
);
2135 tcp_for_write_queue(skb
, sk
) {
2136 if (skb
== tcp_send_head(sk
))
2139 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2141 * Count the retransmission made on RTO correctly (only when
2142 * waiting for the first ACK and did not get it)...
2144 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2145 /* For some reason this R-bit might get cleared? */
2146 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2147 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2148 /* ...enter this if branch just for the first segment */
2149 flag
|= FLAG_DATA_ACKED
;
2151 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2152 tp
->undo_marker
= 0;
2153 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2156 /* Marking forward transmissions that were made after RTO lost
2157 * can cause unnecessary retransmissions in some scenarios,
2158 * SACK blocks will mitigate that in some but not in all cases.
2159 * We used to not mark them but it was causing break-ups with
2160 * receivers that do only in-order receival.
2162 * TODO: we could detect presence of such receiver and select
2163 * different behavior per flow.
2165 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2166 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2167 tp
->lost_out
+= tcp_skb_pcount(skb
);
2168 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2171 tcp_verify_left_out(tp
);
2173 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2174 tp
->snd_cwnd_cnt
= 0;
2175 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2176 tp
->frto_counter
= 0;
2177 tp
->bytes_acked
= 0;
2179 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2180 sysctl_tcp_reordering
);
2181 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2182 tp
->high_seq
= tp
->snd_nxt
;
2183 TCP_ECN_queue_cwr(tp
);
2185 tcp_clear_all_retrans_hints(tp
);
2188 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2190 tp
->retrans_out
= 0;
2193 tp
->undo_marker
= 0;
2194 tp
->undo_retrans
= 0;
2197 void tcp_clear_retrans(struct tcp_sock
*tp
)
2199 tcp_clear_retrans_partial(tp
);
2201 tp
->fackets_out
= 0;
2205 /* Enter Loss state. If "how" is not zero, forget all SACK information
2206 * and reset tags completely, otherwise preserve SACKs. If receiver
2207 * dropped its ofo queue, we will know this due to reneging detection.
2209 void tcp_enter_loss(struct sock
*sk
, int how
)
2211 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2212 struct tcp_sock
*tp
= tcp_sk(sk
);
2213 struct sk_buff
*skb
;
2215 /* Reduce ssthresh if it has not yet been made inside this window. */
2216 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2217 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2218 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2219 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2220 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2223 tp
->snd_cwnd_cnt
= 0;
2224 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2226 tp
->bytes_acked
= 0;
2227 tcp_clear_retrans_partial(tp
);
2229 if (tcp_is_reno(tp
))
2230 tcp_reset_reno_sack(tp
);
2233 /* Push undo marker, if it was plain RTO and nothing
2234 * was retransmitted. */
2235 tp
->undo_marker
= tp
->snd_una
;
2238 tp
->fackets_out
= 0;
2240 tcp_clear_all_retrans_hints(tp
);
2242 tcp_for_write_queue(skb
, sk
) {
2243 if (skb
== tcp_send_head(sk
))
2246 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2247 tp
->undo_marker
= 0;
2248 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2249 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2250 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2251 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2252 tp
->lost_out
+= tcp_skb_pcount(skb
);
2253 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2256 tcp_verify_left_out(tp
);
2258 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2259 sysctl_tcp_reordering
);
2260 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2261 tp
->high_seq
= tp
->snd_nxt
;
2262 TCP_ECN_queue_cwr(tp
);
2263 /* Abort F-RTO algorithm if one is in progress */
2264 tp
->frto_counter
= 0;
2267 /* If ACK arrived pointing to a remembered SACK, it means that our
2268 * remembered SACKs do not reflect real state of receiver i.e.
2269 * receiver _host_ is heavily congested (or buggy).
2271 * Do processing similar to RTO timeout.
2273 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2275 if (flag
& FLAG_SACK_RENEGING
) {
2276 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2277 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2279 tcp_enter_loss(sk
, 1);
2280 icsk
->icsk_retransmits
++;
2281 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2282 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2283 icsk
->icsk_rto
, TCP_RTO_MAX
);
2289 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
2291 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2294 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2295 * counter when SACK is enabled (without SACK, sacked_out is used for
2298 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2299 * segments up to the highest received SACK block so far and holes in
2302 * With reordering, holes may still be in flight, so RFC3517 recovery
2303 * uses pure sacked_out (total number of SACKed segments) even though
2304 * it violates the RFC that uses duplicate ACKs, often these are equal
2305 * but when e.g. out-of-window ACKs or packet duplication occurs,
2306 * they differ. Since neither occurs due to loss, TCP should really
2309 static inline int tcp_dupack_heurestics(struct tcp_sock
*tp
)
2311 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2314 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2316 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
2319 static inline int tcp_head_timedout(struct sock
*sk
)
2321 struct tcp_sock
*tp
= tcp_sk(sk
);
2323 return tp
->packets_out
&&
2324 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2327 /* Linux NewReno/SACK/FACK/ECN state machine.
2328 * --------------------------------------
2330 * "Open" Normal state, no dubious events, fast path.
2331 * "Disorder" In all the respects it is "Open",
2332 * but requires a bit more attention. It is entered when
2333 * we see some SACKs or dupacks. It is split of "Open"
2334 * mainly to move some processing from fast path to slow one.
2335 * "CWR" CWND was reduced due to some Congestion Notification event.
2336 * It can be ECN, ICMP source quench, local device congestion.
2337 * "Recovery" CWND was reduced, we are fast-retransmitting.
2338 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2340 * tcp_fastretrans_alert() is entered:
2341 * - each incoming ACK, if state is not "Open"
2342 * - when arrived ACK is unusual, namely:
2347 * Counting packets in flight is pretty simple.
2349 * in_flight = packets_out - left_out + retrans_out
2351 * packets_out is SND.NXT-SND.UNA counted in packets.
2353 * retrans_out is number of retransmitted segments.
2355 * left_out is number of segments left network, but not ACKed yet.
2357 * left_out = sacked_out + lost_out
2359 * sacked_out: Packets, which arrived to receiver out of order
2360 * and hence not ACKed. With SACKs this number is simply
2361 * amount of SACKed data. Even without SACKs
2362 * it is easy to give pretty reliable estimate of this number,
2363 * counting duplicate ACKs.
2365 * lost_out: Packets lost by network. TCP has no explicit
2366 * "loss notification" feedback from network (for now).
2367 * It means that this number can be only _guessed_.
2368 * Actually, it is the heuristics to predict lossage that
2369 * distinguishes different algorithms.
2371 * F.e. after RTO, when all the queue is considered as lost,
2372 * lost_out = packets_out and in_flight = retrans_out.
2374 * Essentially, we have now two algorithms counting
2377 * FACK: It is the simplest heuristics. As soon as we decided
2378 * that something is lost, we decide that _all_ not SACKed
2379 * packets until the most forward SACK are lost. I.e.
2380 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2381 * It is absolutely correct estimate, if network does not reorder
2382 * packets. And it loses any connection to reality when reordering
2383 * takes place. We use FACK by default until reordering
2384 * is suspected on the path to this destination.
2386 * NewReno: when Recovery is entered, we assume that one segment
2387 * is lost (classic Reno). While we are in Recovery and
2388 * a partial ACK arrives, we assume that one more packet
2389 * is lost (NewReno). This heuristics are the same in NewReno
2392 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2393 * deflation etc. CWND is real congestion window, never inflated, changes
2394 * only according to classic VJ rules.
2396 * Really tricky (and requiring careful tuning) part of algorithm
2397 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2398 * The first determines the moment _when_ we should reduce CWND and,
2399 * hence, slow down forward transmission. In fact, it determines the moment
2400 * when we decide that hole is caused by loss, rather than by a reorder.
2402 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2403 * holes, caused by lost packets.
2405 * And the most logically complicated part of algorithm is undo
2406 * heuristics. We detect false retransmits due to both too early
2407 * fast retransmit (reordering) and underestimated RTO, analyzing
2408 * timestamps and D-SACKs. When we detect that some segments were
2409 * retransmitted by mistake and CWND reduction was wrong, we undo
2410 * window reduction and abort recovery phase. This logic is hidden
2411 * inside several functions named tcp_try_undo_<something>.
2414 /* This function decides, when we should leave Disordered state
2415 * and enter Recovery phase, reducing congestion window.
2417 * Main question: may we further continue forward transmission
2418 * with the same cwnd?
2420 static int tcp_time_to_recover(struct sock
*sk
)
2422 struct tcp_sock
*tp
= tcp_sk(sk
);
2425 /* Do not perform any recovery during F-RTO algorithm */
2426 if (tp
->frto_counter
)
2429 /* Trick#1: The loss is proven. */
2433 /* Not-A-Trick#2 : Classic rule... */
2434 if (tcp_dupack_heurestics(tp
) > tp
->reordering
)
2437 /* Trick#3 : when we use RFC2988 timer restart, fast
2438 * retransmit can be triggered by timeout of queue head.
2440 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2443 /* Trick#4: It is still not OK... But will it be useful to delay
2446 packets_out
= tp
->packets_out
;
2447 if (packets_out
<= tp
->reordering
&&
2448 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2449 !tcp_may_send_now(sk
)) {
2450 /* We have nothing to send. This connection is limited
2451 * either by receiver window or by application.
2459 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2460 * is against sacked "cnt", otherwise it's against facked "cnt"
2462 static void tcp_mark_head_lost(struct sock
*sk
, int packets
)
2464 struct tcp_sock
*tp
= tcp_sk(sk
);
2465 struct sk_buff
*skb
;
2470 WARN_ON(packets
> tp
->packets_out
);
2471 if (tp
->lost_skb_hint
) {
2472 skb
= tp
->lost_skb_hint
;
2473 cnt
= tp
->lost_cnt_hint
;
2475 skb
= tcp_write_queue_head(sk
);
2479 tcp_for_write_queue_from(skb
, sk
) {
2480 if (skb
== tcp_send_head(sk
))
2482 /* TODO: do this better */
2483 /* this is not the most efficient way to do this... */
2484 tp
->lost_skb_hint
= skb
;
2485 tp
->lost_cnt_hint
= cnt
;
2487 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2491 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2492 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2493 cnt
+= tcp_skb_pcount(skb
);
2495 if (cnt
> packets
) {
2496 if (tcp_is_sack(tp
) || (oldcnt
>= packets
))
2499 mss
= skb_shinfo(skb
)->gso_size
;
2500 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2506 tcp_skb_mark_lost(tp
, skb
);
2508 tcp_verify_left_out(tp
);
2511 /* Account newly detected lost packet(s) */
2513 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2515 struct tcp_sock
*tp
= tcp_sk(sk
);
2517 if (tcp_is_reno(tp
)) {
2518 tcp_mark_head_lost(sk
, 1);
2519 } else if (tcp_is_fack(tp
)) {
2520 int lost
= tp
->fackets_out
- tp
->reordering
;
2523 tcp_mark_head_lost(sk
, lost
);
2525 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2526 if (sacked_upto
< fast_rexmit
)
2527 sacked_upto
= fast_rexmit
;
2528 tcp_mark_head_lost(sk
, sacked_upto
);
2531 /* New heuristics: it is possible only after we switched
2532 * to restart timer each time when something is ACKed.
2533 * Hence, we can detect timed out packets during fast
2534 * retransmit without falling to slow start.
2536 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
)) {
2537 struct sk_buff
*skb
;
2539 skb
= tp
->scoreboard_skb_hint
? tp
->scoreboard_skb_hint
2540 : tcp_write_queue_head(sk
);
2542 tcp_for_write_queue_from(skb
, sk
) {
2543 if (skb
== tcp_send_head(sk
))
2545 if (!tcp_skb_timedout(sk
, skb
))
2548 tcp_skb_mark_lost(tp
, skb
);
2551 tp
->scoreboard_skb_hint
= skb
;
2553 tcp_verify_left_out(tp
);
2557 /* CWND moderation, preventing bursts due to too big ACKs
2558 * in dubious situations.
2560 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2562 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2563 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2564 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2567 /* Lower bound on congestion window is slow start threshold
2568 * unless congestion avoidance choice decides to overide it.
2570 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2572 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2574 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2577 /* Decrease cwnd each second ack. */
2578 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2580 struct tcp_sock
*tp
= tcp_sk(sk
);
2581 int decr
= tp
->snd_cwnd_cnt
+ 1;
2583 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2584 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2585 tp
->snd_cwnd_cnt
= decr
& 1;
2588 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2589 tp
->snd_cwnd
-= decr
;
2591 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2592 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2596 /* Nothing was retransmitted or returned timestamp is less
2597 * than timestamp of the first retransmission.
2599 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2601 return !tp
->retrans_stamp
||
2602 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2603 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2606 /* Undo procedures. */
2608 #if FASTRETRANS_DEBUG > 1
2609 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2611 struct tcp_sock
*tp
= tcp_sk(sk
);
2612 struct inet_sock
*inet
= inet_sk(sk
);
2614 if (sk
->sk_family
== AF_INET
) {
2615 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2617 &inet
->daddr
, ntohs(inet
->dport
),
2618 tp
->snd_cwnd
, tcp_left_out(tp
),
2619 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2622 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2623 else if (sk
->sk_family
== AF_INET6
) {
2624 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2625 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2627 &np
->daddr
, ntohs(inet
->dport
),
2628 tp
->snd_cwnd
, tcp_left_out(tp
),
2629 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2635 #define DBGUNDO(x...) do { } while (0)
2638 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
2640 struct tcp_sock
*tp
= tcp_sk(sk
);
2642 if (tp
->prior_ssthresh
) {
2643 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2645 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2646 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2648 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2650 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2651 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2652 TCP_ECN_withdraw_cwr(tp
);
2655 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2657 tcp_moderate_cwnd(tp
);
2658 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2661 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2663 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2666 /* People celebrate: "We love our President!" */
2667 static int tcp_try_undo_recovery(struct sock
*sk
)
2669 struct tcp_sock
*tp
= tcp_sk(sk
);
2671 if (tcp_may_undo(tp
)) {
2674 /* Happy end! We did not retransmit anything
2675 * or our original transmission succeeded.
2677 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2678 tcp_undo_cwr(sk
, 1);
2679 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2680 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2682 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2684 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2685 tp
->undo_marker
= 0;
2687 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2688 /* Hold old state until something *above* high_seq
2689 * is ACKed. For Reno it is MUST to prevent false
2690 * fast retransmits (RFC2582). SACK TCP is safe. */
2691 tcp_moderate_cwnd(tp
);
2694 tcp_set_ca_state(sk
, TCP_CA_Open
);
2698 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2699 static void tcp_try_undo_dsack(struct sock
*sk
)
2701 struct tcp_sock
*tp
= tcp_sk(sk
);
2703 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2704 DBGUNDO(sk
, "D-SACK");
2705 tcp_undo_cwr(sk
, 1);
2706 tp
->undo_marker
= 0;
2707 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2711 /* Undo during fast recovery after partial ACK. */
2713 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2715 struct tcp_sock
*tp
= tcp_sk(sk
);
2716 /* Partial ACK arrived. Force Hoe's retransmit. */
2717 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2719 if (tcp_may_undo(tp
)) {
2720 /* Plain luck! Hole if filled with delayed
2721 * packet, rather than with a retransmit.
2723 if (tp
->retrans_out
== 0)
2724 tp
->retrans_stamp
= 0;
2726 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2729 tcp_undo_cwr(sk
, 0);
2730 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2732 /* So... Do not make Hoe's retransmit yet.
2733 * If the first packet was delayed, the rest
2734 * ones are most probably delayed as well.
2741 /* Undo during loss recovery after partial ACK. */
2742 static int tcp_try_undo_loss(struct sock
*sk
)
2744 struct tcp_sock
*tp
= tcp_sk(sk
);
2746 if (tcp_may_undo(tp
)) {
2747 struct sk_buff
*skb
;
2748 tcp_for_write_queue(skb
, sk
) {
2749 if (skb
== tcp_send_head(sk
))
2751 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2754 tcp_clear_all_retrans_hints(tp
);
2756 DBGUNDO(sk
, "partial loss");
2758 tcp_undo_cwr(sk
, 1);
2759 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2760 inet_csk(sk
)->icsk_retransmits
= 0;
2761 tp
->undo_marker
= 0;
2762 if (tcp_is_sack(tp
))
2763 tcp_set_ca_state(sk
, TCP_CA_Open
);
2769 static inline void tcp_complete_cwr(struct sock
*sk
)
2771 struct tcp_sock
*tp
= tcp_sk(sk
);
2772 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2773 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2774 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2777 static void tcp_try_keep_open(struct sock
*sk
)
2779 struct tcp_sock
*tp
= tcp_sk(sk
);
2780 int state
= TCP_CA_Open
;
2782 if (tcp_left_out(tp
) || tp
->retrans_out
|| tp
->undo_marker
)
2783 state
= TCP_CA_Disorder
;
2785 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2786 tcp_set_ca_state(sk
, state
);
2787 tp
->high_seq
= tp
->snd_nxt
;
2791 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2793 struct tcp_sock
*tp
= tcp_sk(sk
);
2795 tcp_verify_left_out(tp
);
2797 if (!tp
->frto_counter
&& tp
->retrans_out
== 0)
2798 tp
->retrans_stamp
= 0;
2800 if (flag
& FLAG_ECE
)
2801 tcp_enter_cwr(sk
, 1);
2803 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2804 tcp_try_keep_open(sk
);
2805 tcp_moderate_cwnd(tp
);
2807 tcp_cwnd_down(sk
, flag
);
2811 static void tcp_mtup_probe_failed(struct sock
*sk
)
2813 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2815 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2816 icsk
->icsk_mtup
.probe_size
= 0;
2819 static void tcp_mtup_probe_success(struct sock
*sk
, struct sk_buff
*skb
)
2821 struct tcp_sock
*tp
= tcp_sk(sk
);
2822 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2824 /* FIXME: breaks with very large cwnd */
2825 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2826 tp
->snd_cwnd
= tp
->snd_cwnd
*
2827 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2828 icsk
->icsk_mtup
.probe_size
;
2829 tp
->snd_cwnd_cnt
= 0;
2830 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2831 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
2833 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2834 icsk
->icsk_mtup
.probe_size
= 0;
2835 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2838 /* Do a simple retransmit without using the backoff mechanisms in
2839 * tcp_timer. This is used for path mtu discovery.
2840 * The socket is already locked here.
2842 void tcp_simple_retransmit(struct sock
*sk
)
2844 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2845 struct tcp_sock
*tp
= tcp_sk(sk
);
2846 struct sk_buff
*skb
;
2847 unsigned int mss
= tcp_current_mss(sk
, 0);
2848 u32 prior_lost
= tp
->lost_out
;
2850 tcp_for_write_queue(skb
, sk
) {
2851 if (skb
== tcp_send_head(sk
))
2853 if (tcp_skb_seglen(skb
) > mss
&&
2854 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2855 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2856 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2857 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2859 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2863 tcp_clear_retrans_hints_partial(tp
);
2865 if (prior_lost
== tp
->lost_out
)
2868 if (tcp_is_reno(tp
))
2869 tcp_limit_reno_sacked(tp
);
2871 tcp_verify_left_out(tp
);
2873 /* Don't muck with the congestion window here.
2874 * Reason is that we do not increase amount of _data_
2875 * in network, but units changed and effective
2876 * cwnd/ssthresh really reduced now.
2878 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2879 tp
->high_seq
= tp
->snd_nxt
;
2880 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2881 tp
->prior_ssthresh
= 0;
2882 tp
->undo_marker
= 0;
2883 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2885 tcp_xmit_retransmit_queue(sk
);
2888 /* Process an event, which can update packets-in-flight not trivially.
2889 * Main goal of this function is to calculate new estimate for left_out,
2890 * taking into account both packets sitting in receiver's buffer and
2891 * packets lost by network.
2893 * Besides that it does CWND reduction, when packet loss is detected
2894 * and changes state of machine.
2896 * It does _not_ decide what to send, it is made in function
2897 * tcp_xmit_retransmit_queue().
2899 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2901 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2902 struct tcp_sock
*tp
= tcp_sk(sk
);
2903 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
2904 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2905 (tcp_fackets_out(tp
) > tp
->reordering
));
2906 int fast_rexmit
= 0, mib_idx
;
2908 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2910 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2911 tp
->fackets_out
= 0;
2913 /* Now state machine starts.
2914 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2915 if (flag
& FLAG_ECE
)
2916 tp
->prior_ssthresh
= 0;
2918 /* B. In all the states check for reneging SACKs. */
2919 if (tcp_check_sack_reneging(sk
, flag
))
2922 /* C. Process data loss notification, provided it is valid. */
2923 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
2924 before(tp
->snd_una
, tp
->high_seq
) &&
2925 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2926 tp
->fackets_out
> tp
->reordering
) {
2927 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
);
2928 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
2931 /* D. Check consistency of the current state. */
2932 tcp_verify_left_out(tp
);
2934 /* E. Check state exit conditions. State can be terminated
2935 * when high_seq is ACKed. */
2936 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2937 WARN_ON(tp
->retrans_out
!= 0);
2938 tp
->retrans_stamp
= 0;
2939 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2940 switch (icsk
->icsk_ca_state
) {
2942 icsk
->icsk_retransmits
= 0;
2943 if (tcp_try_undo_recovery(sk
))
2948 /* CWR is to be held something *above* high_seq
2949 * is ACKed for CWR bit to reach receiver. */
2950 if (tp
->snd_una
!= tp
->high_seq
) {
2951 tcp_complete_cwr(sk
);
2952 tcp_set_ca_state(sk
, TCP_CA_Open
);
2956 case TCP_CA_Disorder
:
2957 tcp_try_undo_dsack(sk
);
2958 if (!tp
->undo_marker
||
2959 /* For SACK case do not Open to allow to undo
2960 * catching for all duplicate ACKs. */
2961 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
2962 tp
->undo_marker
= 0;
2963 tcp_set_ca_state(sk
, TCP_CA_Open
);
2967 case TCP_CA_Recovery
:
2968 if (tcp_is_reno(tp
))
2969 tcp_reset_reno_sack(tp
);
2970 if (tcp_try_undo_recovery(sk
))
2972 tcp_complete_cwr(sk
);
2977 /* F. Process state. */
2978 switch (icsk
->icsk_ca_state
) {
2979 case TCP_CA_Recovery
:
2980 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2981 if (tcp_is_reno(tp
) && is_dupack
)
2982 tcp_add_reno_sack(sk
);
2984 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
2987 if (flag
& FLAG_DATA_ACKED
)
2988 icsk
->icsk_retransmits
= 0;
2989 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
2990 tcp_reset_reno_sack(tp
);
2991 if (!tcp_try_undo_loss(sk
)) {
2992 tcp_moderate_cwnd(tp
);
2993 tcp_xmit_retransmit_queue(sk
);
2996 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2998 /* Loss is undone; fall through to processing in Open state. */
3000 if (tcp_is_reno(tp
)) {
3001 if (flag
& FLAG_SND_UNA_ADVANCED
)
3002 tcp_reset_reno_sack(tp
);
3004 tcp_add_reno_sack(sk
);
3007 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3008 tcp_try_undo_dsack(sk
);
3010 if (!tcp_time_to_recover(sk
)) {
3011 tcp_try_to_open(sk
, flag
);
3015 /* MTU probe failure: don't reduce cwnd */
3016 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3017 icsk
->icsk_mtup
.probe_size
&&
3018 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3019 tcp_mtup_probe_failed(sk
);
3020 /* Restores the reduction we did in tcp_mtup_probe() */
3022 tcp_simple_retransmit(sk
);
3026 /* Otherwise enter Recovery state */
3028 if (tcp_is_reno(tp
))
3029 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3031 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3033 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3035 tp
->high_seq
= tp
->snd_nxt
;
3036 tp
->prior_ssthresh
= 0;
3037 tp
->undo_marker
= tp
->snd_una
;
3038 tp
->undo_retrans
= tp
->retrans_out
;
3040 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3041 if (!(flag
& FLAG_ECE
))
3042 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3043 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3044 TCP_ECN_queue_cwr(tp
);
3047 tp
->bytes_acked
= 0;
3048 tp
->snd_cwnd_cnt
= 0;
3049 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3053 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3054 tcp_update_scoreboard(sk
, fast_rexmit
);
3055 tcp_cwnd_down(sk
, flag
);
3056 tcp_xmit_retransmit_queue(sk
);
3059 static void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3061 tcp_rtt_estimator(sk
, seq_rtt
);
3063 inet_csk(sk
)->icsk_backoff
= 0;
3066 /* Read draft-ietf-tcplw-high-performance before mucking
3067 * with this code. (Supersedes RFC1323)
3069 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3071 /* RTTM Rule: A TSecr value received in a segment is used to
3072 * update the averaged RTT measurement only if the segment
3073 * acknowledges some new data, i.e., only if it advances the
3074 * left edge of the send window.
3076 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3077 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3079 * Changed: reset backoff as soon as we see the first valid sample.
3080 * If we do not, we get strongly overestimated rto. With timestamps
3081 * samples are accepted even from very old segments: f.e., when rtt=1
3082 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3083 * answer arrives rto becomes 120 seconds! If at least one of segments
3084 * in window is lost... Voila. --ANK (010210)
3086 struct tcp_sock
*tp
= tcp_sk(sk
);
3088 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3091 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3093 /* We don't have a timestamp. Can only use
3094 * packets that are not retransmitted to determine
3095 * rtt estimates. Also, we must not reset the
3096 * backoff for rto until we get a non-retransmitted
3097 * packet. This allows us to deal with a situation
3098 * where the network delay has increased suddenly.
3099 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3102 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3105 tcp_valid_rtt_meas(sk
, seq_rtt
);
3108 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3111 const struct tcp_sock
*tp
= tcp_sk(sk
);
3112 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3113 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3114 tcp_ack_saw_tstamp(sk
, flag
);
3115 else if (seq_rtt
>= 0)
3116 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3119 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3121 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3122 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3123 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3126 /* Restart timer after forward progress on connection.
3127 * RFC2988 recommends to restart timer to now+rto.
3129 static void tcp_rearm_rto(struct sock
*sk
)
3131 struct tcp_sock
*tp
= tcp_sk(sk
);
3133 if (!tp
->packets_out
) {
3134 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3136 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3137 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3141 /* If we get here, the whole TSO packet has not been acked. */
3142 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3144 struct tcp_sock
*tp
= tcp_sk(sk
);
3147 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3149 packets_acked
= tcp_skb_pcount(skb
);
3150 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3152 packets_acked
-= tcp_skb_pcount(skb
);
3154 if (packets_acked
) {
3155 BUG_ON(tcp_skb_pcount(skb
) == 0);
3156 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3159 return packets_acked
;
3162 /* Remove acknowledged frames from the retransmission queue. If our packet
3163 * is before the ack sequence we can discard it as it's confirmed to have
3164 * arrived at the other end.
3166 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3169 struct tcp_sock
*tp
= tcp_sk(sk
);
3170 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3171 struct sk_buff
*skb
;
3172 u32 now
= tcp_time_stamp
;
3173 int fully_acked
= 1;
3176 u32 reord
= tp
->packets_out
;
3177 u32 prior_sacked
= tp
->sacked_out
;
3179 s32 ca_seq_rtt
= -1;
3180 ktime_t last_ackt
= net_invalid_timestamp();
3182 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3183 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3186 u8 sacked
= scb
->sacked
;
3188 /* Determine how many packets and what bytes were acked, tso and else */
3189 if (after(scb
->end_seq
, tp
->snd_una
)) {
3190 if (tcp_skb_pcount(skb
) == 1 ||
3191 !after(tp
->snd_una
, scb
->seq
))
3194 acked_pcount
= tcp_tso_acked(sk
, skb
);
3199 end_seq
= tp
->snd_una
;
3201 acked_pcount
= tcp_skb_pcount(skb
);
3202 end_seq
= scb
->end_seq
;
3205 /* MTU probing checks */
3206 if (fully_acked
&& icsk
->icsk_mtup
.probe_size
&&
3207 !after(tp
->mtu_probe
.probe_seq_end
, scb
->end_seq
)) {
3208 tcp_mtup_probe_success(sk
, skb
);
3211 if (sacked
& TCPCB_RETRANS
) {
3212 if (sacked
& TCPCB_SACKED_RETRANS
)
3213 tp
->retrans_out
-= acked_pcount
;
3214 flag
|= FLAG_RETRANS_DATA_ACKED
;
3217 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3218 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3220 ca_seq_rtt
= now
- scb
->when
;
3221 last_ackt
= skb
->tstamp
;
3223 seq_rtt
= ca_seq_rtt
;
3225 if (!(sacked
& TCPCB_SACKED_ACKED
))
3226 reord
= min(pkts_acked
, reord
);
3229 if (sacked
& TCPCB_SACKED_ACKED
)
3230 tp
->sacked_out
-= acked_pcount
;
3231 if (sacked
& TCPCB_LOST
)
3232 tp
->lost_out
-= acked_pcount
;
3234 tp
->packets_out
-= acked_pcount
;
3235 pkts_acked
+= acked_pcount
;
3237 /* Initial outgoing SYN's get put onto the write_queue
3238 * just like anything else we transmit. It is not
3239 * true data, and if we misinform our callers that
3240 * this ACK acks real data, we will erroneously exit
3241 * connection startup slow start one packet too
3242 * quickly. This is severely frowned upon behavior.
3244 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
3245 flag
|= FLAG_DATA_ACKED
;
3247 flag
|= FLAG_SYN_ACKED
;
3248 tp
->retrans_stamp
= 0;
3254 tcp_unlink_write_queue(skb
, sk
);
3255 sk_wmem_free_skb(sk
, skb
);
3256 tp
->scoreboard_skb_hint
= NULL
;
3257 if (skb
== tp
->retransmit_skb_hint
)
3258 tp
->retransmit_skb_hint
= NULL
;
3259 if (skb
== tp
->lost_skb_hint
)
3260 tp
->lost_skb_hint
= NULL
;
3263 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3264 tp
->snd_up
= tp
->snd_una
;
3266 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3267 flag
|= FLAG_SACK_RENEGING
;
3269 if (flag
& FLAG_ACKED
) {
3270 const struct tcp_congestion_ops
*ca_ops
3271 = inet_csk(sk
)->icsk_ca_ops
;
3273 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3276 if (tcp_is_reno(tp
)) {
3277 tcp_remove_reno_sacks(sk
, pkts_acked
);
3279 /* Non-retransmitted hole got filled? That's reordering */
3280 if (reord
< prior_fackets
)
3281 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3283 /* No need to care for underflows here because
3284 * the lost_skb_hint gets NULLed if we're past it
3285 * (or something non-trivial happened)
3287 if (tcp_is_fack(tp
))
3288 tp
->lost_cnt_hint
-= pkts_acked
;
3290 tp
->lost_cnt_hint
-= prior_sacked
- tp
->sacked_out
;
3293 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3295 if (ca_ops
->pkts_acked
) {
3298 /* Is the ACK triggering packet unambiguous? */
3299 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3300 /* High resolution needed and available? */
3301 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3302 !ktime_equal(last_ackt
,
3303 net_invalid_timestamp()))
3304 rtt_us
= ktime_us_delta(ktime_get_real(),
3306 else if (ca_seq_rtt
> 0)
3307 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3310 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3314 #if FASTRETRANS_DEBUG > 0
3315 WARN_ON((int)tp
->sacked_out
< 0);
3316 WARN_ON((int)tp
->lost_out
< 0);
3317 WARN_ON((int)tp
->retrans_out
< 0);
3318 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3319 icsk
= inet_csk(sk
);
3321 printk(KERN_DEBUG
"Leak l=%u %d\n",
3322 tp
->lost_out
, icsk
->icsk_ca_state
);
3325 if (tp
->sacked_out
) {
3326 printk(KERN_DEBUG
"Leak s=%u %d\n",
3327 tp
->sacked_out
, icsk
->icsk_ca_state
);
3330 if (tp
->retrans_out
) {
3331 printk(KERN_DEBUG
"Leak r=%u %d\n",
3332 tp
->retrans_out
, icsk
->icsk_ca_state
);
3333 tp
->retrans_out
= 0;
3340 static void tcp_ack_probe(struct sock
*sk
)
3342 const struct tcp_sock
*tp
= tcp_sk(sk
);
3343 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3345 /* Was it a usable window open? */
3347 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3348 icsk
->icsk_backoff
= 0;
3349 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3350 /* Socket must be waked up by subsequent tcp_data_snd_check().
3351 * This function is not for random using!
3354 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3355 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3360 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3362 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3363 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
3366 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3368 const struct tcp_sock
*tp
= tcp_sk(sk
);
3369 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3370 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3373 /* Check that window update is acceptable.
3374 * The function assumes that snd_una<=ack<=snd_next.
3376 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3377 const u32 ack
, const u32 ack_seq
,
3380 return (after(ack
, tp
->snd_una
) ||
3381 after(ack_seq
, tp
->snd_wl1
) ||
3382 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
3385 /* Update our send window.
3387 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3388 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3390 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3393 struct tcp_sock
*tp
= tcp_sk(sk
);
3395 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3397 if (likely(!tcp_hdr(skb
)->syn
))
3398 nwin
<<= tp
->rx_opt
.snd_wscale
;
3400 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3401 flag
|= FLAG_WIN_UPDATE
;
3402 tcp_update_wl(tp
, ack
, ack_seq
);
3404 if (tp
->snd_wnd
!= nwin
) {
3407 /* Note, it is the only place, where
3408 * fast path is recovered for sending TCP.
3411 tcp_fast_path_check(sk
);
3413 if (nwin
> tp
->max_window
) {
3414 tp
->max_window
= nwin
;
3415 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3425 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3426 * continue in congestion avoidance.
3428 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3430 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3431 tp
->snd_cwnd_cnt
= 0;
3432 tp
->bytes_acked
= 0;
3433 TCP_ECN_queue_cwr(tp
);
3434 tcp_moderate_cwnd(tp
);
3437 /* A conservative spurious RTO response algorithm: reduce cwnd using
3438 * rate halving and continue in congestion avoidance.
3440 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3442 tcp_enter_cwr(sk
, 0);
3445 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3447 if (flag
& FLAG_ECE
)
3448 tcp_ratehalving_spur_to_response(sk
);
3450 tcp_undo_cwr(sk
, 1);
3453 /* F-RTO spurious RTO detection algorithm (RFC4138)
3455 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3456 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3457 * window (but not to or beyond highest sequence sent before RTO):
3458 * On First ACK, send two new segments out.
3459 * On Second ACK, RTO was likely spurious. Do spurious response (response
3460 * algorithm is not part of the F-RTO detection algorithm
3461 * given in RFC4138 but can be selected separately).
3462 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3463 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3464 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3465 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3467 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3468 * original window even after we transmit two new data segments.
3471 * on first step, wait until first cumulative ACK arrives, then move to
3472 * the second step. In second step, the next ACK decides.
3474 * F-RTO is implemented (mainly) in four functions:
3475 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3476 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3477 * called when tcp_use_frto() showed green light
3478 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3479 * - tcp_enter_frto_loss() is called if there is not enough evidence
3480 * to prove that the RTO is indeed spurious. It transfers the control
3481 * from F-RTO to the conventional RTO recovery
3483 static int tcp_process_frto(struct sock
*sk
, int flag
)
3485 struct tcp_sock
*tp
= tcp_sk(sk
);
3487 tcp_verify_left_out(tp
);
3489 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3490 if (flag
& FLAG_DATA_ACKED
)
3491 inet_csk(sk
)->icsk_retransmits
= 0;
3493 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3494 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3495 tp
->undo_marker
= 0;
3497 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3498 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3502 if (!tcp_is_sackfrto(tp
)) {
3503 /* RFC4138 shortcoming in step 2; should also have case c):
3504 * ACK isn't duplicate nor advances window, e.g., opposite dir
3507 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3510 if (!(flag
& FLAG_DATA_ACKED
)) {
3511 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3516 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3517 /* Prevent sending of new data. */
3518 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3519 tcp_packets_in_flight(tp
));
3523 if ((tp
->frto_counter
>= 2) &&
3524 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3525 ((flag
& FLAG_DATA_SACKED
) &&
3526 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3527 /* RFC4138 shortcoming (see comment above) */
3528 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3529 (flag
& FLAG_NOT_DUP
))
3532 tcp_enter_frto_loss(sk
, 3, flag
);
3537 if (tp
->frto_counter
== 1) {
3538 /* tcp_may_send_now needs to see updated state */
3539 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3540 tp
->frto_counter
= 2;
3542 if (!tcp_may_send_now(sk
))
3543 tcp_enter_frto_loss(sk
, 2, flag
);
3547 switch (sysctl_tcp_frto_response
) {
3549 tcp_undo_spur_to_response(sk
, flag
);
3552 tcp_conservative_spur_to_response(tp
);
3555 tcp_ratehalving_spur_to_response(sk
);
3558 tp
->frto_counter
= 0;
3559 tp
->undo_marker
= 0;
3560 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3565 /* This routine deals with incoming acks, but not outgoing ones. */
3566 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3568 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3569 struct tcp_sock
*tp
= tcp_sk(sk
);
3570 u32 prior_snd_una
= tp
->snd_una
;
3571 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3572 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3573 u32 prior_in_flight
;
3578 /* If the ack is newer than sent or older than previous acks
3579 * then we can probably ignore it.
3581 if (after(ack
, tp
->snd_nxt
))
3582 goto uninteresting_ack
;
3584 if (before(ack
, prior_snd_una
))
3587 if (after(ack
, prior_snd_una
))
3588 flag
|= FLAG_SND_UNA_ADVANCED
;
3590 if (sysctl_tcp_abc
) {
3591 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3592 tp
->bytes_acked
+= ack
- prior_snd_una
;
3593 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3594 /* we assume just one segment left network */
3595 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3599 prior_fackets
= tp
->fackets_out
;
3600 prior_in_flight
= tcp_packets_in_flight(tp
);
3602 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3603 /* Window is constant, pure forward advance.
3604 * No more checks are required.
3605 * Note, we use the fact that SND.UNA>=SND.WL2.
3607 tcp_update_wl(tp
, ack
, ack_seq
);
3609 flag
|= FLAG_WIN_UPDATE
;
3611 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3613 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3615 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3618 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3620 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3622 if (TCP_SKB_CB(skb
)->sacked
)
3623 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3625 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3628 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3631 /* We passed data and got it acked, remove any soft error
3632 * log. Something worked...
3634 sk
->sk_err_soft
= 0;
3635 icsk
->icsk_probes_out
= 0;
3636 tp
->rcv_tstamp
= tcp_time_stamp
;
3637 prior_packets
= tp
->packets_out
;
3641 /* See if we can take anything off of the retransmit queue. */
3642 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3644 if (tp
->frto_counter
)
3645 frto_cwnd
= tcp_process_frto(sk
, flag
);
3646 /* Guarantee sacktag reordering detection against wrap-arounds */
3647 if (before(tp
->frto_highmark
, tp
->snd_una
))
3648 tp
->frto_highmark
= 0;
3650 if (tcp_ack_is_dubious(sk
, flag
)) {
3651 /* Advance CWND, if state allows this. */
3652 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3653 tcp_may_raise_cwnd(sk
, flag
))
3654 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3655 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3658 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3659 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3662 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3663 dst_confirm(sk
->sk_dst_cache
);
3668 /* If this ack opens up a zero window, clear backoff. It was
3669 * being used to time the probes, and is probably far higher than
3670 * it needs to be for normal retransmission.
3672 if (tcp_send_head(sk
))
3677 if (TCP_SKB_CB(skb
)->sacked
) {
3678 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3679 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3680 tcp_try_keep_open(sk
);
3684 SOCK_DEBUG(sk
, "Ack %u out of %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3688 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3689 * But, this can also be called on packets in the established flow when
3690 * the fast version below fails.
3692 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3696 struct tcphdr
*th
= tcp_hdr(skb
);
3697 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3699 ptr
= (unsigned char *)(th
+ 1);
3700 opt_rx
->saw_tstamp
= 0;
3702 while (length
> 0) {
3703 int opcode
= *ptr
++;
3709 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3714 if (opsize
< 2) /* "silly options" */
3716 if (opsize
> length
)
3717 return; /* don't parse partial options */
3720 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3721 u16 in_mss
= get_unaligned_be16(ptr
);
3723 if (opt_rx
->user_mss
&&
3724 opt_rx
->user_mss
< in_mss
)
3725 in_mss
= opt_rx
->user_mss
;
3726 opt_rx
->mss_clamp
= in_mss
;
3731 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3732 !estab
&& sysctl_tcp_window_scaling
) {
3733 __u8 snd_wscale
= *(__u8
*)ptr
;
3734 opt_rx
->wscale_ok
= 1;
3735 if (snd_wscale
> 14) {
3736 if (net_ratelimit())
3737 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3738 "scaling value %d >14 received.\n",
3742 opt_rx
->snd_wscale
= snd_wscale
;
3745 case TCPOPT_TIMESTAMP
:
3746 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3747 ((estab
&& opt_rx
->tstamp_ok
) ||
3748 (!estab
&& sysctl_tcp_timestamps
))) {
3749 opt_rx
->saw_tstamp
= 1;
3750 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3751 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3754 case TCPOPT_SACK_PERM
:
3755 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3756 !estab
&& sysctl_tcp_sack
) {
3757 opt_rx
->sack_ok
= 1;
3758 tcp_sack_reset(opt_rx
);
3763 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3764 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3766 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3769 #ifdef CONFIG_TCP_MD5SIG
3772 * The MD5 Hash has already been
3773 * checked (see tcp_v{4,6}_do_rcv()).
3785 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, struct tcphdr
*th
)
3787 __be32
*ptr
= (__be32
*)(th
+ 1);
3789 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3790 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3791 tp
->rx_opt
.saw_tstamp
= 1;
3793 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3795 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3801 /* Fast parse options. This hopes to only see timestamps.
3802 * If it is wrong it falls back on tcp_parse_options().
3804 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3805 struct tcp_sock
*tp
)
3807 if (th
->doff
== sizeof(struct tcphdr
) >> 2) {
3808 tp
->rx_opt
.saw_tstamp
= 0;
3810 } else if (tp
->rx_opt
.tstamp_ok
&&
3811 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
3812 if (tcp_parse_aligned_timestamp(tp
, th
))
3815 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
3819 #ifdef CONFIG_TCP_MD5SIG
3821 * Parse MD5 Signature option
3823 u8
*tcp_parse_md5sig_option(struct tcphdr
*th
)
3825 int length
= (th
->doff
<< 2) - sizeof (*th
);
3826 u8
*ptr
= (u8
*)(th
+ 1);
3828 /* If the TCP option is too short, we can short cut */
3829 if (length
< TCPOLEN_MD5SIG
)
3832 while (length
> 0) {
3833 int opcode
= *ptr
++;
3844 if (opsize
< 2 || opsize
> length
)
3846 if (opcode
== TCPOPT_MD5SIG
)
3856 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3858 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3859 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3862 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3864 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3865 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3866 * extra check below makes sure this can only happen
3867 * for pure ACK frames. -DaveM
3869 * Not only, also it occurs for expired timestamps.
3872 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) >= 0 ||
3873 get_seconds() >= tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
)
3874 tcp_store_ts_recent(tp
);
3878 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3880 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3881 * it can pass through stack. So, the following predicate verifies that
3882 * this segment is not used for anything but congestion avoidance or
3883 * fast retransmit. Moreover, we even are able to eliminate most of such
3884 * second order effects, if we apply some small "replay" window (~RTO)
3885 * to timestamp space.
3887 * All these measures still do not guarantee that we reject wrapped ACKs
3888 * on networks with high bandwidth, when sequence space is recycled fastly,
3889 * but it guarantees that such events will be very rare and do not affect
3890 * connection seriously. This doesn't look nice, but alas, PAWS is really
3893 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3894 * states that events when retransmit arrives after original data are rare.
3895 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3896 * the biggest problem on large power networks even with minor reordering.
3897 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3898 * up to bandwidth of 18Gigabit/sec. 8) ]
3901 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3903 struct tcp_sock
*tp
= tcp_sk(sk
);
3904 struct tcphdr
*th
= tcp_hdr(skb
);
3905 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3906 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3908 return (/* 1. Pure ACK with correct sequence number. */
3909 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3911 /* 2. ... and duplicate ACK. */
3912 ack
== tp
->snd_una
&&
3914 /* 3. ... and does not update window. */
3915 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3917 /* 4. ... and sits in replay window. */
3918 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3921 static inline int tcp_paws_discard(const struct sock
*sk
,
3922 const struct sk_buff
*skb
)
3924 const struct tcp_sock
*tp
= tcp_sk(sk
);
3925 return ((s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) > TCP_PAWS_WINDOW
&&
3926 get_seconds() < tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
&&
3927 !tcp_disordered_ack(sk
, skb
));
3930 /* Check segment sequence number for validity.
3932 * Segment controls are considered valid, if the segment
3933 * fits to the window after truncation to the window. Acceptability
3934 * of data (and SYN, FIN, of course) is checked separately.
3935 * See tcp_data_queue(), for example.
3937 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3938 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3939 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3940 * (borrowed from freebsd)
3943 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3945 return !before(end_seq
, tp
->rcv_wup
) &&
3946 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3949 /* When we get a reset we do this. */
3950 static void tcp_reset(struct sock
*sk
)
3952 /* We want the right error as BSD sees it (and indeed as we do). */
3953 switch (sk
->sk_state
) {
3955 sk
->sk_err
= ECONNREFUSED
;
3957 case TCP_CLOSE_WAIT
:
3963 sk
->sk_err
= ECONNRESET
;
3966 if (!sock_flag(sk
, SOCK_DEAD
))
3967 sk
->sk_error_report(sk
);
3973 * Process the FIN bit. This now behaves as it is supposed to work
3974 * and the FIN takes effect when it is validly part of sequence
3975 * space. Not before when we get holes.
3977 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3978 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3981 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3982 * close and we go into CLOSING (and later onto TIME-WAIT)
3984 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3986 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
3988 struct tcp_sock
*tp
= tcp_sk(sk
);
3990 inet_csk_schedule_ack(sk
);
3992 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
3993 sock_set_flag(sk
, SOCK_DONE
);
3995 switch (sk
->sk_state
) {
3997 case TCP_ESTABLISHED
:
3998 /* Move to CLOSE_WAIT */
3999 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4000 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4003 case TCP_CLOSE_WAIT
:
4005 /* Received a retransmission of the FIN, do
4010 /* RFC793: Remain in the LAST-ACK state. */
4014 /* This case occurs when a simultaneous close
4015 * happens, we must ack the received FIN and
4016 * enter the CLOSING state.
4019 tcp_set_state(sk
, TCP_CLOSING
);
4022 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4024 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4027 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4028 * cases we should never reach this piece of code.
4030 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4031 __func__
, sk
->sk_state
);
4035 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4036 * Probably, we should reset in this case. For now drop them.
4038 __skb_queue_purge(&tp
->out_of_order_queue
);
4039 if (tcp_is_sack(tp
))
4040 tcp_sack_reset(&tp
->rx_opt
);
4043 if (!sock_flag(sk
, SOCK_DEAD
)) {
4044 sk
->sk_state_change(sk
);
4046 /* Do not send POLL_HUP for half duplex close. */
4047 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4048 sk
->sk_state
== TCP_CLOSE
)
4049 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4051 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4055 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4058 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4059 if (before(seq
, sp
->start_seq
))
4060 sp
->start_seq
= seq
;
4061 if (after(end_seq
, sp
->end_seq
))
4062 sp
->end_seq
= end_seq
;
4068 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4070 struct tcp_sock
*tp
= tcp_sk(sk
);
4072 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4075 if (before(seq
, tp
->rcv_nxt
))
4076 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4078 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4080 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4082 tp
->rx_opt
.dsack
= 1;
4083 tp
->duplicate_sack
[0].start_seq
= seq
;
4084 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4085 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
+ 1;
4089 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4091 struct tcp_sock
*tp
= tcp_sk(sk
);
4093 if (!tp
->rx_opt
.dsack
)
4094 tcp_dsack_set(sk
, seq
, end_seq
);
4096 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4099 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
4101 struct tcp_sock
*tp
= tcp_sk(sk
);
4103 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4104 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4105 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4106 tcp_enter_quickack_mode(sk
);
4108 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4109 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4111 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4112 end_seq
= tp
->rcv_nxt
;
4113 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4120 /* These routines update the SACK block as out-of-order packets arrive or
4121 * in-order packets close up the sequence space.
4123 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4126 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4127 struct tcp_sack_block
*swalk
= sp
+ 1;
4129 /* See if the recent change to the first SACK eats into
4130 * or hits the sequence space of other SACK blocks, if so coalesce.
4132 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4133 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4136 /* Zap SWALK, by moving every further SACK up by one slot.
4137 * Decrease num_sacks.
4139 tp
->rx_opt
.num_sacks
--;
4140 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
+
4142 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4146 this_sack
++, swalk
++;
4150 static inline void tcp_sack_swap(struct tcp_sack_block
*sack1
,
4151 struct tcp_sack_block
*sack2
)
4155 tmp
= sack1
->start_seq
;
4156 sack1
->start_seq
= sack2
->start_seq
;
4157 sack2
->start_seq
= tmp
;
4159 tmp
= sack1
->end_seq
;
4160 sack1
->end_seq
= sack2
->end_seq
;
4161 sack2
->end_seq
= tmp
;
4164 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4166 struct tcp_sock
*tp
= tcp_sk(sk
);
4167 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4168 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4174 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4175 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4176 /* Rotate this_sack to the first one. */
4177 for (; this_sack
> 0; this_sack
--, sp
--)
4178 tcp_sack_swap(sp
, sp
- 1);
4180 tcp_sack_maybe_coalesce(tp
);
4185 /* Could not find an adjacent existing SACK, build a new one,
4186 * put it at the front, and shift everyone else down. We
4187 * always know there is at least one SACK present already here.
4189 * If the sack array is full, forget about the last one.
4191 if (this_sack
>= TCP_NUM_SACKS
) {
4193 tp
->rx_opt
.num_sacks
--;
4196 for (; this_sack
> 0; this_sack
--, sp
--)
4200 /* Build the new head SACK, and we're done. */
4201 sp
->start_seq
= seq
;
4202 sp
->end_seq
= end_seq
;
4203 tp
->rx_opt
.num_sacks
++;
4204 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
4207 /* RCV.NXT advances, some SACKs should be eaten. */
4209 static void tcp_sack_remove(struct tcp_sock
*tp
)
4211 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4212 int num_sacks
= tp
->rx_opt
.num_sacks
;
4215 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4216 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4217 tp
->rx_opt
.num_sacks
= 0;
4218 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.dsack
;
4222 for (this_sack
= 0; this_sack
< num_sacks
;) {
4223 /* Check if the start of the sack is covered by RCV.NXT. */
4224 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4227 /* RCV.NXT must cover all the block! */
4228 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4230 /* Zap this SACK, by moving forward any other SACKS. */
4231 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4232 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4239 if (num_sacks
!= tp
->rx_opt
.num_sacks
) {
4240 tp
->rx_opt
.num_sacks
= num_sacks
;
4241 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
+
4246 /* This one checks to see if we can put data from the
4247 * out_of_order queue into the receive_queue.
4249 static void tcp_ofo_queue(struct sock
*sk
)
4251 struct tcp_sock
*tp
= tcp_sk(sk
);
4252 __u32 dsack_high
= tp
->rcv_nxt
;
4253 struct sk_buff
*skb
;
4255 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4256 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4259 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4260 __u32 dsack
= dsack_high
;
4261 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4262 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4263 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4266 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4267 SOCK_DEBUG(sk
, "ofo packet was already received \n");
4268 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4272 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4273 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4274 TCP_SKB_CB(skb
)->end_seq
);
4276 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4277 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4278 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4279 if (tcp_hdr(skb
)->fin
)
4280 tcp_fin(skb
, sk
, tcp_hdr(skb
));
4284 static int tcp_prune_ofo_queue(struct sock
*sk
);
4285 static int tcp_prune_queue(struct sock
*sk
);
4287 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4289 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4290 !sk_rmem_schedule(sk
, size
)) {
4292 if (tcp_prune_queue(sk
) < 0)
4295 if (!sk_rmem_schedule(sk
, size
)) {
4296 if (!tcp_prune_ofo_queue(sk
))
4299 if (!sk_rmem_schedule(sk
, size
))
4306 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4308 struct tcphdr
*th
= tcp_hdr(skb
);
4309 struct tcp_sock
*tp
= tcp_sk(sk
);
4312 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4315 __skb_pull(skb
, th
->doff
* 4);
4317 TCP_ECN_accept_cwr(tp
, skb
);
4319 if (tp
->rx_opt
.dsack
) {
4320 tp
->rx_opt
.dsack
= 0;
4321 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
;
4324 /* Queue data for delivery to the user.
4325 * Packets in sequence go to the receive queue.
4326 * Out of sequence packets to the out_of_order_queue.
4328 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4329 if (tcp_receive_window(tp
) == 0)
4332 /* Ok. In sequence. In window. */
4333 if (tp
->ucopy
.task
== current
&&
4334 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4335 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4336 int chunk
= min_t(unsigned int, skb
->len
,
4339 __set_current_state(TASK_RUNNING
);
4342 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4343 tp
->ucopy
.len
-= chunk
;
4344 tp
->copied_seq
+= chunk
;
4345 eaten
= (chunk
== skb
->len
&& !th
->fin
);
4346 tcp_rcv_space_adjust(sk
);
4354 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4357 skb_set_owner_r(skb
, sk
);
4358 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4360 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4362 tcp_event_data_recv(sk
, skb
);
4364 tcp_fin(skb
, sk
, th
);
4366 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4369 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4370 * gap in queue is filled.
4372 if (skb_queue_empty(&tp
->out_of_order_queue
))
4373 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4376 if (tp
->rx_opt
.num_sacks
)
4377 tcp_sack_remove(tp
);
4379 tcp_fast_path_check(sk
);
4383 else if (!sock_flag(sk
, SOCK_DEAD
))
4384 sk
->sk_data_ready(sk
, 0);
4388 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4389 /* A retransmit, 2nd most common case. Force an immediate ack. */
4390 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4391 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4394 tcp_enter_quickack_mode(sk
);
4395 inet_csk_schedule_ack(sk
);
4401 /* Out of window. F.e. zero window probe. */
4402 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4405 tcp_enter_quickack_mode(sk
);
4407 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4408 /* Partial packet, seq < rcv_next < end_seq */
4409 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4410 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4411 TCP_SKB_CB(skb
)->end_seq
);
4413 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4415 /* If window is closed, drop tail of packet. But after
4416 * remembering D-SACK for its head made in previous line.
4418 if (!tcp_receive_window(tp
))
4423 TCP_ECN_check_ce(tp
, skb
);
4425 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4428 /* Disable header prediction. */
4430 inet_csk_schedule_ack(sk
);
4432 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4433 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4435 skb_set_owner_r(skb
, sk
);
4437 if (!skb_peek(&tp
->out_of_order_queue
)) {
4438 /* Initial out of order segment, build 1 SACK. */
4439 if (tcp_is_sack(tp
)) {
4440 tp
->rx_opt
.num_sacks
= 1;
4441 tp
->rx_opt
.dsack
= 0;
4442 tp
->rx_opt
.eff_sacks
= 1;
4443 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4444 tp
->selective_acks
[0].end_seq
=
4445 TCP_SKB_CB(skb
)->end_seq
;
4447 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4449 struct sk_buff
*skb1
= tp
->out_of_order_queue
.prev
;
4450 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4451 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4453 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4454 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4456 if (!tp
->rx_opt
.num_sacks
||
4457 tp
->selective_acks
[0].end_seq
!= seq
)
4460 /* Common case: data arrive in order after hole. */
4461 tp
->selective_acks
[0].end_seq
= end_seq
;
4465 /* Find place to insert this segment. */
4467 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4469 } while ((skb1
= skb1
->prev
) !=
4470 (struct sk_buff
*)&tp
->out_of_order_queue
);
4472 /* Do skb overlap to previous one? */
4473 if (skb1
!= (struct sk_buff
*)&tp
->out_of_order_queue
&&
4474 before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4475 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4476 /* All the bits are present. Drop. */
4478 tcp_dsack_set(sk
, seq
, end_seq
);
4481 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4482 /* Partial overlap. */
4483 tcp_dsack_set(sk
, seq
,
4484 TCP_SKB_CB(skb1
)->end_seq
);
4489 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4491 /* And clean segments covered by new one as whole. */
4492 while ((skb1
= skb
->next
) !=
4493 (struct sk_buff
*)&tp
->out_of_order_queue
&&
4494 after(end_seq
, TCP_SKB_CB(skb1
)->seq
)) {
4495 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4496 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4500 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4501 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4502 TCP_SKB_CB(skb1
)->end_seq
);
4507 if (tcp_is_sack(tp
))
4508 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4512 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4513 struct sk_buff_head
*list
)
4515 struct sk_buff
*next
= skb
->next
;
4517 __skb_unlink(skb
, list
);
4519 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4524 /* Collapse contiguous sequence of skbs head..tail with
4525 * sequence numbers start..end.
4526 * Segments with FIN/SYN are not collapsed (only because this
4530 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4531 struct sk_buff
*head
, struct sk_buff
*tail
,
4534 struct sk_buff
*skb
;
4536 /* First, check that queue is collapsible and find
4537 * the point where collapsing can be useful. */
4538 for (skb
= head
; skb
!= tail
;) {
4539 /* No new bits? It is possible on ofo queue. */
4540 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4541 skb
= tcp_collapse_one(sk
, skb
, list
);
4545 /* The first skb to collapse is:
4547 * - bloated or contains data before "start" or
4548 * overlaps to the next one.
4550 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4551 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4552 before(TCP_SKB_CB(skb
)->seq
, start
) ||
4553 (skb
->next
!= tail
&&
4554 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
->next
)->seq
)))
4557 /* Decided to skip this, advance start seq. */
4558 start
= TCP_SKB_CB(skb
)->end_seq
;
4561 if (skb
== tail
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4564 while (before(start
, end
)) {
4565 struct sk_buff
*nskb
;
4566 unsigned int header
= skb_headroom(skb
);
4567 int copy
= SKB_MAX_ORDER(header
, 0);
4569 /* Too big header? This can happen with IPv6. */
4572 if (end
- start
< copy
)
4574 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4578 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4579 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4581 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4583 skb_reserve(nskb
, header
);
4584 memcpy(nskb
->head
, skb
->head
, header
);
4585 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4586 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4587 __skb_queue_before(list
, skb
, nskb
);
4588 skb_set_owner_r(nskb
, sk
);
4590 /* Copy data, releasing collapsed skbs. */
4592 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4593 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4597 size
= min(copy
, size
);
4598 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4600 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4604 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4605 skb
= tcp_collapse_one(sk
, skb
, list
);
4607 tcp_hdr(skb
)->syn
||
4615 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4616 * and tcp_collapse() them until all the queue is collapsed.
4618 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4620 struct tcp_sock
*tp
= tcp_sk(sk
);
4621 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4622 struct sk_buff
*head
;
4628 start
= TCP_SKB_CB(skb
)->seq
;
4629 end
= TCP_SKB_CB(skb
)->end_seq
;
4635 /* Segment is terminated when we see gap or when
4636 * we are at the end of all the queue. */
4637 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
||
4638 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4639 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4640 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4641 head
, skb
, start
, end
);
4643 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
)
4645 /* Start new segment */
4646 start
= TCP_SKB_CB(skb
)->seq
;
4647 end
= TCP_SKB_CB(skb
)->end_seq
;
4649 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4650 start
= TCP_SKB_CB(skb
)->seq
;
4651 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4652 end
= TCP_SKB_CB(skb
)->end_seq
;
4658 * Purge the out-of-order queue.
4659 * Return true if queue was pruned.
4661 static int tcp_prune_ofo_queue(struct sock
*sk
)
4663 struct tcp_sock
*tp
= tcp_sk(sk
);
4666 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4667 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4668 __skb_queue_purge(&tp
->out_of_order_queue
);
4670 /* Reset SACK state. A conforming SACK implementation will
4671 * do the same at a timeout based retransmit. When a connection
4672 * is in a sad state like this, we care only about integrity
4673 * of the connection not performance.
4675 if (tp
->rx_opt
.sack_ok
)
4676 tcp_sack_reset(&tp
->rx_opt
);
4683 /* Reduce allocated memory if we can, trying to get
4684 * the socket within its memory limits again.
4686 * Return less than zero if we should start dropping frames
4687 * until the socket owning process reads some of the data
4688 * to stabilize the situation.
4690 static int tcp_prune_queue(struct sock
*sk
)
4692 struct tcp_sock
*tp
= tcp_sk(sk
);
4694 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4696 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4698 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4699 tcp_clamp_window(sk
);
4700 else if (tcp_memory_pressure
)
4701 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4703 tcp_collapse_ofo_queue(sk
);
4704 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4705 sk
->sk_receive_queue
.next
,
4706 (struct sk_buff
*)&sk
->sk_receive_queue
,
4707 tp
->copied_seq
, tp
->rcv_nxt
);
4710 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4713 /* Collapsing did not help, destructive actions follow.
4714 * This must not ever occur. */
4716 tcp_prune_ofo_queue(sk
);
4718 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4721 /* If we are really being abused, tell the caller to silently
4722 * drop receive data on the floor. It will get retransmitted
4723 * and hopefully then we'll have sufficient space.
4725 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4727 /* Massive buffer overcommit. */
4732 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4733 * As additional protections, we do not touch cwnd in retransmission phases,
4734 * and if application hit its sndbuf limit recently.
4736 void tcp_cwnd_application_limited(struct sock
*sk
)
4738 struct tcp_sock
*tp
= tcp_sk(sk
);
4740 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4741 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4742 /* Limited by application or receiver window. */
4743 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4744 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4745 if (win_used
< tp
->snd_cwnd
) {
4746 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4747 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4749 tp
->snd_cwnd_used
= 0;
4751 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4754 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4756 struct tcp_sock
*tp
= tcp_sk(sk
);
4758 /* If the user specified a specific send buffer setting, do
4761 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4764 /* If we are under global TCP memory pressure, do not expand. */
4765 if (tcp_memory_pressure
)
4768 /* If we are under soft global TCP memory pressure, do not expand. */
4769 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4772 /* If we filled the congestion window, do not expand. */
4773 if (tp
->packets_out
>= tp
->snd_cwnd
)
4779 /* When incoming ACK allowed to free some skb from write_queue,
4780 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4781 * on the exit from tcp input handler.
4783 * PROBLEM: sndbuf expansion does not work well with largesend.
4785 static void tcp_new_space(struct sock
*sk
)
4787 struct tcp_sock
*tp
= tcp_sk(sk
);
4789 if (tcp_should_expand_sndbuf(sk
)) {
4790 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4791 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
4792 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4793 tp
->reordering
+ 1);
4794 sndmem
*= 2 * demanded
;
4795 if (sndmem
> sk
->sk_sndbuf
)
4796 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4797 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4800 sk
->sk_write_space(sk
);
4803 static void tcp_check_space(struct sock
*sk
)
4805 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4806 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4807 if (sk
->sk_socket
&&
4808 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4813 static inline void tcp_data_snd_check(struct sock
*sk
)
4815 tcp_push_pending_frames(sk
);
4816 tcp_check_space(sk
);
4820 * Check if sending an ack is needed.
4822 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4824 struct tcp_sock
*tp
= tcp_sk(sk
);
4826 /* More than one full frame received... */
4827 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
4828 /* ... and right edge of window advances far enough.
4829 * (tcp_recvmsg() will send ACK otherwise). Or...
4831 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4832 /* We ACK each frame or... */
4833 tcp_in_quickack_mode(sk
) ||
4834 /* We have out of order data. */
4835 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4836 /* Then ack it now */
4839 /* Else, send delayed ack. */
4840 tcp_send_delayed_ack(sk
);
4844 static inline void tcp_ack_snd_check(struct sock
*sk
)
4846 if (!inet_csk_ack_scheduled(sk
)) {
4847 /* We sent a data segment already. */
4850 __tcp_ack_snd_check(sk
, 1);
4854 * This routine is only called when we have urgent data
4855 * signaled. Its the 'slow' part of tcp_urg. It could be
4856 * moved inline now as tcp_urg is only called from one
4857 * place. We handle URGent data wrong. We have to - as
4858 * BSD still doesn't use the correction from RFC961.
4859 * For 1003.1g we should support a new option TCP_STDURG to permit
4860 * either form (or just set the sysctl tcp_stdurg).
4863 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
4865 struct tcp_sock
*tp
= tcp_sk(sk
);
4866 u32 ptr
= ntohs(th
->urg_ptr
);
4868 if (ptr
&& !sysctl_tcp_stdurg
)
4870 ptr
+= ntohl(th
->seq
);
4872 /* Ignore urgent data that we've already seen and read. */
4873 if (after(tp
->copied_seq
, ptr
))
4876 /* Do not replay urg ptr.
4878 * NOTE: interesting situation not covered by specs.
4879 * Misbehaving sender may send urg ptr, pointing to segment,
4880 * which we already have in ofo queue. We are not able to fetch
4881 * such data and will stay in TCP_URG_NOTYET until will be eaten
4882 * by recvmsg(). Seems, we are not obliged to handle such wicked
4883 * situations. But it is worth to think about possibility of some
4884 * DoSes using some hypothetical application level deadlock.
4886 if (before(ptr
, tp
->rcv_nxt
))
4889 /* Do we already have a newer (or duplicate) urgent pointer? */
4890 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4893 /* Tell the world about our new urgent pointer. */
4896 /* We may be adding urgent data when the last byte read was
4897 * urgent. To do this requires some care. We cannot just ignore
4898 * tp->copied_seq since we would read the last urgent byte again
4899 * as data, nor can we alter copied_seq until this data arrives
4900 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4902 * NOTE. Double Dutch. Rendering to plain English: author of comment
4903 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4904 * and expect that both A and B disappear from stream. This is _wrong_.
4905 * Though this happens in BSD with high probability, this is occasional.
4906 * Any application relying on this is buggy. Note also, that fix "works"
4907 * only in this artificial test. Insert some normal data between A and B and we will
4908 * decline of BSD again. Verdict: it is better to remove to trap
4911 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4912 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
4913 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4915 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4916 __skb_unlink(skb
, &sk
->sk_receive_queue
);
4921 tp
->urg_data
= TCP_URG_NOTYET
;
4924 /* Disable header prediction. */
4928 /* This is the 'fast' part of urgent handling. */
4929 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
4931 struct tcp_sock
*tp
= tcp_sk(sk
);
4933 /* Check if we get a new urgent pointer - normally not. */
4935 tcp_check_urg(sk
, th
);
4937 /* Do we wait for any urgent data? - normally not... */
4938 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4939 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4942 /* Is the urgent pointer pointing into this packet? */
4943 if (ptr
< skb
->len
) {
4945 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4947 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4948 if (!sock_flag(sk
, SOCK_DEAD
))
4949 sk
->sk_data_ready(sk
, 0);
4954 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4956 struct tcp_sock
*tp
= tcp_sk(sk
);
4957 int chunk
= skb
->len
- hlen
;
4961 if (skb_csum_unnecessary(skb
))
4962 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
4964 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
4968 tp
->ucopy
.len
-= chunk
;
4969 tp
->copied_seq
+= chunk
;
4970 tcp_rcv_space_adjust(sk
);
4977 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
4978 struct sk_buff
*skb
)
4982 if (sock_owned_by_user(sk
)) {
4984 result
= __tcp_checksum_complete(skb
);
4987 result
= __tcp_checksum_complete(skb
);
4992 static inline int tcp_checksum_complete_user(struct sock
*sk
,
4993 struct sk_buff
*skb
)
4995 return !skb_csum_unnecessary(skb
) &&
4996 __tcp_checksum_complete_user(sk
, skb
);
4999 #ifdef CONFIG_NET_DMA
5000 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5003 struct tcp_sock
*tp
= tcp_sk(sk
);
5004 int chunk
= skb
->len
- hlen
;
5006 int copied_early
= 0;
5008 if (tp
->ucopy
.wakeup
)
5011 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5012 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5014 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5016 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5018 tp
->ucopy
.iov
, chunk
,
5019 tp
->ucopy
.pinned_list
);
5024 tp
->ucopy
.dma_cookie
= dma_cookie
;
5027 tp
->ucopy
.len
-= chunk
;
5028 tp
->copied_seq
+= chunk
;
5029 tcp_rcv_space_adjust(sk
);
5031 if ((tp
->ucopy
.len
== 0) ||
5032 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5033 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5034 tp
->ucopy
.wakeup
= 1;
5035 sk
->sk_data_ready(sk
, 0);
5037 } else if (chunk
> 0) {
5038 tp
->ucopy
.wakeup
= 1;
5039 sk
->sk_data_ready(sk
, 0);
5042 return copied_early
;
5044 #endif /* CONFIG_NET_DMA */
5046 /* Does PAWS and seqno based validation of an incoming segment, flags will
5047 * play significant role here.
5049 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5050 struct tcphdr
*th
, int syn_inerr
)
5052 struct tcp_sock
*tp
= tcp_sk(sk
);
5054 /* RFC1323: H1. Apply PAWS check first. */
5055 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5056 tcp_paws_discard(sk
, skb
)) {
5058 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5059 tcp_send_dupack(sk
, skb
);
5062 /* Reset is accepted even if it did not pass PAWS. */
5065 /* Step 1: check sequence number */
5066 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5067 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5068 * (RST) segments are validated by checking their SEQ-fields."
5069 * And page 69: "If an incoming segment is not acceptable,
5070 * an acknowledgment should be sent in reply (unless the RST
5071 * bit is set, if so drop the segment and return)".
5074 tcp_send_dupack(sk
, skb
);
5078 /* Step 2: check RST bit */
5084 /* ts_recent update must be made after we are sure that the packet
5087 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5089 /* step 3: check security and precedence [ignored] */
5091 /* step 4: Check for a SYN in window. */
5092 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5094 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5095 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5108 * TCP receive function for the ESTABLISHED state.
5110 * It is split into a fast path and a slow path. The fast path is
5112 * - A zero window was announced from us - zero window probing
5113 * is only handled properly in the slow path.
5114 * - Out of order segments arrived.
5115 * - Urgent data is expected.
5116 * - There is no buffer space left
5117 * - Unexpected TCP flags/window values/header lengths are received
5118 * (detected by checking the TCP header against pred_flags)
5119 * - Data is sent in both directions. Fast path only supports pure senders
5120 * or pure receivers (this means either the sequence number or the ack
5121 * value must stay constant)
5122 * - Unexpected TCP option.
5124 * When these conditions are not satisfied it drops into a standard
5125 * receive procedure patterned after RFC793 to handle all cases.
5126 * The first three cases are guaranteed by proper pred_flags setting,
5127 * the rest is checked inline. Fast processing is turned on in
5128 * tcp_data_queue when everything is OK.
5130 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5131 struct tcphdr
*th
, unsigned len
)
5133 struct tcp_sock
*tp
= tcp_sk(sk
);
5137 * Header prediction.
5138 * The code loosely follows the one in the famous
5139 * "30 instruction TCP receive" Van Jacobson mail.
5141 * Van's trick is to deposit buffers into socket queue
5142 * on a device interrupt, to call tcp_recv function
5143 * on the receive process context and checksum and copy
5144 * the buffer to user space. smart...
5146 * Our current scheme is not silly either but we take the
5147 * extra cost of the net_bh soft interrupt processing...
5148 * We do checksum and copy also but from device to kernel.
5151 tp
->rx_opt
.saw_tstamp
= 0;
5153 /* pred_flags is 0xS?10 << 16 + snd_wnd
5154 * if header_prediction is to be made
5155 * 'S' will always be tp->tcp_header_len >> 2
5156 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5157 * turn it off (when there are holes in the receive
5158 * space for instance)
5159 * PSH flag is ignored.
5162 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5163 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
5164 int tcp_header_len
= tp
->tcp_header_len
;
5166 /* Timestamp header prediction: tcp_header_len
5167 * is automatically equal to th->doff*4 due to pred_flags
5171 /* Check timestamp */
5172 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5173 /* No? Slow path! */
5174 if (!tcp_parse_aligned_timestamp(tp
, th
))
5177 /* If PAWS failed, check it more carefully in slow path */
5178 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5181 /* DO NOT update ts_recent here, if checksum fails
5182 * and timestamp was corrupted part, it will result
5183 * in a hung connection since we will drop all
5184 * future packets due to the PAWS test.
5188 if (len
<= tcp_header_len
) {
5189 /* Bulk data transfer: sender */
5190 if (len
== tcp_header_len
) {
5191 /* Predicted packet is in window by definition.
5192 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5193 * Hence, check seq<=rcv_wup reduces to:
5195 if (tcp_header_len
==
5196 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5197 tp
->rcv_nxt
== tp
->rcv_wup
)
5198 tcp_store_ts_recent(tp
);
5200 /* We know that such packets are checksummed
5203 tcp_ack(sk
, skb
, 0);
5205 tcp_data_snd_check(sk
);
5207 } else { /* Header too small */
5208 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5213 int copied_early
= 0;
5215 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5216 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5217 #ifdef CONFIG_NET_DMA
5218 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5223 if (tp
->ucopy
.task
== current
&&
5224 sock_owned_by_user(sk
) && !copied_early
) {
5225 __set_current_state(TASK_RUNNING
);
5227 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5231 /* Predicted packet is in window by definition.
5232 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5233 * Hence, check seq<=rcv_wup reduces to:
5235 if (tcp_header_len
==
5236 (sizeof(struct tcphdr
) +
5237 TCPOLEN_TSTAMP_ALIGNED
) &&
5238 tp
->rcv_nxt
== tp
->rcv_wup
)
5239 tcp_store_ts_recent(tp
);
5241 tcp_rcv_rtt_measure_ts(sk
, skb
);
5243 __skb_pull(skb
, tcp_header_len
);
5244 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5245 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5248 tcp_cleanup_rbuf(sk
, skb
->len
);
5251 if (tcp_checksum_complete_user(sk
, skb
))
5254 /* Predicted packet is in window by definition.
5255 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5256 * Hence, check seq<=rcv_wup reduces to:
5258 if (tcp_header_len
==
5259 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5260 tp
->rcv_nxt
== tp
->rcv_wup
)
5261 tcp_store_ts_recent(tp
);
5263 tcp_rcv_rtt_measure_ts(sk
, skb
);
5265 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5268 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5270 /* Bulk data transfer: receiver */
5271 __skb_pull(skb
, tcp_header_len
);
5272 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5273 skb_set_owner_r(skb
, sk
);
5274 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5277 tcp_event_data_recv(sk
, skb
);
5279 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5280 /* Well, only one small jumplet in fast path... */
5281 tcp_ack(sk
, skb
, FLAG_DATA
);
5282 tcp_data_snd_check(sk
);
5283 if (!inet_csk_ack_scheduled(sk
))
5287 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5288 __tcp_ack_snd_check(sk
, 0);
5290 #ifdef CONFIG_NET_DMA
5292 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5298 sk
->sk_data_ready(sk
, 0);
5304 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5308 * Standard slow path.
5311 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5317 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5319 tcp_rcv_rtt_measure_ts(sk
, skb
);
5321 /* Process urgent data. */
5322 tcp_urg(sk
, skb
, th
);
5324 /* step 7: process the segment text */
5325 tcp_data_queue(sk
, skb
);
5327 tcp_data_snd_check(sk
);
5328 tcp_ack_snd_check(sk
);
5332 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5339 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5340 struct tcphdr
*th
, unsigned len
)
5342 struct tcp_sock
*tp
= tcp_sk(sk
);
5343 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5344 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5346 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
5350 * "If the state is SYN-SENT then
5351 * first check the ACK bit
5352 * If the ACK bit is set
5353 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5354 * a reset (unless the RST bit is set, if so drop
5355 * the segment and return)"
5357 * We do not send data with SYN, so that RFC-correct
5360 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5361 goto reset_and_undo
;
5363 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5364 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5366 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5367 goto reset_and_undo
;
5370 /* Now ACK is acceptable.
5372 * "If the RST bit is set
5373 * If the ACK was acceptable then signal the user "error:
5374 * connection reset", drop the segment, enter CLOSED state,
5375 * delete TCB, and return."
5384 * "fifth, if neither of the SYN or RST bits is set then
5385 * drop the segment and return."
5391 goto discard_and_undo
;
5394 * "If the SYN bit is on ...
5395 * are acceptable then ...
5396 * (our SYN has been ACKed), change the connection
5397 * state to ESTABLISHED..."
5400 TCP_ECN_rcv_synack(tp
, th
);
5402 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5403 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5405 /* Ok.. it's good. Set up sequence numbers and
5406 * move to established.
5408 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5409 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5411 /* RFC1323: The window in SYN & SYN/ACK segments is
5414 tp
->snd_wnd
= ntohs(th
->window
);
5415 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
, TCP_SKB_CB(skb
)->seq
);
5417 if (!tp
->rx_opt
.wscale_ok
) {
5418 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5419 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5422 if (tp
->rx_opt
.saw_tstamp
) {
5423 tp
->rx_opt
.tstamp_ok
= 1;
5424 tp
->tcp_header_len
=
5425 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5426 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5427 tcp_store_ts_recent(tp
);
5429 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5432 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5433 tcp_enable_fack(tp
);
5436 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5437 tcp_initialize_rcv_mss(sk
);
5439 /* Remember, tcp_poll() does not lock socket!
5440 * Change state from SYN-SENT only after copied_seq
5441 * is initialized. */
5442 tp
->copied_seq
= tp
->rcv_nxt
;
5444 tcp_set_state(sk
, TCP_ESTABLISHED
);
5446 security_inet_conn_established(sk
, skb
);
5448 /* Make sure socket is routed, for correct metrics. */
5449 icsk
->icsk_af_ops
->rebuild_header(sk
);
5451 tcp_init_metrics(sk
);
5453 tcp_init_congestion_control(sk
);
5455 /* Prevent spurious tcp_cwnd_restart() on first data
5458 tp
->lsndtime
= tcp_time_stamp
;
5460 tcp_init_buffer_space(sk
);
5462 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5463 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5465 if (!tp
->rx_opt
.snd_wscale
)
5466 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5470 if (!sock_flag(sk
, SOCK_DEAD
)) {
5471 sk
->sk_state_change(sk
);
5472 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5475 if (sk
->sk_write_pending
||
5476 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5477 icsk
->icsk_ack
.pingpong
) {
5478 /* Save one ACK. Data will be ready after
5479 * several ticks, if write_pending is set.
5481 * It may be deleted, but with this feature tcpdumps
5482 * look so _wonderfully_ clever, that I was not able
5483 * to stand against the temptation 8) --ANK
5485 inet_csk_schedule_ack(sk
);
5486 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5487 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5488 tcp_incr_quickack(sk
);
5489 tcp_enter_quickack_mode(sk
);
5490 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5491 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5502 /* No ACK in the segment */
5506 * "If the RST bit is set
5508 * Otherwise (no ACK) drop the segment and return."
5511 goto discard_and_undo
;
5515 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5516 tcp_paws_check(&tp
->rx_opt
, 0))
5517 goto discard_and_undo
;
5520 /* We see SYN without ACK. It is attempt of
5521 * simultaneous connect with crossed SYNs.
5522 * Particularly, it can be connect to self.
5524 tcp_set_state(sk
, TCP_SYN_RECV
);
5526 if (tp
->rx_opt
.saw_tstamp
) {
5527 tp
->rx_opt
.tstamp_ok
= 1;
5528 tcp_store_ts_recent(tp
);
5529 tp
->tcp_header_len
=
5530 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5532 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5535 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5536 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5538 /* RFC1323: The window in SYN & SYN/ACK segments is
5541 tp
->snd_wnd
= ntohs(th
->window
);
5542 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5543 tp
->max_window
= tp
->snd_wnd
;
5545 TCP_ECN_rcv_syn(tp
, th
);
5548 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5549 tcp_initialize_rcv_mss(sk
);
5551 tcp_send_synack(sk
);
5553 /* Note, we could accept data and URG from this segment.
5554 * There are no obstacles to make this.
5556 * However, if we ignore data in ACKless segments sometimes,
5557 * we have no reasons to accept it sometimes.
5558 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5559 * is not flawless. So, discard packet for sanity.
5560 * Uncomment this return to process the data.
5567 /* "fifth, if neither of the SYN or RST bits is set then
5568 * drop the segment and return."
5572 tcp_clear_options(&tp
->rx_opt
);
5573 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5577 tcp_clear_options(&tp
->rx_opt
);
5578 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5583 * This function implements the receiving procedure of RFC 793 for
5584 * all states except ESTABLISHED and TIME_WAIT.
5585 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5586 * address independent.
5589 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5590 struct tcphdr
*th
, unsigned len
)
5592 struct tcp_sock
*tp
= tcp_sk(sk
);
5593 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5597 tp
->rx_opt
.saw_tstamp
= 0;
5599 switch (sk
->sk_state
) {
5611 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5614 /* Now we have several options: In theory there is
5615 * nothing else in the frame. KA9Q has an option to
5616 * send data with the syn, BSD accepts data with the
5617 * syn up to the [to be] advertised window and
5618 * Solaris 2.1 gives you a protocol error. For now
5619 * we just ignore it, that fits the spec precisely
5620 * and avoids incompatibilities. It would be nice in
5621 * future to drop through and process the data.
5623 * Now that TTCP is starting to be used we ought to
5625 * But, this leaves one open to an easy denial of
5626 * service attack, and SYN cookies can't defend
5627 * against this problem. So, we drop the data
5628 * in the interest of security over speed unless
5629 * it's still in use.
5637 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5641 /* Do step6 onward by hand. */
5642 tcp_urg(sk
, skb
, th
);
5644 tcp_data_snd_check(sk
);
5648 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5652 /* step 5: check the ACK field */
5654 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5656 switch (sk
->sk_state
) {
5659 tp
->copied_seq
= tp
->rcv_nxt
;
5661 tcp_set_state(sk
, TCP_ESTABLISHED
);
5662 sk
->sk_state_change(sk
);
5664 /* Note, that this wakeup is only for marginal
5665 * crossed SYN case. Passively open sockets
5666 * are not waked up, because sk->sk_sleep ==
5667 * NULL and sk->sk_socket == NULL.
5671 SOCK_WAKE_IO
, POLL_OUT
);
5673 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5674 tp
->snd_wnd
= ntohs(th
->window
) <<
5675 tp
->rx_opt
.snd_wscale
;
5676 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
,
5677 TCP_SKB_CB(skb
)->seq
);
5679 /* tcp_ack considers this ACK as duplicate
5680 * and does not calculate rtt.
5681 * Fix it at least with timestamps.
5683 if (tp
->rx_opt
.saw_tstamp
&&
5684 tp
->rx_opt
.rcv_tsecr
&& !tp
->srtt
)
5685 tcp_ack_saw_tstamp(sk
, 0);
5687 if (tp
->rx_opt
.tstamp_ok
)
5688 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5690 /* Make sure socket is routed, for
5693 icsk
->icsk_af_ops
->rebuild_header(sk
);
5695 tcp_init_metrics(sk
);
5697 tcp_init_congestion_control(sk
);
5699 /* Prevent spurious tcp_cwnd_restart() on
5700 * first data packet.
5702 tp
->lsndtime
= tcp_time_stamp
;
5705 tcp_initialize_rcv_mss(sk
);
5706 tcp_init_buffer_space(sk
);
5707 tcp_fast_path_on(tp
);
5714 if (tp
->snd_una
== tp
->write_seq
) {
5715 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5716 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5717 dst_confirm(sk
->sk_dst_cache
);
5719 if (!sock_flag(sk
, SOCK_DEAD
))
5720 /* Wake up lingering close() */
5721 sk
->sk_state_change(sk
);
5725 if (tp
->linger2
< 0 ||
5726 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5727 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5729 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5733 tmo
= tcp_fin_time(sk
);
5734 if (tmo
> TCP_TIMEWAIT_LEN
) {
5735 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5736 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5737 /* Bad case. We could lose such FIN otherwise.
5738 * It is not a big problem, but it looks confusing
5739 * and not so rare event. We still can lose it now,
5740 * if it spins in bh_lock_sock(), but it is really
5743 inet_csk_reset_keepalive_timer(sk
, tmo
);
5745 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5753 if (tp
->snd_una
== tp
->write_seq
) {
5754 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5760 if (tp
->snd_una
== tp
->write_seq
) {
5761 tcp_update_metrics(sk
);
5770 /* step 6: check the URG bit */
5771 tcp_urg(sk
, skb
, th
);
5773 /* step 7: process the segment text */
5774 switch (sk
->sk_state
) {
5775 case TCP_CLOSE_WAIT
:
5778 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5782 /* RFC 793 says to queue data in these states,
5783 * RFC 1122 says we MUST send a reset.
5784 * BSD 4.4 also does reset.
5786 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5787 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5788 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5789 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5795 case TCP_ESTABLISHED
:
5796 tcp_data_queue(sk
, skb
);
5801 /* tcp_data could move socket to TIME-WAIT */
5802 if (sk
->sk_state
!= TCP_CLOSE
) {
5803 tcp_data_snd_check(sk
);
5804 tcp_ack_snd_check(sk
);
5814 EXPORT_SYMBOL(sysctl_tcp_ecn
);
5815 EXPORT_SYMBOL(sysctl_tcp_reordering
);
5816 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
5817 EXPORT_SYMBOL(tcp_parse_options
);
5818 #ifdef CONFIG_TCP_MD5SIG
5819 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
5821 EXPORT_SYMBOL(tcp_rcv_established
);
5822 EXPORT_SYMBOL(tcp_rcv_state_process
);
5823 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);