added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / mm / vmscan.c
blob949b2809f05b70d478bc6a1057cb876a179a77b4
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/interrupt.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/pagevec.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
48 #include <linux/swapops.h>
50 #include "internal.h"
52 struct scan_control {
53 /* Incremented by the number of inactive pages that were scanned */
54 unsigned long nr_scanned;
56 /* Number of pages freed so far during a call to shrink_zones() */
57 unsigned long nr_reclaimed;
59 /* This context's GFP mask */
60 gfp_t gfp_mask;
62 int may_writepage;
64 /* Can pages be swapped as part of reclaim? */
65 int may_swap;
67 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
68 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
69 * In this context, it doesn't matter that we scan the
70 * whole list at once. */
71 int swap_cluster_max;
73 int swappiness;
75 int all_unreclaimable;
77 int order;
79 /* Which cgroup do we reclaim from */
80 struct mem_cgroup *mem_cgroup;
82 /* Pluggable isolate pages callback */
83 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
84 unsigned long *scanned, int order, int mode,
85 struct zone *z, struct mem_cgroup *mem_cont,
86 int active, int file);
89 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
91 #ifdef ARCH_HAS_PREFETCH
92 #define prefetch_prev_lru_page(_page, _base, _field) \
93 do { \
94 if ((_page)->lru.prev != _base) { \
95 struct page *prev; \
97 prev = lru_to_page(&(_page->lru)); \
98 prefetch(&prev->_field); \
99 } \
100 } while (0)
101 #else
102 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
103 #endif
105 #ifdef ARCH_HAS_PREFETCHW
106 #define prefetchw_prev_lru_page(_page, _base, _field) \
107 do { \
108 if ((_page)->lru.prev != _base) { \
109 struct page *prev; \
111 prev = lru_to_page(&(_page->lru)); \
112 prefetchw(&prev->_field); \
114 } while (0)
115 #else
116 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
117 #endif
120 * From 0 .. 100. Higher means more swappy.
122 int vm_swappiness = 60;
123 long vm_total_pages; /* The total number of pages which the VM controls */
125 static LIST_HEAD(shrinker_list);
126 static DECLARE_RWSEM(shrinker_rwsem);
128 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
129 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
130 #else
131 #define scanning_global_lru(sc) (1)
132 #endif
134 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
135 struct scan_control *sc)
137 if (!scanning_global_lru(sc))
138 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
140 return &zone->reclaim_stat;
143 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
144 enum lru_list lru)
146 if (!scanning_global_lru(sc))
147 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
149 return zone_page_state(zone, NR_LRU_BASE + lru);
154 * Add a shrinker callback to be called from the vm
156 void register_shrinker(struct shrinker *shrinker)
158 shrinker->nr = 0;
159 down_write(&shrinker_rwsem);
160 list_add_tail(&shrinker->list, &shrinker_list);
161 up_write(&shrinker_rwsem);
163 EXPORT_SYMBOL(register_shrinker);
166 * Remove one
168 void unregister_shrinker(struct shrinker *shrinker)
170 down_write(&shrinker_rwsem);
171 list_del(&shrinker->list);
172 up_write(&shrinker_rwsem);
174 EXPORT_SYMBOL(unregister_shrinker);
176 #define SHRINK_BATCH 128
178 * Call the shrink functions to age shrinkable caches
180 * Here we assume it costs one seek to replace a lru page and that it also
181 * takes a seek to recreate a cache object. With this in mind we age equal
182 * percentages of the lru and ageable caches. This should balance the seeks
183 * generated by these structures.
185 * If the vm encountered mapped pages on the LRU it increase the pressure on
186 * slab to avoid swapping.
188 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
190 * `lru_pages' represents the number of on-LRU pages in all the zones which
191 * are eligible for the caller's allocation attempt. It is used for balancing
192 * slab reclaim versus page reclaim.
194 * Returns the number of slab objects which we shrunk.
196 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
197 unsigned long lru_pages)
199 struct shrinker *shrinker;
200 unsigned long ret = 0;
202 if (scanned == 0)
203 scanned = SWAP_CLUSTER_MAX;
205 if (!down_read_trylock(&shrinker_rwsem))
206 return 1; /* Assume we'll be able to shrink next time */
208 list_for_each_entry(shrinker, &shrinker_list, list) {
209 unsigned long long delta;
210 unsigned long total_scan;
211 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
213 delta = (4 * scanned) / shrinker->seeks;
214 delta *= max_pass;
215 do_div(delta, lru_pages + 1);
216 shrinker->nr += delta;
217 if (shrinker->nr < 0) {
218 printk(KERN_ERR "%s: nr=%ld\n",
219 __func__, shrinker->nr);
220 shrinker->nr = max_pass;
224 * Avoid risking looping forever due to too large nr value:
225 * never try to free more than twice the estimate number of
226 * freeable entries.
228 if (shrinker->nr > max_pass * 2)
229 shrinker->nr = max_pass * 2;
231 total_scan = shrinker->nr;
232 shrinker->nr = 0;
234 while (total_scan >= SHRINK_BATCH) {
235 long this_scan = SHRINK_BATCH;
236 int shrink_ret;
237 int nr_before;
239 nr_before = (*shrinker->shrink)(0, gfp_mask);
240 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
241 if (shrink_ret == -1)
242 break;
243 if (shrink_ret < nr_before)
244 ret += nr_before - shrink_ret;
245 count_vm_events(SLABS_SCANNED, this_scan);
246 total_scan -= this_scan;
248 cond_resched();
251 shrinker->nr += total_scan;
253 up_read(&shrinker_rwsem);
254 return ret;
257 /* Called without lock on whether page is mapped, so answer is unstable */
258 static inline int page_mapping_inuse(struct page *page)
260 struct address_space *mapping;
262 /* Page is in somebody's page tables. */
263 if (page_mapped(page))
264 return 1;
266 /* Be more reluctant to reclaim swapcache than pagecache */
267 if (PageSwapCache(page))
268 return 1;
270 mapping = page_mapping(page);
271 if (!mapping)
272 return 0;
274 /* File is mmap'd by somebody? */
275 return mapping_mapped(mapping);
278 static inline int is_page_cache_freeable(struct page *page)
280 return page_count(page) - !!PagePrivate(page) == 2;
283 static int may_write_to_queue(struct backing_dev_info *bdi)
285 if (current->flags & PF_SWAPWRITE)
286 return 1;
287 if (!bdi_write_congested(bdi))
288 return 1;
289 if (bdi == current->backing_dev_info)
290 return 1;
291 return 0;
295 * We detected a synchronous write error writing a page out. Probably
296 * -ENOSPC. We need to propagate that into the address_space for a subsequent
297 * fsync(), msync() or close().
299 * The tricky part is that after writepage we cannot touch the mapping: nothing
300 * prevents it from being freed up. But we have a ref on the page and once
301 * that page is locked, the mapping is pinned.
303 * We're allowed to run sleeping lock_page() here because we know the caller has
304 * __GFP_FS.
306 static void handle_write_error(struct address_space *mapping,
307 struct page *page, int error)
309 lock_page(page);
310 if (page_mapping(page) == mapping)
311 mapping_set_error(mapping, error);
312 unlock_page(page);
315 /* Request for sync pageout. */
316 enum pageout_io {
317 PAGEOUT_IO_ASYNC,
318 PAGEOUT_IO_SYNC,
321 /* possible outcome of pageout() */
322 typedef enum {
323 /* failed to write page out, page is locked */
324 PAGE_KEEP,
325 /* move page to the active list, page is locked */
326 PAGE_ACTIVATE,
327 /* page has been sent to the disk successfully, page is unlocked */
328 PAGE_SUCCESS,
329 /* page is clean and locked */
330 PAGE_CLEAN,
331 } pageout_t;
334 * pageout is called by shrink_page_list() for each dirty page.
335 * Calls ->writepage().
337 static pageout_t pageout(struct page *page, struct address_space *mapping,
338 enum pageout_io sync_writeback)
341 * If the page is dirty, only perform writeback if that write
342 * will be non-blocking. To prevent this allocation from being
343 * stalled by pagecache activity. But note that there may be
344 * stalls if we need to run get_block(). We could test
345 * PagePrivate for that.
347 * If this process is currently in generic_file_write() against
348 * this page's queue, we can perform writeback even if that
349 * will block.
351 * If the page is swapcache, write it back even if that would
352 * block, for some throttling. This happens by accident, because
353 * swap_backing_dev_info is bust: it doesn't reflect the
354 * congestion state of the swapdevs. Easy to fix, if needed.
355 * See swapfile.c:page_queue_congested().
357 if (!is_page_cache_freeable(page))
358 return PAGE_KEEP;
359 if (!mapping) {
361 * Some data journaling orphaned pages can have
362 * page->mapping == NULL while being dirty with clean buffers.
364 if (PagePrivate(page)) {
365 if (try_to_free_buffers(page)) {
366 ClearPageDirty(page);
367 printk("%s: orphaned page\n", __func__);
368 return PAGE_CLEAN;
371 return PAGE_KEEP;
373 if (mapping->a_ops->writepage == NULL)
374 return PAGE_ACTIVATE;
375 if (!may_write_to_queue(mapping->backing_dev_info))
376 return PAGE_KEEP;
378 if (clear_page_dirty_for_io(page)) {
379 int res;
380 struct writeback_control wbc = {
381 .sync_mode = WB_SYNC_NONE,
382 .nr_to_write = SWAP_CLUSTER_MAX,
383 .range_start = 0,
384 .range_end = LLONG_MAX,
385 .nonblocking = 1,
386 .for_reclaim = 1,
389 SetPageReclaim(page);
390 res = mapping->a_ops->writepage(page, &wbc);
391 if (res < 0)
392 handle_write_error(mapping, page, res);
393 if (res == AOP_WRITEPAGE_ACTIVATE) {
394 ClearPageReclaim(page);
395 return PAGE_ACTIVATE;
399 * Wait on writeback if requested to. This happens when
400 * direct reclaiming a large contiguous area and the
401 * first attempt to free a range of pages fails.
403 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
404 wait_on_page_writeback(page);
406 if (!PageWriteback(page)) {
407 /* synchronous write or broken a_ops? */
408 ClearPageReclaim(page);
410 inc_zone_page_state(page, NR_VMSCAN_WRITE);
411 return PAGE_SUCCESS;
414 return PAGE_CLEAN;
418 * Same as remove_mapping, but if the page is removed from the mapping, it
419 * gets returned with a refcount of 0.
421 static int __remove_mapping(struct address_space *mapping, struct page *page)
423 BUG_ON(!PageLocked(page));
424 BUG_ON(mapping != page_mapping(page));
426 spin_lock_irq(&mapping->tree_lock);
428 * The non racy check for a busy page.
430 * Must be careful with the order of the tests. When someone has
431 * a ref to the page, it may be possible that they dirty it then
432 * drop the reference. So if PageDirty is tested before page_count
433 * here, then the following race may occur:
435 * get_user_pages(&page);
436 * [user mapping goes away]
437 * write_to(page);
438 * !PageDirty(page) [good]
439 * SetPageDirty(page);
440 * put_page(page);
441 * !page_count(page) [good, discard it]
443 * [oops, our write_to data is lost]
445 * Reversing the order of the tests ensures such a situation cannot
446 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
447 * load is not satisfied before that of page->_count.
449 * Note that if SetPageDirty is always performed via set_page_dirty,
450 * and thus under tree_lock, then this ordering is not required.
452 if (!page_freeze_refs(page, 2))
453 goto cannot_free;
454 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
455 if (unlikely(PageDirty(page))) {
456 page_unfreeze_refs(page, 2);
457 goto cannot_free;
460 if (PageSwapCache(page)) {
461 swp_entry_t swap = { .val = page_private(page) };
462 __delete_from_swap_cache(page);
463 spin_unlock_irq(&mapping->tree_lock);
464 swap_free(swap);
465 } else {
466 __remove_from_page_cache(page);
467 spin_unlock_irq(&mapping->tree_lock);
470 return 1;
472 cannot_free:
473 spin_unlock_irq(&mapping->tree_lock);
474 return 0;
478 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
479 * someone else has a ref on the page, abort and return 0. If it was
480 * successfully detached, return 1. Assumes the caller has a single ref on
481 * this page.
483 int remove_mapping(struct address_space *mapping, struct page *page)
485 if (__remove_mapping(mapping, page)) {
487 * Unfreezing the refcount with 1 rather than 2 effectively
488 * drops the pagecache ref for us without requiring another
489 * atomic operation.
491 page_unfreeze_refs(page, 1);
492 return 1;
494 return 0;
498 * putback_lru_page - put previously isolated page onto appropriate LRU list
499 * @page: page to be put back to appropriate lru list
501 * Add previously isolated @page to appropriate LRU list.
502 * Page may still be unevictable for other reasons.
504 * lru_lock must not be held, interrupts must be enabled.
506 #ifdef CONFIG_UNEVICTABLE_LRU
507 void putback_lru_page(struct page *page)
509 int lru;
510 int active = !!TestClearPageActive(page);
511 int was_unevictable = PageUnevictable(page);
513 VM_BUG_ON(PageLRU(page));
515 redo:
516 ClearPageUnevictable(page);
518 if (page_evictable(page, NULL)) {
520 * For evictable pages, we can use the cache.
521 * In event of a race, worst case is we end up with an
522 * unevictable page on [in]active list.
523 * We know how to handle that.
525 lru = active + page_is_file_cache(page);
526 lru_cache_add_lru(page, lru);
527 } else {
529 * Put unevictable pages directly on zone's unevictable
530 * list.
532 lru = LRU_UNEVICTABLE;
533 add_page_to_unevictable_list(page);
537 * page's status can change while we move it among lru. If an evictable
538 * page is on unevictable list, it never be freed. To avoid that,
539 * check after we added it to the list, again.
541 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
542 if (!isolate_lru_page(page)) {
543 put_page(page);
544 goto redo;
546 /* This means someone else dropped this page from LRU
547 * So, it will be freed or putback to LRU again. There is
548 * nothing to do here.
552 if (was_unevictable && lru != LRU_UNEVICTABLE)
553 count_vm_event(UNEVICTABLE_PGRESCUED);
554 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
555 count_vm_event(UNEVICTABLE_PGCULLED);
557 put_page(page); /* drop ref from isolate */
560 #else /* CONFIG_UNEVICTABLE_LRU */
562 void putback_lru_page(struct page *page)
564 int lru;
565 VM_BUG_ON(PageLRU(page));
567 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
568 lru_cache_add_lru(page, lru);
569 put_page(page);
571 #endif /* CONFIG_UNEVICTABLE_LRU */
575 * shrink_page_list() returns the number of reclaimed pages
577 static unsigned long shrink_page_list(struct list_head *page_list,
578 struct scan_control *sc,
579 enum pageout_io sync_writeback)
581 LIST_HEAD(ret_pages);
582 struct pagevec freed_pvec;
583 int pgactivate = 0;
584 unsigned long nr_reclaimed = 0;
586 cond_resched();
588 pagevec_init(&freed_pvec, 1);
589 while (!list_empty(page_list)) {
590 struct address_space *mapping;
591 struct page *page;
592 int may_enter_fs;
593 int referenced;
595 cond_resched();
597 page = lru_to_page(page_list);
598 list_del(&page->lru);
600 if (!trylock_page(page))
601 goto keep;
603 VM_BUG_ON(PageActive(page));
605 sc->nr_scanned++;
607 if (unlikely(!page_evictable(page, NULL)))
608 goto cull_mlocked;
610 if (!sc->may_swap && page_mapped(page))
611 goto keep_locked;
613 /* Double the slab pressure for mapped and swapcache pages */
614 if (page_mapped(page) || PageSwapCache(page))
615 sc->nr_scanned++;
617 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
618 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
620 if (PageWriteback(page)) {
622 * Synchronous reclaim is performed in two passes,
623 * first an asynchronous pass over the list to
624 * start parallel writeback, and a second synchronous
625 * pass to wait for the IO to complete. Wait here
626 * for any page for which writeback has already
627 * started.
629 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
630 wait_on_page_writeback(page);
631 else
632 goto keep_locked;
635 referenced = page_referenced(page, 1, sc->mem_cgroup);
636 /* In active use or really unfreeable? Activate it. */
637 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
638 referenced && page_mapping_inuse(page))
639 goto activate_locked;
642 * Anonymous process memory has backing store?
643 * Try to allocate it some swap space here.
645 if (PageAnon(page) && !PageSwapCache(page)) {
646 if (!(sc->gfp_mask & __GFP_IO))
647 goto keep_locked;
648 if (!add_to_swap(page))
649 goto activate_locked;
650 may_enter_fs = 1;
653 mapping = page_mapping(page);
656 * The page is mapped into the page tables of one or more
657 * processes. Try to unmap it here.
659 if (page_mapped(page) && mapping) {
660 switch (try_to_unmap(page, 0)) {
661 case SWAP_FAIL:
662 goto activate_locked;
663 case SWAP_AGAIN:
664 goto keep_locked;
665 case SWAP_MLOCK:
666 goto cull_mlocked;
667 case SWAP_SUCCESS:
668 ; /* try to free the page below */
672 if (PageDirty(page)) {
673 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
674 goto keep_locked;
675 if (!may_enter_fs)
676 goto keep_locked;
677 if (!sc->may_writepage)
678 goto keep_locked;
680 /* Page is dirty, try to write it out here */
681 switch (pageout(page, mapping, sync_writeback)) {
682 case PAGE_KEEP:
683 goto keep_locked;
684 case PAGE_ACTIVATE:
685 goto activate_locked;
686 case PAGE_SUCCESS:
687 if (PageWriteback(page) || PageDirty(page))
688 goto keep;
690 * A synchronous write - probably a ramdisk. Go
691 * ahead and try to reclaim the page.
693 if (!trylock_page(page))
694 goto keep;
695 if (PageDirty(page) || PageWriteback(page))
696 goto keep_locked;
697 mapping = page_mapping(page);
698 case PAGE_CLEAN:
699 ; /* try to free the page below */
704 * If the page has buffers, try to free the buffer mappings
705 * associated with this page. If we succeed we try to free
706 * the page as well.
708 * We do this even if the page is PageDirty().
709 * try_to_release_page() does not perform I/O, but it is
710 * possible for a page to have PageDirty set, but it is actually
711 * clean (all its buffers are clean). This happens if the
712 * buffers were written out directly, with submit_bh(). ext3
713 * will do this, as well as the blockdev mapping.
714 * try_to_release_page() will discover that cleanness and will
715 * drop the buffers and mark the page clean - it can be freed.
717 * Rarely, pages can have buffers and no ->mapping. These are
718 * the pages which were not successfully invalidated in
719 * truncate_complete_page(). We try to drop those buffers here
720 * and if that worked, and the page is no longer mapped into
721 * process address space (page_count == 1) it can be freed.
722 * Otherwise, leave the page on the LRU so it is swappable.
724 if (PagePrivate(page)) {
725 if (!try_to_release_page(page, sc->gfp_mask))
726 goto activate_locked;
727 if (!mapping && page_count(page) == 1) {
728 unlock_page(page);
729 if (put_page_testzero(page))
730 goto free_it;
731 else {
733 * rare race with speculative reference.
734 * the speculative reference will free
735 * this page shortly, so we may
736 * increment nr_reclaimed here (and
737 * leave it off the LRU).
739 nr_reclaimed++;
740 continue;
745 if (!mapping || !__remove_mapping(mapping, page))
746 goto keep_locked;
749 * At this point, we have no other references and there is
750 * no way to pick any more up (removed from LRU, removed
751 * from pagecache). Can use non-atomic bitops now (and
752 * we obviously don't have to worry about waking up a process
753 * waiting on the page lock, because there are no references.
755 __clear_page_locked(page);
756 free_it:
757 nr_reclaimed++;
758 if (!pagevec_add(&freed_pvec, page)) {
759 __pagevec_free(&freed_pvec);
760 pagevec_reinit(&freed_pvec);
762 continue;
764 cull_mlocked:
765 if (PageSwapCache(page))
766 try_to_free_swap(page);
767 unlock_page(page);
768 putback_lru_page(page);
769 continue;
771 activate_locked:
772 /* Not a candidate for swapping, so reclaim swap space. */
773 if (PageSwapCache(page) && vm_swap_full())
774 try_to_free_swap(page);
775 VM_BUG_ON(PageActive(page));
776 SetPageActive(page);
777 pgactivate++;
778 keep_locked:
779 unlock_page(page);
780 keep:
781 list_add(&page->lru, &ret_pages);
782 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
784 list_splice(&ret_pages, page_list);
785 if (pagevec_count(&freed_pvec))
786 __pagevec_free(&freed_pvec);
787 count_vm_events(PGACTIVATE, pgactivate);
788 return nr_reclaimed;
791 /* LRU Isolation modes. */
792 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
793 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
794 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
797 * Attempt to remove the specified page from its LRU. Only take this page
798 * if it is of the appropriate PageActive status. Pages which are being
799 * freed elsewhere are also ignored.
801 * page: page to consider
802 * mode: one of the LRU isolation modes defined above
804 * returns 0 on success, -ve errno on failure.
806 int __isolate_lru_page(struct page *page, int mode, int file)
808 int ret = -EINVAL;
810 /* Only take pages on the LRU. */
811 if (!PageLRU(page))
812 return ret;
815 * When checking the active state, we need to be sure we are
816 * dealing with comparible boolean values. Take the logical not
817 * of each.
819 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
820 return ret;
822 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
823 return ret;
826 * When this function is being called for lumpy reclaim, we
827 * initially look into all LRU pages, active, inactive and
828 * unevictable; only give shrink_page_list evictable pages.
830 if (PageUnevictable(page))
831 return ret;
833 ret = -EBUSY;
835 if (likely(get_page_unless_zero(page))) {
837 * Be careful not to clear PageLRU until after we're
838 * sure the page is not being freed elsewhere -- the
839 * page release code relies on it.
841 ClearPageLRU(page);
842 ret = 0;
843 mem_cgroup_del_lru(page);
846 return ret;
850 * zone->lru_lock is heavily contended. Some of the functions that
851 * shrink the lists perform better by taking out a batch of pages
852 * and working on them outside the LRU lock.
854 * For pagecache intensive workloads, this function is the hottest
855 * spot in the kernel (apart from copy_*_user functions).
857 * Appropriate locks must be held before calling this function.
859 * @nr_to_scan: The number of pages to look through on the list.
860 * @src: The LRU list to pull pages off.
861 * @dst: The temp list to put pages on to.
862 * @scanned: The number of pages that were scanned.
863 * @order: The caller's attempted allocation order
864 * @mode: One of the LRU isolation modes
865 * @file: True [1] if isolating file [!anon] pages
867 * returns how many pages were moved onto *@dst.
869 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
870 struct list_head *src, struct list_head *dst,
871 unsigned long *scanned, int order, int mode, int file)
873 unsigned long nr_taken = 0;
874 unsigned long scan;
876 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
877 struct page *page;
878 unsigned long pfn;
879 unsigned long end_pfn;
880 unsigned long page_pfn;
881 int zone_id;
883 page = lru_to_page(src);
884 prefetchw_prev_lru_page(page, src, flags);
886 VM_BUG_ON(!PageLRU(page));
888 switch (__isolate_lru_page(page, mode, file)) {
889 case 0:
890 list_move(&page->lru, dst);
891 nr_taken++;
892 break;
894 case -EBUSY:
895 /* else it is being freed elsewhere */
896 list_move(&page->lru, src);
897 continue;
899 default:
900 BUG();
903 if (!order)
904 continue;
907 * Attempt to take all pages in the order aligned region
908 * surrounding the tag page. Only take those pages of
909 * the same active state as that tag page. We may safely
910 * round the target page pfn down to the requested order
911 * as the mem_map is guarenteed valid out to MAX_ORDER,
912 * where that page is in a different zone we will detect
913 * it from its zone id and abort this block scan.
915 zone_id = page_zone_id(page);
916 page_pfn = page_to_pfn(page);
917 pfn = page_pfn & ~((1 << order) - 1);
918 end_pfn = pfn + (1 << order);
919 for (; pfn < end_pfn; pfn++) {
920 struct page *cursor_page;
922 /* The target page is in the block, ignore it. */
923 if (unlikely(pfn == page_pfn))
924 continue;
926 /* Avoid holes within the zone. */
927 if (unlikely(!pfn_valid_within(pfn)))
928 break;
930 cursor_page = pfn_to_page(pfn);
932 /* Check that we have not crossed a zone boundary. */
933 if (unlikely(page_zone_id(cursor_page) != zone_id))
934 continue;
935 switch (__isolate_lru_page(cursor_page, mode, file)) {
936 case 0:
937 list_move(&cursor_page->lru, dst);
938 nr_taken++;
939 scan++;
940 break;
942 case -EBUSY:
943 /* else it is being freed elsewhere */
944 list_move(&cursor_page->lru, src);
945 default:
946 break; /* ! on LRU or wrong list */
951 *scanned = scan;
952 return nr_taken;
955 static unsigned long isolate_pages_global(unsigned long nr,
956 struct list_head *dst,
957 unsigned long *scanned, int order,
958 int mode, struct zone *z,
959 struct mem_cgroup *mem_cont,
960 int active, int file)
962 int lru = LRU_BASE;
963 if (active)
964 lru += LRU_ACTIVE;
965 if (file)
966 lru += LRU_FILE;
967 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
968 mode, !!file);
972 * clear_active_flags() is a helper for shrink_active_list(), clearing
973 * any active bits from the pages in the list.
975 static unsigned long clear_active_flags(struct list_head *page_list,
976 unsigned int *count)
978 int nr_active = 0;
979 int lru;
980 struct page *page;
982 list_for_each_entry(page, page_list, lru) {
983 lru = page_is_file_cache(page);
984 if (PageActive(page)) {
985 lru += LRU_ACTIVE;
986 ClearPageActive(page);
987 nr_active++;
989 count[lru]++;
992 return nr_active;
996 * isolate_lru_page - tries to isolate a page from its LRU list
997 * @page: page to isolate from its LRU list
999 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1000 * vmstat statistic corresponding to whatever LRU list the page was on.
1002 * Returns 0 if the page was removed from an LRU list.
1003 * Returns -EBUSY if the page was not on an LRU list.
1005 * The returned page will have PageLRU() cleared. If it was found on
1006 * the active list, it will have PageActive set. If it was found on
1007 * the unevictable list, it will have the PageUnevictable bit set. That flag
1008 * may need to be cleared by the caller before letting the page go.
1010 * The vmstat statistic corresponding to the list on which the page was
1011 * found will be decremented.
1013 * Restrictions:
1014 * (1) Must be called with an elevated refcount on the page. This is a
1015 * fundamentnal difference from isolate_lru_pages (which is called
1016 * without a stable reference).
1017 * (2) the lru_lock must not be held.
1018 * (3) interrupts must be enabled.
1020 int isolate_lru_page(struct page *page)
1022 int ret = -EBUSY;
1024 if (PageLRU(page)) {
1025 struct zone *zone = page_zone(page);
1027 spin_lock_irq(&zone->lru_lock);
1028 if (PageLRU(page) && get_page_unless_zero(page)) {
1029 int lru = page_lru(page);
1030 ret = 0;
1031 ClearPageLRU(page);
1033 del_page_from_lru_list(zone, page, lru);
1035 spin_unlock_irq(&zone->lru_lock);
1037 return ret;
1041 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1042 * of reclaimed pages
1044 static unsigned long shrink_inactive_list(unsigned long max_scan,
1045 struct zone *zone, struct scan_control *sc,
1046 int priority, int file)
1048 LIST_HEAD(page_list);
1049 struct pagevec pvec;
1050 unsigned long nr_scanned = 0;
1051 unsigned long nr_reclaimed = 0;
1052 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1054 pagevec_init(&pvec, 1);
1056 lru_add_drain();
1057 spin_lock_irq(&zone->lru_lock);
1058 do {
1059 struct page *page;
1060 unsigned long nr_taken;
1061 unsigned long nr_scan;
1062 unsigned long nr_freed;
1063 unsigned long nr_active;
1064 unsigned int count[NR_LRU_LISTS] = { 0, };
1065 int mode = ISOLATE_INACTIVE;
1068 * If we need a large contiguous chunk of memory, or have
1069 * trouble getting a small set of contiguous pages, we
1070 * will reclaim both active and inactive pages.
1072 * We use the same threshold as pageout congestion_wait below.
1074 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1075 mode = ISOLATE_BOTH;
1076 else if (sc->order && priority < DEF_PRIORITY - 2)
1077 mode = ISOLATE_BOTH;
1079 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1080 &page_list, &nr_scan, sc->order, mode,
1081 zone, sc->mem_cgroup, 0, file);
1082 nr_active = clear_active_flags(&page_list, count);
1083 __count_vm_events(PGDEACTIVATE, nr_active);
1085 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1086 -count[LRU_ACTIVE_FILE]);
1087 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1088 -count[LRU_INACTIVE_FILE]);
1089 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1090 -count[LRU_ACTIVE_ANON]);
1091 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1092 -count[LRU_INACTIVE_ANON]);
1094 if (scanning_global_lru(sc))
1095 zone->pages_scanned += nr_scan;
1097 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1098 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1099 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1100 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1102 spin_unlock_irq(&zone->lru_lock);
1104 nr_scanned += nr_scan;
1105 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1108 * If we are direct reclaiming for contiguous pages and we do
1109 * not reclaim everything in the list, try again and wait
1110 * for IO to complete. This will stall high-order allocations
1111 * but that should be acceptable to the caller
1113 if (nr_freed < nr_taken && !current_is_kswapd() &&
1114 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1115 congestion_wait(WRITE, HZ/10);
1118 * The attempt at page out may have made some
1119 * of the pages active, mark them inactive again.
1121 nr_active = clear_active_flags(&page_list, count);
1122 count_vm_events(PGDEACTIVATE, nr_active);
1124 nr_freed += shrink_page_list(&page_list, sc,
1125 PAGEOUT_IO_SYNC);
1128 nr_reclaimed += nr_freed;
1129 local_irq_disable_nort();
1130 if (current_is_kswapd()) {
1131 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1132 __count_vm_events(KSWAPD_STEAL, nr_freed);
1133 } else if (scanning_global_lru(sc))
1134 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1136 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1138 if (nr_taken == 0)
1139 goto done;
1141 spin_lock(&zone->lru_lock);
1143 * Put back any unfreeable pages.
1145 while (!list_empty(&page_list)) {
1146 int lru;
1147 page = lru_to_page(&page_list);
1148 VM_BUG_ON(PageLRU(page));
1149 list_del(&page->lru);
1150 if (unlikely(!page_evictable(page, NULL))) {
1151 spin_unlock_irq(&zone->lru_lock);
1152 putback_lru_page(page);
1153 spin_lock_irq(&zone->lru_lock);
1154 continue;
1156 SetPageLRU(page);
1157 lru = page_lru(page);
1158 add_page_to_lru_list(zone, page, lru);
1159 if (PageActive(page)) {
1160 int file = !!page_is_file_cache(page);
1161 reclaim_stat->recent_rotated[file]++;
1163 if (!pagevec_add(&pvec, page)) {
1164 spin_unlock_irq(&zone->lru_lock);
1165 __pagevec_release(&pvec);
1166 spin_lock_irq(&zone->lru_lock);
1169 } while (nr_scanned < max_scan);
1171 * Non-PREEMPT_RT relies on IRQs-off protecting the page_states
1172 * per-CPU data. PREEMPT_RT has that data protected even in
1173 * __mod_page_state(), so no need to keep IRQs disabled.
1175 spin_unlock(&zone->lru_lock);
1176 done:
1177 local_irq_enable_nort();
1178 pagevec_release(&pvec);
1179 return nr_reclaimed;
1183 * We are about to scan this zone at a certain priority level. If that priority
1184 * level is smaller (ie: more urgent) than the previous priority, then note
1185 * that priority level within the zone. This is done so that when the next
1186 * process comes in to scan this zone, it will immediately start out at this
1187 * priority level rather than having to build up its own scanning priority.
1188 * Here, this priority affects only the reclaim-mapped threshold.
1190 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1192 if (priority < zone->prev_priority)
1193 zone->prev_priority = priority;
1197 * This moves pages from the active list to the inactive list.
1199 * We move them the other way if the page is referenced by one or more
1200 * processes, from rmap.
1202 * If the pages are mostly unmapped, the processing is fast and it is
1203 * appropriate to hold zone->lru_lock across the whole operation. But if
1204 * the pages are mapped, the processing is slow (page_referenced()) so we
1205 * should drop zone->lru_lock around each page. It's impossible to balance
1206 * this, so instead we remove the pages from the LRU while processing them.
1207 * It is safe to rely on PG_active against the non-LRU pages in here because
1208 * nobody will play with that bit on a non-LRU page.
1210 * The downside is that we have to touch page->_count against each page.
1211 * But we had to alter page->flags anyway.
1215 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1216 struct scan_control *sc, int priority, int file)
1218 unsigned long pgmoved;
1219 int pgdeactivate = 0;
1220 unsigned long pgscanned;
1221 LIST_HEAD(l_hold); /* The pages which were snipped off */
1222 LIST_HEAD(l_inactive);
1223 struct page *page;
1224 struct pagevec pvec;
1225 enum lru_list lru;
1226 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1228 lru_add_drain();
1229 spin_lock_irq(&zone->lru_lock);
1230 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1231 ISOLATE_ACTIVE, zone,
1232 sc->mem_cgroup, 1, file);
1234 * zone->pages_scanned is used for detect zone's oom
1235 * mem_cgroup remembers nr_scan by itself.
1237 if (scanning_global_lru(sc)) {
1238 zone->pages_scanned += pgscanned;
1240 reclaim_stat->recent_scanned[!!file] += pgmoved;
1242 if (file)
1243 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1244 else
1245 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1246 spin_unlock_irq(&zone->lru_lock);
1248 pgmoved = 0;
1249 while (!list_empty(&l_hold)) {
1250 cond_resched();
1251 page = lru_to_page(&l_hold);
1252 list_del(&page->lru);
1254 if (unlikely(!page_evictable(page, NULL))) {
1255 putback_lru_page(page);
1256 continue;
1259 /* page_referenced clears PageReferenced */
1260 if (page_mapping_inuse(page) &&
1261 page_referenced(page, 0, sc->mem_cgroup))
1262 pgmoved++;
1264 list_add(&page->lru, &l_inactive);
1268 * Move the pages to the [file or anon] inactive list.
1270 pagevec_init(&pvec, 1);
1271 lru = LRU_BASE + file * LRU_FILE;
1273 spin_lock_irq(&zone->lru_lock);
1275 * Count referenced pages from currently used mappings as
1276 * rotated, even though they are moved to the inactive list.
1277 * This helps balance scan pressure between file and anonymous
1278 * pages in get_scan_ratio.
1280 reclaim_stat->recent_rotated[!!file] += pgmoved;
1282 pgmoved = 0;
1283 while (!list_empty(&l_inactive)) {
1284 page = lru_to_page(&l_inactive);
1285 prefetchw_prev_lru_page(page, &l_inactive, flags);
1286 VM_BUG_ON(PageLRU(page));
1287 SetPageLRU(page);
1288 VM_BUG_ON(!PageActive(page));
1289 ClearPageActive(page);
1291 list_move(&page->lru, &zone->lru[lru].list);
1292 mem_cgroup_add_lru_list(page, lru);
1293 pgmoved++;
1294 if (!pagevec_add(&pvec, page)) {
1295 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1296 spin_unlock_irq(&zone->lru_lock);
1297 pgdeactivate += pgmoved;
1298 pgmoved = 0;
1299 if (buffer_heads_over_limit)
1300 pagevec_strip(&pvec);
1301 __pagevec_release(&pvec);
1302 spin_lock_irq(&zone->lru_lock);
1305 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1306 pgdeactivate += pgmoved;
1307 if (buffer_heads_over_limit) {
1308 spin_unlock_irq(&zone->lru_lock);
1309 pagevec_strip(&pvec);
1310 spin_lock_irq(&zone->lru_lock);
1312 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1313 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1314 spin_unlock_irq(&zone->lru_lock);
1315 if (vm_swap_full())
1316 pagevec_swap_free(&pvec);
1318 pagevec_release(&pvec);
1321 static int inactive_anon_is_low_global(struct zone *zone)
1323 unsigned long active, inactive;
1325 active = zone_page_state(zone, NR_ACTIVE_ANON);
1326 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1328 if (inactive * zone->inactive_ratio < active)
1329 return 1;
1331 return 0;
1335 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1336 * @zone: zone to check
1337 * @sc: scan control of this context
1339 * Returns true if the zone does not have enough inactive anon pages,
1340 * meaning some active anon pages need to be deactivated.
1342 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1344 int low;
1346 if (scanning_global_lru(sc))
1347 low = inactive_anon_is_low_global(zone);
1348 else
1349 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1350 return low;
1353 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1354 struct zone *zone, struct scan_control *sc, int priority)
1356 int file = is_file_lru(lru);
1358 if (lru == LRU_ACTIVE_FILE) {
1359 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1360 return 0;
1363 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1364 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1365 return 0;
1367 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1371 * Determine how aggressively the anon and file LRU lists should be
1372 * scanned. The relative value of each set of LRU lists is determined
1373 * by looking at the fraction of the pages scanned we did rotate back
1374 * onto the active list instead of evict.
1376 * percent[0] specifies how much pressure to put on ram/swap backed
1377 * memory, while percent[1] determines pressure on the file LRUs.
1379 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1380 unsigned long *percent)
1382 unsigned long anon, file, free;
1383 unsigned long anon_prio, file_prio;
1384 unsigned long ap, fp;
1385 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1387 /* If we have no swap space, do not bother scanning anon pages. */
1388 if (nr_swap_pages <= 0) {
1389 percent[0] = 0;
1390 percent[1] = 100;
1391 return;
1394 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1395 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1396 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1397 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1399 if (scanning_global_lru(sc)) {
1400 free = zone_page_state(zone, NR_FREE_PAGES);
1401 /* If we have very few page cache pages,
1402 force-scan anon pages. */
1403 if (unlikely(file + free <= zone->pages_high)) {
1404 percent[0] = 100;
1405 percent[1] = 0;
1406 return;
1411 * OK, so we have swap space and a fair amount of page cache
1412 * pages. We use the recently rotated / recently scanned
1413 * ratios to determine how valuable each cache is.
1415 * Because workloads change over time (and to avoid overflow)
1416 * we keep these statistics as a floating average, which ends
1417 * up weighing recent references more than old ones.
1419 * anon in [0], file in [1]
1421 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1422 spin_lock_irq(&zone->lru_lock);
1423 reclaim_stat->recent_scanned[0] /= 2;
1424 reclaim_stat->recent_rotated[0] /= 2;
1425 spin_unlock_irq(&zone->lru_lock);
1428 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1429 spin_lock_irq(&zone->lru_lock);
1430 reclaim_stat->recent_scanned[1] /= 2;
1431 reclaim_stat->recent_rotated[1] /= 2;
1432 spin_unlock_irq(&zone->lru_lock);
1436 * With swappiness at 100, anonymous and file have the same priority.
1437 * This scanning priority is essentially the inverse of IO cost.
1439 anon_prio = sc->swappiness;
1440 file_prio = 200 - sc->swappiness;
1443 * The amount of pressure on anon vs file pages is inversely
1444 * proportional to the fraction of recently scanned pages on
1445 * each list that were recently referenced and in active use.
1447 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1448 ap /= reclaim_stat->recent_rotated[0] + 1;
1450 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1451 fp /= reclaim_stat->recent_rotated[1] + 1;
1453 /* Normalize to percentages */
1454 percent[0] = 100 * ap / (ap + fp + 1);
1455 percent[1] = 100 - percent[0];
1460 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1462 static void shrink_zone(int priority, struct zone *zone,
1463 struct scan_control *sc)
1465 unsigned long nr[NR_LRU_LISTS];
1466 unsigned long nr_to_scan;
1467 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1468 enum lru_list l;
1469 unsigned long nr_reclaimed = sc->nr_reclaimed;
1470 unsigned long swap_cluster_max = sc->swap_cluster_max;
1472 get_scan_ratio(zone, sc, percent);
1474 for_each_evictable_lru(l) {
1475 int file = is_file_lru(l);
1476 int scan;
1478 scan = zone_nr_pages(zone, sc, l);
1479 if (priority) {
1480 scan >>= priority;
1481 scan = (scan * percent[file]) / 100;
1483 if (scanning_global_lru(sc)) {
1484 zone->lru[l].nr_scan += scan;
1485 nr[l] = zone->lru[l].nr_scan;
1486 if (nr[l] >= swap_cluster_max)
1487 zone->lru[l].nr_scan = 0;
1488 else
1489 nr[l] = 0;
1490 } else
1491 nr[l] = scan;
1494 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1495 nr[LRU_INACTIVE_FILE]) {
1496 for_each_evictable_lru(l) {
1497 if (nr[l]) {
1498 nr_to_scan = min(nr[l], swap_cluster_max);
1499 nr[l] -= nr_to_scan;
1501 nr_reclaimed += shrink_list(l, nr_to_scan,
1502 zone, sc, priority);
1506 * On large memory systems, scan >> priority can become
1507 * really large. This is fine for the starting priority;
1508 * we want to put equal scanning pressure on each zone.
1509 * However, if the VM has a harder time of freeing pages,
1510 * with multiple processes reclaiming pages, the total
1511 * freeing target can get unreasonably large.
1513 if (nr_reclaimed > swap_cluster_max &&
1514 priority < DEF_PRIORITY && !current_is_kswapd())
1515 break;
1518 sc->nr_reclaimed = nr_reclaimed;
1521 * Even if we did not try to evict anon pages at all, we want to
1522 * rebalance the anon lru active/inactive ratio.
1524 if (inactive_anon_is_low(zone, sc))
1525 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1527 throttle_vm_writeout(sc->gfp_mask);
1531 * This is the direct reclaim path, for page-allocating processes. We only
1532 * try to reclaim pages from zones which will satisfy the caller's allocation
1533 * request.
1535 * We reclaim from a zone even if that zone is over pages_high. Because:
1536 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1537 * allocation or
1538 * b) The zones may be over pages_high but they must go *over* pages_high to
1539 * satisfy the `incremental min' zone defense algorithm.
1541 * If a zone is deemed to be full of pinned pages then just give it a light
1542 * scan then give up on it.
1544 static void shrink_zones(int priority, struct zonelist *zonelist,
1545 struct scan_control *sc)
1547 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1548 struct zoneref *z;
1549 struct zone *zone;
1551 sc->all_unreclaimable = 1;
1552 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1553 if (!populated_zone(zone))
1554 continue;
1556 * Take care memory controller reclaiming has small influence
1557 * to global LRU.
1559 if (scanning_global_lru(sc)) {
1560 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1561 continue;
1562 note_zone_scanning_priority(zone, priority);
1564 if (zone_is_all_unreclaimable(zone) &&
1565 priority != DEF_PRIORITY)
1566 continue; /* Let kswapd poll it */
1567 sc->all_unreclaimable = 0;
1568 } else {
1570 * Ignore cpuset limitation here. We just want to reduce
1571 * # of used pages by us regardless of memory shortage.
1573 sc->all_unreclaimable = 0;
1574 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1575 priority);
1578 shrink_zone(priority, zone, sc);
1583 * This is the main entry point to direct page reclaim.
1585 * If a full scan of the inactive list fails to free enough memory then we
1586 * are "out of memory" and something needs to be killed.
1588 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1589 * high - the zone may be full of dirty or under-writeback pages, which this
1590 * caller can't do much about. We kick pdflush and take explicit naps in the
1591 * hope that some of these pages can be written. But if the allocating task
1592 * holds filesystem locks which prevent writeout this might not work, and the
1593 * allocation attempt will fail.
1595 * returns: 0, if no pages reclaimed
1596 * else, the number of pages reclaimed
1598 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1599 struct scan_control *sc)
1601 int priority;
1602 unsigned long ret = 0;
1603 unsigned long total_scanned = 0;
1604 struct reclaim_state *reclaim_state = current->reclaim_state;
1605 unsigned long lru_pages = 0;
1606 struct zoneref *z;
1607 struct zone *zone;
1608 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1610 delayacct_freepages_start();
1612 if (scanning_global_lru(sc))
1613 count_vm_event(ALLOCSTALL);
1615 * mem_cgroup will not do shrink_slab.
1617 if (scanning_global_lru(sc)) {
1618 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1620 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1621 continue;
1623 lru_pages += zone_lru_pages(zone);
1627 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1628 sc->nr_scanned = 0;
1629 if (!priority)
1630 disable_swap_token();
1631 shrink_zones(priority, zonelist, sc);
1633 * Don't shrink slabs when reclaiming memory from
1634 * over limit cgroups
1636 if (scanning_global_lru(sc)) {
1637 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1638 if (reclaim_state) {
1639 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1640 reclaim_state->reclaimed_slab = 0;
1643 total_scanned += sc->nr_scanned;
1644 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1645 ret = sc->nr_reclaimed;
1646 goto out;
1650 * Try to write back as many pages as we just scanned. This
1651 * tends to cause slow streaming writers to write data to the
1652 * disk smoothly, at the dirtying rate, which is nice. But
1653 * that's undesirable in laptop mode, where we *want* lumpy
1654 * writeout. So in laptop mode, write out the whole world.
1656 if (total_scanned > sc->swap_cluster_max +
1657 sc->swap_cluster_max / 2) {
1658 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1659 sc->may_writepage = 1;
1662 /* Take a nap, wait for some writeback to complete */
1663 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1664 congestion_wait(WRITE, HZ/10);
1666 /* top priority shrink_zones still had more to do? don't OOM, then */
1667 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1668 ret = sc->nr_reclaimed;
1669 out:
1671 * Now that we've scanned all the zones at this priority level, note
1672 * that level within the zone so that the next thread which performs
1673 * scanning of this zone will immediately start out at this priority
1674 * level. This affects only the decision whether or not to bring
1675 * mapped pages onto the inactive list.
1677 if (priority < 0)
1678 priority = 0;
1680 if (scanning_global_lru(sc)) {
1681 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1683 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1684 continue;
1686 zone->prev_priority = priority;
1688 } else
1689 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1691 delayacct_freepages_end();
1693 return ret;
1696 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1697 gfp_t gfp_mask)
1699 struct scan_control sc = {
1700 .gfp_mask = gfp_mask,
1701 .may_writepage = !laptop_mode,
1702 .swap_cluster_max = SWAP_CLUSTER_MAX,
1703 .may_swap = 1,
1704 .swappiness = vm_swappiness,
1705 .order = order,
1706 .mem_cgroup = NULL,
1707 .isolate_pages = isolate_pages_global,
1710 return do_try_to_free_pages(zonelist, &sc);
1713 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1715 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1716 gfp_t gfp_mask,
1717 bool noswap,
1718 unsigned int swappiness)
1720 struct scan_control sc = {
1721 .may_writepage = !laptop_mode,
1722 .may_swap = 1,
1723 .swap_cluster_max = SWAP_CLUSTER_MAX,
1724 .swappiness = swappiness,
1725 .order = 0,
1726 .mem_cgroup = mem_cont,
1727 .isolate_pages = mem_cgroup_isolate_pages,
1729 struct zonelist *zonelist;
1731 if (noswap)
1732 sc.may_swap = 0;
1734 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1735 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1736 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1737 return do_try_to_free_pages(zonelist, &sc);
1739 #endif
1742 * For kswapd, balance_pgdat() will work across all this node's zones until
1743 * they are all at pages_high.
1745 * Returns the number of pages which were actually freed.
1747 * There is special handling here for zones which are full of pinned pages.
1748 * This can happen if the pages are all mlocked, or if they are all used by
1749 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1750 * What we do is to detect the case where all pages in the zone have been
1751 * scanned twice and there has been zero successful reclaim. Mark the zone as
1752 * dead and from now on, only perform a short scan. Basically we're polling
1753 * the zone for when the problem goes away.
1755 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1756 * zones which have free_pages > pages_high, but once a zone is found to have
1757 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1758 * of the number of free pages in the lower zones. This interoperates with
1759 * the page allocator fallback scheme to ensure that aging of pages is balanced
1760 * across the zones.
1762 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1764 int all_zones_ok;
1765 int priority;
1766 int i;
1767 unsigned long total_scanned;
1768 struct reclaim_state *reclaim_state = current->reclaim_state;
1769 struct scan_control sc = {
1770 .gfp_mask = GFP_KERNEL,
1771 .may_swap = 1,
1772 .swap_cluster_max = SWAP_CLUSTER_MAX,
1773 .swappiness = vm_swappiness,
1774 .order = order,
1775 .mem_cgroup = NULL,
1776 .isolate_pages = isolate_pages_global,
1779 * temp_priority is used to remember the scanning priority at which
1780 * this zone was successfully refilled to free_pages == pages_high.
1782 int temp_priority[MAX_NR_ZONES];
1784 loop_again:
1785 total_scanned = 0;
1786 sc.nr_reclaimed = 0;
1787 sc.may_writepage = !laptop_mode;
1788 count_vm_event(PAGEOUTRUN);
1790 for (i = 0; i < pgdat->nr_zones; i++)
1791 temp_priority[i] = DEF_PRIORITY;
1793 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1794 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1795 unsigned long lru_pages = 0;
1797 /* The swap token gets in the way of swapout... */
1798 if (!priority)
1799 disable_swap_token();
1801 all_zones_ok = 1;
1804 * Scan in the highmem->dma direction for the highest
1805 * zone which needs scanning
1807 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1808 struct zone *zone = pgdat->node_zones + i;
1810 if (!populated_zone(zone))
1811 continue;
1813 if (zone_is_all_unreclaimable(zone) &&
1814 priority != DEF_PRIORITY)
1815 continue;
1818 * Do some background aging of the anon list, to give
1819 * pages a chance to be referenced before reclaiming.
1821 if (inactive_anon_is_low(zone, &sc))
1822 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1823 &sc, priority, 0);
1825 if (!zone_watermark_ok(zone, order, zone->pages_high,
1826 0, 0)) {
1827 end_zone = i;
1828 break;
1831 if (i < 0)
1832 goto out;
1834 for (i = 0; i <= end_zone; i++) {
1835 struct zone *zone = pgdat->node_zones + i;
1837 lru_pages += zone_lru_pages(zone);
1841 * Now scan the zone in the dma->highmem direction, stopping
1842 * at the last zone which needs scanning.
1844 * We do this because the page allocator works in the opposite
1845 * direction. This prevents the page allocator from allocating
1846 * pages behind kswapd's direction of progress, which would
1847 * cause too much scanning of the lower zones.
1849 for (i = 0; i <= end_zone; i++) {
1850 struct zone *zone = pgdat->node_zones + i;
1851 int nr_slab;
1853 if (!populated_zone(zone))
1854 continue;
1856 if (zone_is_all_unreclaimable(zone) &&
1857 priority != DEF_PRIORITY)
1858 continue;
1860 if (!zone_watermark_ok(zone, order, zone->pages_high,
1861 end_zone, 0))
1862 all_zones_ok = 0;
1863 temp_priority[i] = priority;
1864 sc.nr_scanned = 0;
1865 note_zone_scanning_priority(zone, priority);
1867 * We put equal pressure on every zone, unless one
1868 * zone has way too many pages free already.
1870 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1871 end_zone, 0))
1872 shrink_zone(priority, zone, &sc);
1873 reclaim_state->reclaimed_slab = 0;
1874 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1875 lru_pages);
1876 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1877 total_scanned += sc.nr_scanned;
1878 if (zone_is_all_unreclaimable(zone))
1879 continue;
1880 if (nr_slab == 0 && zone->pages_scanned >=
1881 (zone_lru_pages(zone) * 6))
1882 zone_set_flag(zone,
1883 ZONE_ALL_UNRECLAIMABLE);
1885 * If we've done a decent amount of scanning and
1886 * the reclaim ratio is low, start doing writepage
1887 * even in laptop mode
1889 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1890 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1891 sc.may_writepage = 1;
1893 if (all_zones_ok)
1894 break; /* kswapd: all done */
1896 * OK, kswapd is getting into trouble. Take a nap, then take
1897 * another pass across the zones.
1899 if (total_scanned && priority < DEF_PRIORITY - 2)
1900 congestion_wait(WRITE, HZ/10);
1903 * We do this so kswapd doesn't build up large priorities for
1904 * example when it is freeing in parallel with allocators. It
1905 * matches the direct reclaim path behaviour in terms of impact
1906 * on zone->*_priority.
1908 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1909 break;
1911 out:
1913 * Note within each zone the priority level at which this zone was
1914 * brought into a happy state. So that the next thread which scans this
1915 * zone will start out at that priority level.
1917 for (i = 0; i < pgdat->nr_zones; i++) {
1918 struct zone *zone = pgdat->node_zones + i;
1920 zone->prev_priority = temp_priority[i];
1922 if (!all_zones_ok) {
1923 cond_resched();
1925 try_to_freeze();
1928 * Fragmentation may mean that the system cannot be
1929 * rebalanced for high-order allocations in all zones.
1930 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1931 * it means the zones have been fully scanned and are still
1932 * not balanced. For high-order allocations, there is
1933 * little point trying all over again as kswapd may
1934 * infinite loop.
1936 * Instead, recheck all watermarks at order-0 as they
1937 * are the most important. If watermarks are ok, kswapd will go
1938 * back to sleep. High-order users can still perform direct
1939 * reclaim if they wish.
1941 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1942 order = sc.order = 0;
1944 goto loop_again;
1947 return sc.nr_reclaimed;
1951 * The background pageout daemon, started as a kernel thread
1952 * from the init process.
1954 * This basically trickles out pages so that we have _some_
1955 * free memory available even if there is no other activity
1956 * that frees anything up. This is needed for things like routing
1957 * etc, where we otherwise might have all activity going on in
1958 * asynchronous contexts that cannot page things out.
1960 * If there are applications that are active memory-allocators
1961 * (most normal use), this basically shouldn't matter.
1963 static int kswapd(void *p)
1965 unsigned long order;
1966 pg_data_t *pgdat = (pg_data_t*)p;
1967 struct task_struct *tsk = current;
1968 DEFINE_WAIT(wait);
1969 struct reclaim_state reclaim_state = {
1970 .reclaimed_slab = 0,
1972 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1974 lockdep_set_current_reclaim_state(GFP_KERNEL);
1976 if (!cpumask_empty(cpumask))
1977 set_cpus_allowed_ptr(tsk, cpumask);
1978 current->reclaim_state = &reclaim_state;
1981 * Tell the memory management that we're a "memory allocator",
1982 * and that if we need more memory we should get access to it
1983 * regardless (see "__alloc_pages()"). "kswapd" should
1984 * never get caught in the normal page freeing logic.
1986 * (Kswapd normally doesn't need memory anyway, but sometimes
1987 * you need a small amount of memory in order to be able to
1988 * page out something else, and this flag essentially protects
1989 * us from recursively trying to free more memory as we're
1990 * trying to free the first piece of memory in the first place).
1992 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1993 set_freezable();
1995 order = 0;
1996 for ( ; ; ) {
1997 unsigned long new_order;
1999 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2000 new_order = pgdat->kswapd_max_order;
2001 pgdat->kswapd_max_order = 0;
2002 if (order < new_order) {
2004 * Don't sleep if someone wants a larger 'order'
2005 * allocation
2007 order = new_order;
2008 } else {
2009 if (!freezing(current))
2010 schedule();
2012 order = pgdat->kswapd_max_order;
2014 finish_wait(&pgdat->kswapd_wait, &wait);
2016 if (!try_to_freeze()) {
2017 /* We can speed up thawing tasks if we don't call
2018 * balance_pgdat after returning from the refrigerator
2020 balance_pgdat(pgdat, order);
2023 return 0;
2027 * A zone is low on free memory, so wake its kswapd task to service it.
2029 void wakeup_kswapd(struct zone *zone, int order)
2031 pg_data_t *pgdat;
2033 if (!populated_zone(zone))
2034 return;
2036 pgdat = zone->zone_pgdat;
2037 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2038 return;
2039 if (pgdat->kswapd_max_order < order)
2040 pgdat->kswapd_max_order = order;
2041 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2042 return;
2043 if (!waitqueue_active(&pgdat->kswapd_wait))
2044 return;
2045 wake_up_interruptible(&pgdat->kswapd_wait);
2048 unsigned long global_lru_pages(void)
2050 return global_page_state(NR_ACTIVE_ANON)
2051 + global_page_state(NR_ACTIVE_FILE)
2052 + global_page_state(NR_INACTIVE_ANON)
2053 + global_page_state(NR_INACTIVE_FILE);
2056 #ifdef CONFIG_PM
2058 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2059 * from LRU lists system-wide, for given pass and priority, and returns the
2060 * number of reclaimed pages
2062 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2064 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2065 int pass, struct scan_control *sc)
2067 struct zone *zone;
2068 unsigned long ret = 0;
2070 for_each_zone(zone) {
2071 enum lru_list l;
2073 if (!populated_zone(zone))
2074 continue;
2075 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2076 continue;
2078 for_each_evictable_lru(l) {
2079 enum zone_stat_item ls = NR_LRU_BASE + l;
2080 unsigned long lru_pages = zone_page_state(zone, ls);
2082 /* For pass = 0, we don't shrink the active list */
2083 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2084 l == LRU_ACTIVE_FILE))
2085 continue;
2087 zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
2088 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2089 unsigned long nr_to_scan;
2091 zone->lru[l].nr_scan = 0;
2092 nr_to_scan = min(nr_pages, lru_pages);
2093 ret += shrink_list(l, nr_to_scan, zone,
2094 sc, prio);
2095 if (ret >= nr_pages)
2096 return ret;
2100 return ret;
2104 * Try to free `nr_pages' of memory, system-wide, and return the number of
2105 * freed pages.
2107 * Rather than trying to age LRUs the aim is to preserve the overall
2108 * LRU order by reclaiming preferentially
2109 * inactive > active > active referenced > active mapped
2111 unsigned long shrink_all_memory(unsigned long nr_pages)
2113 unsigned long lru_pages, nr_slab;
2114 unsigned long ret = 0;
2115 int pass;
2116 struct reclaim_state reclaim_state;
2117 struct scan_control sc = {
2118 .gfp_mask = GFP_KERNEL,
2119 .may_swap = 0,
2120 .swap_cluster_max = nr_pages,
2121 .may_writepage = 1,
2122 .isolate_pages = isolate_pages_global,
2125 current->reclaim_state = &reclaim_state;
2127 lru_pages = global_lru_pages();
2128 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2129 /* If slab caches are huge, it's better to hit them first */
2130 while (nr_slab >= lru_pages) {
2131 reclaim_state.reclaimed_slab = 0;
2132 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2133 if (!reclaim_state.reclaimed_slab)
2134 break;
2136 ret += reclaim_state.reclaimed_slab;
2137 if (ret >= nr_pages)
2138 goto out;
2140 nr_slab -= reclaim_state.reclaimed_slab;
2144 * We try to shrink LRUs in 5 passes:
2145 * 0 = Reclaim from inactive_list only
2146 * 1 = Reclaim from active list but don't reclaim mapped
2147 * 2 = 2nd pass of type 1
2148 * 3 = Reclaim mapped (normal reclaim)
2149 * 4 = 2nd pass of type 3
2151 for (pass = 0; pass < 5; pass++) {
2152 int prio;
2154 /* Force reclaiming mapped pages in the passes #3 and #4 */
2155 if (pass > 2)
2156 sc.may_swap = 1;
2158 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2159 unsigned long nr_to_scan = nr_pages - ret;
2161 sc.nr_scanned = 0;
2162 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2163 if (ret >= nr_pages)
2164 goto out;
2166 reclaim_state.reclaimed_slab = 0;
2167 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2168 global_lru_pages());
2169 ret += reclaim_state.reclaimed_slab;
2170 if (ret >= nr_pages)
2171 goto out;
2173 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2174 congestion_wait(WRITE, HZ / 10);
2179 * If ret = 0, we could not shrink LRUs, but there may be something
2180 * in slab caches
2182 if (!ret) {
2183 do {
2184 reclaim_state.reclaimed_slab = 0;
2185 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2186 ret += reclaim_state.reclaimed_slab;
2187 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2190 out:
2191 current->reclaim_state = NULL;
2193 return ret;
2195 #endif
2197 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2198 not required for correctness. So if the last cpu in a node goes
2199 away, we get changed to run anywhere: as the first one comes back,
2200 restore their cpu bindings. */
2201 static int __devinit cpu_callback(struct notifier_block *nfb,
2202 unsigned long action, void *hcpu)
2204 int nid;
2206 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2207 for_each_node_state(nid, N_HIGH_MEMORY) {
2208 pg_data_t *pgdat = NODE_DATA(nid);
2209 const struct cpumask *mask;
2211 mask = cpumask_of_node(pgdat->node_id);
2213 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2214 /* One of our CPUs online: restore mask */
2215 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2218 return NOTIFY_OK;
2222 * This kswapd start function will be called by init and node-hot-add.
2223 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2225 int kswapd_run(int nid)
2227 pg_data_t *pgdat = NODE_DATA(nid);
2228 int ret = 0;
2230 if (pgdat->kswapd)
2231 return 0;
2233 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2234 if (IS_ERR(pgdat->kswapd)) {
2235 /* failure at boot is fatal */
2236 BUG_ON(system_state == SYSTEM_BOOTING);
2237 printk("Failed to start kswapd on node %d\n",nid);
2238 ret = -1;
2240 return ret;
2243 static int __init kswapd_init(void)
2245 int nid;
2247 swap_setup();
2248 for_each_node_state(nid, N_HIGH_MEMORY)
2249 kswapd_run(nid);
2250 hotcpu_notifier(cpu_callback, 0);
2251 return 0;
2254 module_init(kswapd_init)
2256 #ifdef CONFIG_NUMA
2258 * Zone reclaim mode
2260 * If non-zero call zone_reclaim when the number of free pages falls below
2261 * the watermarks.
2263 int zone_reclaim_mode __read_mostly;
2265 #define RECLAIM_OFF 0
2266 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2267 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2268 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2271 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2272 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2273 * a zone.
2275 #define ZONE_RECLAIM_PRIORITY 4
2278 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2279 * occur.
2281 int sysctl_min_unmapped_ratio = 1;
2284 * If the number of slab pages in a zone grows beyond this percentage then
2285 * slab reclaim needs to occur.
2287 int sysctl_min_slab_ratio = 5;
2290 * Try to free up some pages from this zone through reclaim.
2292 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2294 /* Minimum pages needed in order to stay on node */
2295 const unsigned long nr_pages = 1 << order;
2296 struct task_struct *p = current;
2297 struct reclaim_state reclaim_state;
2298 int priority;
2299 struct scan_control sc = {
2300 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2301 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2302 .swap_cluster_max = max_t(unsigned long, nr_pages,
2303 SWAP_CLUSTER_MAX),
2304 .gfp_mask = gfp_mask,
2305 .swappiness = vm_swappiness,
2306 .isolate_pages = isolate_pages_global,
2308 unsigned long slab_reclaimable;
2310 disable_swap_token();
2311 cond_resched();
2313 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2314 * and we also need to be able to write out pages for RECLAIM_WRITE
2315 * and RECLAIM_SWAP.
2317 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2318 reclaim_state.reclaimed_slab = 0;
2319 p->reclaim_state = &reclaim_state;
2321 if (zone_page_state(zone, NR_FILE_PAGES) -
2322 zone_page_state(zone, NR_FILE_MAPPED) >
2323 zone->min_unmapped_pages) {
2325 * Free memory by calling shrink zone with increasing
2326 * priorities until we have enough memory freed.
2328 priority = ZONE_RECLAIM_PRIORITY;
2329 do {
2330 note_zone_scanning_priority(zone, priority);
2331 shrink_zone(priority, zone, &sc);
2332 priority--;
2333 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2336 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2337 if (slab_reclaimable > zone->min_slab_pages) {
2339 * shrink_slab() does not currently allow us to determine how
2340 * many pages were freed in this zone. So we take the current
2341 * number of slab pages and shake the slab until it is reduced
2342 * by the same nr_pages that we used for reclaiming unmapped
2343 * pages.
2345 * Note that shrink_slab will free memory on all zones and may
2346 * take a long time.
2348 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2349 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2350 slab_reclaimable - nr_pages)
2354 * Update nr_reclaimed by the number of slab pages we
2355 * reclaimed from this zone.
2357 sc.nr_reclaimed += slab_reclaimable -
2358 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2361 p->reclaim_state = NULL;
2362 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2363 return sc.nr_reclaimed >= nr_pages;
2366 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2368 int node_id;
2369 int ret;
2372 * Zone reclaim reclaims unmapped file backed pages and
2373 * slab pages if we are over the defined limits.
2375 * A small portion of unmapped file backed pages is needed for
2376 * file I/O otherwise pages read by file I/O will be immediately
2377 * thrown out if the zone is overallocated. So we do not reclaim
2378 * if less than a specified percentage of the zone is used by
2379 * unmapped file backed pages.
2381 if (zone_page_state(zone, NR_FILE_PAGES) -
2382 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2383 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2384 <= zone->min_slab_pages)
2385 return 0;
2387 if (zone_is_all_unreclaimable(zone))
2388 return 0;
2391 * Do not scan if the allocation should not be delayed.
2393 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2394 return 0;
2397 * Only run zone reclaim on the local zone or on zones that do not
2398 * have associated processors. This will favor the local processor
2399 * over remote processors and spread off node memory allocations
2400 * as wide as possible.
2402 node_id = zone_to_nid(zone);
2403 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2404 return 0;
2406 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2407 return 0;
2408 ret = __zone_reclaim(zone, gfp_mask, order);
2409 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2411 return ret;
2413 #endif
2415 #ifdef CONFIG_UNEVICTABLE_LRU
2417 * page_evictable - test whether a page is evictable
2418 * @page: the page to test
2419 * @vma: the VMA in which the page is or will be mapped, may be NULL
2421 * Test whether page is evictable--i.e., should be placed on active/inactive
2422 * lists vs unevictable list. The vma argument is !NULL when called from the
2423 * fault path to determine how to instantate a new page.
2425 * Reasons page might not be evictable:
2426 * (1) page's mapping marked unevictable
2427 * (2) page is part of an mlocked VMA
2430 int page_evictable(struct page *page, struct vm_area_struct *vma)
2433 if (mapping_unevictable(page_mapping(page)))
2434 return 0;
2436 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2437 return 0;
2439 return 1;
2443 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2444 * @page: page to check evictability and move to appropriate lru list
2445 * @zone: zone page is in
2447 * Checks a page for evictability and moves the page to the appropriate
2448 * zone lru list.
2450 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2451 * have PageUnevictable set.
2453 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2455 VM_BUG_ON(PageActive(page));
2457 retry:
2458 ClearPageUnevictable(page);
2459 if (page_evictable(page, NULL)) {
2460 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2462 __dec_zone_state(zone, NR_UNEVICTABLE);
2463 list_move(&page->lru, &zone->lru[l].list);
2464 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2465 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2466 __count_vm_event(UNEVICTABLE_PGRESCUED);
2467 } else {
2469 * rotate unevictable list
2471 SetPageUnevictable(page);
2472 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2473 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2474 if (page_evictable(page, NULL))
2475 goto retry;
2480 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2481 * @mapping: struct address_space to scan for evictable pages
2483 * Scan all pages in mapping. Check unevictable pages for
2484 * evictability and move them to the appropriate zone lru list.
2486 void scan_mapping_unevictable_pages(struct address_space *mapping)
2488 pgoff_t next = 0;
2489 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2490 PAGE_CACHE_SHIFT;
2491 struct zone *zone;
2492 struct pagevec pvec;
2494 if (mapping->nrpages == 0)
2495 return;
2497 pagevec_init(&pvec, 0);
2498 while (next < end &&
2499 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2500 int i;
2501 int pg_scanned = 0;
2503 zone = NULL;
2505 for (i = 0; i < pagevec_count(&pvec); i++) {
2506 struct page *page = pvec.pages[i];
2507 pgoff_t page_index = page->index;
2508 struct zone *pagezone = page_zone(page);
2510 pg_scanned++;
2511 if (page_index > next)
2512 next = page_index;
2513 next++;
2515 if (pagezone != zone) {
2516 if (zone)
2517 spin_unlock_irq(&zone->lru_lock);
2518 zone = pagezone;
2519 spin_lock_irq(&zone->lru_lock);
2522 if (PageLRU(page) && PageUnevictable(page))
2523 check_move_unevictable_page(page, zone);
2525 if (zone)
2526 spin_unlock_irq(&zone->lru_lock);
2527 pagevec_release(&pvec);
2529 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2535 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2536 * @zone - zone of which to scan the unevictable list
2538 * Scan @zone's unevictable LRU lists to check for pages that have become
2539 * evictable. Move those that have to @zone's inactive list where they
2540 * become candidates for reclaim, unless shrink_inactive_zone() decides
2541 * to reactivate them. Pages that are still unevictable are rotated
2542 * back onto @zone's unevictable list.
2544 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2545 static void scan_zone_unevictable_pages(struct zone *zone)
2547 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2548 unsigned long scan;
2549 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2551 while (nr_to_scan > 0) {
2552 unsigned long batch_size = min(nr_to_scan,
2553 SCAN_UNEVICTABLE_BATCH_SIZE);
2555 spin_lock_irq(&zone->lru_lock);
2556 for (scan = 0; scan < batch_size; scan++) {
2557 struct page *page = lru_to_page(l_unevictable);
2559 if (!trylock_page(page))
2560 continue;
2562 prefetchw_prev_lru_page(page, l_unevictable, flags);
2564 if (likely(PageLRU(page) && PageUnevictable(page)))
2565 check_move_unevictable_page(page, zone);
2567 unlock_page(page);
2569 spin_unlock_irq(&zone->lru_lock);
2571 nr_to_scan -= batch_size;
2577 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2579 * A really big hammer: scan all zones' unevictable LRU lists to check for
2580 * pages that have become evictable. Move those back to the zones'
2581 * inactive list where they become candidates for reclaim.
2582 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2583 * and we add swap to the system. As such, it runs in the context of a task
2584 * that has possibly/probably made some previously unevictable pages
2585 * evictable.
2587 static void scan_all_zones_unevictable_pages(void)
2589 struct zone *zone;
2591 for_each_zone(zone) {
2592 scan_zone_unevictable_pages(zone);
2597 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2598 * all nodes' unevictable lists for evictable pages
2600 unsigned long scan_unevictable_pages;
2602 int scan_unevictable_handler(struct ctl_table *table, int write,
2603 struct file *file, void __user *buffer,
2604 size_t *length, loff_t *ppos)
2606 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2608 if (write && *(unsigned long *)table->data)
2609 scan_all_zones_unevictable_pages();
2611 scan_unevictable_pages = 0;
2612 return 0;
2616 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2617 * a specified node's per zone unevictable lists for evictable pages.
2620 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2621 struct sysdev_attribute *attr,
2622 char *buf)
2624 return sprintf(buf, "0\n"); /* always zero; should fit... */
2627 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2628 struct sysdev_attribute *attr,
2629 const char *buf, size_t count)
2631 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2632 struct zone *zone;
2633 unsigned long res;
2634 unsigned long req = strict_strtoul(buf, 10, &res);
2636 if (!req)
2637 return 1; /* zero is no-op */
2639 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2640 if (!populated_zone(zone))
2641 continue;
2642 scan_zone_unevictable_pages(zone);
2644 return 1;
2648 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2649 read_scan_unevictable_node,
2650 write_scan_unevictable_node);
2652 int scan_unevictable_register_node(struct node *node)
2654 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2657 void scan_unevictable_unregister_node(struct node *node)
2659 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2662 #endif