1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
47 #include <linux/dca.h>
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name
[] = "igb";
53 char igb_driver_version
[] = DRV_VERSION
;
54 static const char igb_driver_string
[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright
[] = "Copyright (c) 2008 Intel Corporation.";
58 static const struct e1000_info
*igb_info_tbl
[] = {
59 [board_82575
] = &e1000_82575_info
,
62 static struct pci_device_id igb_pci_tbl
[] = {
63 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
64 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
65 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
66 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
67 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
68 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
69 /* required last entry */
73 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
75 void igb_reset(struct igb_adapter
*);
76 static int igb_setup_all_tx_resources(struct igb_adapter
*);
77 static int igb_setup_all_rx_resources(struct igb_adapter
*);
78 static void igb_free_all_tx_resources(struct igb_adapter
*);
79 static void igb_free_all_rx_resources(struct igb_adapter
*);
80 void igb_update_stats(struct igb_adapter
*);
81 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
82 static void __devexit
igb_remove(struct pci_dev
*pdev
);
83 static int igb_sw_init(struct igb_adapter
*);
84 static int igb_open(struct net_device
*);
85 static int igb_close(struct net_device
*);
86 static void igb_configure_tx(struct igb_adapter
*);
87 static void igb_configure_rx(struct igb_adapter
*);
88 static void igb_setup_rctl(struct igb_adapter
*);
89 static void igb_clean_all_tx_rings(struct igb_adapter
*);
90 static void igb_clean_all_rx_rings(struct igb_adapter
*);
91 static void igb_clean_tx_ring(struct igb_ring
*);
92 static void igb_clean_rx_ring(struct igb_ring
*);
93 static void igb_set_multi(struct net_device
*);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct
*);
97 static int igb_xmit_frame_ring_adv(struct sk_buff
*, struct net_device
*,
99 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
100 static struct net_device_stats
*igb_get_stats(struct net_device
*);
101 static int igb_change_mtu(struct net_device
*, int);
102 static int igb_set_mac(struct net_device
*, void *);
103 static irqreturn_t
igb_intr(int irq
, void *);
104 static irqreturn_t
igb_intr_msi(int irq
, void *);
105 static irqreturn_t
igb_msix_other(int irq
, void *);
106 static irqreturn_t
igb_msix_rx(int irq
, void *);
107 static irqreturn_t
igb_msix_tx(int irq
, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct
*, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring
*);
111 static void igb_update_tx_dca(struct igb_ring
*);
112 static void igb_setup_dca(struct igb_adapter
*);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring
*);
115 static int igb_poll(struct napi_struct
*, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring
*, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring
*, int);
118 #ifdef CONFIG_IGB_LRO
119 static int igb_get_skb_hdr(struct sk_buff
*skb
, void **, void **, u64
*, void *);
121 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
122 static void igb_tx_timeout(struct net_device
*);
123 static void igb_reset_task(struct work_struct
*);
124 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
125 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
126 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
127 static void igb_restore_vlan(struct igb_adapter
*);
129 static int igb_suspend(struct pci_dev
*, pm_message_t
);
131 static int igb_resume(struct pci_dev
*);
133 static void igb_shutdown(struct pci_dev
*);
134 #ifdef CONFIG_IGB_DCA
135 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
136 static struct notifier_block dca_notifier
= {
137 .notifier_call
= igb_notify_dca
,
143 #ifdef CONFIG_NET_POLL_CONTROLLER
144 /* for netdump / net console */
145 static void igb_netpoll(struct net_device
*);
148 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
149 pci_channel_state_t
);
150 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
151 static void igb_io_resume(struct pci_dev
*);
153 static struct pci_error_handlers igb_err_handler
= {
154 .error_detected
= igb_io_error_detected
,
155 .slot_reset
= igb_io_slot_reset
,
156 .resume
= igb_io_resume
,
160 static struct pci_driver igb_driver
= {
161 .name
= igb_driver_name
,
162 .id_table
= igb_pci_tbl
,
164 .remove
= __devexit_p(igb_remove
),
166 /* Power Managment Hooks */
167 .suspend
= igb_suspend
,
168 .resume
= igb_resume
,
170 .shutdown
= igb_shutdown
,
171 .err_handler
= &igb_err_handler
174 static int global_quad_port_a
; /* global quad port a indication */
176 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
177 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
178 MODULE_LICENSE("GPL");
179 MODULE_VERSION(DRV_VERSION
);
183 * igb_get_hw_dev_name - return device name string
184 * used by hardware layer to print debugging information
186 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
188 struct igb_adapter
*adapter
= hw
->back
;
189 return adapter
->netdev
->name
;
194 * igb_init_module - Driver Registration Routine
196 * igb_init_module is the first routine called when the driver is
197 * loaded. All it does is register with the PCI subsystem.
199 static int __init
igb_init_module(void)
202 printk(KERN_INFO
"%s - version %s\n",
203 igb_driver_string
, igb_driver_version
);
205 printk(KERN_INFO
"%s\n", igb_copyright
);
207 global_quad_port_a
= 0;
209 #ifdef CONFIG_IGB_DCA
210 dca_register_notify(&dca_notifier
);
213 ret
= pci_register_driver(&igb_driver
);
217 module_init(igb_init_module
);
220 * igb_exit_module - Driver Exit Cleanup Routine
222 * igb_exit_module is called just before the driver is removed
225 static void __exit
igb_exit_module(void)
227 #ifdef CONFIG_IGB_DCA
228 dca_unregister_notify(&dca_notifier
);
230 pci_unregister_driver(&igb_driver
);
233 module_exit(igb_exit_module
);
235 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
237 * igb_cache_ring_register - Descriptor ring to register mapping
238 * @adapter: board private structure to initialize
240 * Once we know the feature-set enabled for the device, we'll cache
241 * the register offset the descriptor ring is assigned to.
243 static void igb_cache_ring_register(struct igb_adapter
*adapter
)
247 switch (adapter
->hw
.mac
.type
) {
249 /* The queues are allocated for virtualization such that VF 0
250 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
251 * In order to avoid collision we start at the first free queue
252 * and continue consuming queues in the same sequence
254 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
255 adapter
->rx_ring
[i
].reg_idx
= Q_IDX_82576(i
);
256 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
257 adapter
->tx_ring
[i
].reg_idx
= Q_IDX_82576(i
);
261 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
262 adapter
->rx_ring
[i
].reg_idx
= i
;
263 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
264 adapter
->tx_ring
[i
].reg_idx
= i
;
270 * igb_alloc_queues - Allocate memory for all rings
271 * @adapter: board private structure to initialize
273 * We allocate one ring per queue at run-time since we don't know the
274 * number of queues at compile-time.
276 static int igb_alloc_queues(struct igb_adapter
*adapter
)
280 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
281 sizeof(struct igb_ring
), GFP_KERNEL
);
282 if (!adapter
->tx_ring
)
285 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
286 sizeof(struct igb_ring
), GFP_KERNEL
);
287 if (!adapter
->rx_ring
) {
288 kfree(adapter
->tx_ring
);
292 adapter
->rx_ring
->buddy
= adapter
->tx_ring
;
294 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
295 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
296 ring
->count
= adapter
->tx_ring_count
;
297 ring
->adapter
= adapter
;
298 ring
->queue_index
= i
;
300 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
301 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
302 ring
->count
= adapter
->rx_ring_count
;
303 ring
->adapter
= adapter
;
304 ring
->queue_index
= i
;
305 ring
->itr_register
= E1000_ITR
;
307 /* set a default napi handler for each rx_ring */
308 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_poll
, 64);
311 igb_cache_ring_register(adapter
);
315 static void igb_free_queues(struct igb_adapter
*adapter
)
319 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
320 netif_napi_del(&adapter
->rx_ring
[i
].napi
);
322 kfree(adapter
->tx_ring
);
323 kfree(adapter
->rx_ring
);
326 #define IGB_N0_QUEUE -1
327 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
328 int tx_queue
, int msix_vector
)
331 struct e1000_hw
*hw
= &adapter
->hw
;
334 switch (hw
->mac
.type
) {
336 /* The 82575 assigns vectors using a bitmask, which matches the
337 bitmask for the EICR/EIMS/EIMC registers. To assign one
338 or more queues to a vector, we write the appropriate bits
339 into the MSIXBM register for that vector. */
340 if (rx_queue
> IGB_N0_QUEUE
) {
341 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
342 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
344 if (tx_queue
> IGB_N0_QUEUE
) {
345 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
346 adapter
->tx_ring
[tx_queue
].eims_value
=
347 E1000_EICR_TX_QUEUE0
<< tx_queue
;
349 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
352 /* 82576 uses a table-based method for assigning vectors.
353 Each queue has a single entry in the table to which we write
354 a vector number along with a "valid" bit. Sadly, the layout
355 of the table is somewhat counterintuitive. */
356 if (rx_queue
> IGB_N0_QUEUE
) {
357 index
= (rx_queue
>> 1);
358 ivar
= array_rd32(E1000_IVAR0
, index
);
359 if (rx_queue
& 0x1) {
360 /* vector goes into third byte of register */
361 ivar
= ivar
& 0xFF00FFFF;
362 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
364 /* vector goes into low byte of register */
365 ivar
= ivar
& 0xFFFFFF00;
366 ivar
|= msix_vector
| E1000_IVAR_VALID
;
368 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
369 array_wr32(E1000_IVAR0
, index
, ivar
);
371 if (tx_queue
> IGB_N0_QUEUE
) {
372 index
= (tx_queue
>> 1);
373 ivar
= array_rd32(E1000_IVAR0
, index
);
374 if (tx_queue
& 0x1) {
375 /* vector goes into high byte of register */
376 ivar
= ivar
& 0x00FFFFFF;
377 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
379 /* vector goes into second byte of register */
380 ivar
= ivar
& 0xFFFF00FF;
381 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
383 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
384 array_wr32(E1000_IVAR0
, index
, ivar
);
394 * igb_configure_msix - Configure MSI-X hardware
396 * igb_configure_msix sets up the hardware to properly
397 * generate MSI-X interrupts.
399 static void igb_configure_msix(struct igb_adapter
*adapter
)
403 struct e1000_hw
*hw
= &adapter
->hw
;
405 adapter
->eims_enable_mask
= 0;
406 if (hw
->mac
.type
== e1000_82576
)
407 /* Turn on MSI-X capability first, or our settings
408 * won't stick. And it will take days to debug. */
409 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
410 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
413 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
414 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
415 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
416 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
417 if (tx_ring
->itr_val
)
418 writel(tx_ring
->itr_val
,
419 hw
->hw_addr
+ tx_ring
->itr_register
);
421 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
424 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
425 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
426 rx_ring
->buddy
= NULL
;
427 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
428 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
429 if (rx_ring
->itr_val
)
430 writel(rx_ring
->itr_val
,
431 hw
->hw_addr
+ rx_ring
->itr_register
);
433 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
437 /* set vector for other causes, i.e. link changes */
438 switch (hw
->mac
.type
) {
440 array_wr32(E1000_MSIXBM(0), vector
++,
443 tmp
= rd32(E1000_CTRL_EXT
);
444 /* enable MSI-X PBA support*/
445 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
447 /* Auto-Mask interrupts upon ICR read. */
448 tmp
|= E1000_CTRL_EXT_EIAME
;
449 tmp
|= E1000_CTRL_EXT_IRCA
;
451 wr32(E1000_CTRL_EXT
, tmp
);
452 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
453 adapter
->eims_other
= E1000_EIMS_OTHER
;
458 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
459 wr32(E1000_IVAR_MISC
, tmp
);
461 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
462 adapter
->eims_other
= 1 << (vector
- 1);
465 /* do nothing, since nothing else supports MSI-X */
467 } /* switch (hw->mac.type) */
472 * igb_request_msix - Initialize MSI-X interrupts
474 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
477 static int igb_request_msix(struct igb_adapter
*adapter
)
479 struct net_device
*netdev
= adapter
->netdev
;
480 int i
, err
= 0, vector
= 0;
484 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
485 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
486 sprintf(ring
->name
, "%s-tx-%d", netdev
->name
, i
);
487 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
488 &igb_msix_tx
, 0, ring
->name
,
489 &(adapter
->tx_ring
[i
]));
492 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
493 ring
->itr_val
= 976; /* ~4000 ints/sec */
496 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
497 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
498 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
499 sprintf(ring
->name
, "%s-rx-%d", netdev
->name
, i
);
501 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
502 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
503 &igb_msix_rx
, 0, ring
->name
,
504 &(adapter
->rx_ring
[i
]));
507 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
508 ring
->itr_val
= adapter
->itr
;
509 /* overwrite the poll routine for MSIX, we've already done
511 ring
->napi
.poll
= &igb_clean_rx_ring_msix
;
515 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
516 &igb_msix_other
, 0, netdev
->name
, netdev
);
520 igb_configure_msix(adapter
);
526 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
528 if (adapter
->msix_entries
) {
529 pci_disable_msix(adapter
->pdev
);
530 kfree(adapter
->msix_entries
);
531 adapter
->msix_entries
= NULL
;
532 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
)
533 pci_disable_msi(adapter
->pdev
);
539 * igb_set_interrupt_capability - set MSI or MSI-X if supported
541 * Attempt to configure interrupts using the best available
542 * capabilities of the hardware and kernel.
544 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
549 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
550 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
552 if (!adapter
->msix_entries
)
555 for (i
= 0; i
< numvecs
; i
++)
556 adapter
->msix_entries
[i
].entry
= i
;
558 err
= pci_enable_msix(adapter
->pdev
,
559 adapter
->msix_entries
,
564 igb_reset_interrupt_capability(adapter
);
566 /* If we can't do MSI-X, try MSI */
568 adapter
->num_rx_queues
= 1;
569 adapter
->num_tx_queues
= 1;
570 if (!pci_enable_msi(adapter
->pdev
))
571 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
573 /* Notify the stack of the (possibly) reduced Tx Queue count. */
574 adapter
->netdev
->real_num_tx_queues
= adapter
->num_tx_queues
;
579 * igb_request_irq - initialize interrupts
581 * Attempts to configure interrupts using the best available
582 * capabilities of the hardware and kernel.
584 static int igb_request_irq(struct igb_adapter
*adapter
)
586 struct net_device
*netdev
= adapter
->netdev
;
587 struct e1000_hw
*hw
= &adapter
->hw
;
590 if (adapter
->msix_entries
) {
591 err
= igb_request_msix(adapter
);
594 /* fall back to MSI */
595 igb_reset_interrupt_capability(adapter
);
596 if (!pci_enable_msi(adapter
->pdev
))
597 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
598 igb_free_all_tx_resources(adapter
);
599 igb_free_all_rx_resources(adapter
);
600 adapter
->num_rx_queues
= 1;
601 igb_alloc_queues(adapter
);
603 switch (hw
->mac
.type
) {
605 wr32(E1000_MSIXBM(0),
606 (E1000_EICR_RX_QUEUE0
| E1000_EIMS_OTHER
));
609 wr32(E1000_IVAR0
, E1000_IVAR_VALID
);
616 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
617 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
618 netdev
->name
, netdev
);
621 /* fall back to legacy interrupts */
622 igb_reset_interrupt_capability(adapter
);
623 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
626 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
627 netdev
->name
, netdev
);
630 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
637 static void igb_free_irq(struct igb_adapter
*adapter
)
639 struct net_device
*netdev
= adapter
->netdev
;
641 if (adapter
->msix_entries
) {
644 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
645 free_irq(adapter
->msix_entries
[vector
++].vector
,
646 &(adapter
->tx_ring
[i
]));
647 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
648 free_irq(adapter
->msix_entries
[vector
++].vector
,
649 &(adapter
->rx_ring
[i
]));
651 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
655 free_irq(adapter
->pdev
->irq
, netdev
);
659 * igb_irq_disable - Mask off interrupt generation on the NIC
660 * @adapter: board private structure
662 static void igb_irq_disable(struct igb_adapter
*adapter
)
664 struct e1000_hw
*hw
= &adapter
->hw
;
666 if (adapter
->msix_entries
) {
668 wr32(E1000_EIMC
, ~0);
675 synchronize_irq(adapter
->pdev
->irq
);
679 * igb_irq_enable - Enable default interrupt generation settings
680 * @adapter: board private structure
682 static void igb_irq_enable(struct igb_adapter
*adapter
)
684 struct e1000_hw
*hw
= &adapter
->hw
;
686 if (adapter
->msix_entries
) {
687 wr32(E1000_EIAC
, adapter
->eims_enable_mask
);
688 wr32(E1000_EIAM
, adapter
->eims_enable_mask
);
689 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
690 wr32(E1000_IMS
, E1000_IMS_LSC
);
692 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
693 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
697 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
699 struct net_device
*netdev
= adapter
->netdev
;
700 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
701 u16 old_vid
= adapter
->mng_vlan_id
;
702 if (adapter
->vlgrp
) {
703 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
704 if (adapter
->hw
.mng_cookie
.status
&
705 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
706 igb_vlan_rx_add_vid(netdev
, vid
);
707 adapter
->mng_vlan_id
= vid
;
709 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
711 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
713 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
714 igb_vlan_rx_kill_vid(netdev
, old_vid
);
716 adapter
->mng_vlan_id
= vid
;
721 * igb_release_hw_control - release control of the h/w to f/w
722 * @adapter: address of board private structure
724 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
725 * For ASF and Pass Through versions of f/w this means that the
726 * driver is no longer loaded.
729 static void igb_release_hw_control(struct igb_adapter
*adapter
)
731 struct e1000_hw
*hw
= &adapter
->hw
;
734 /* Let firmware take over control of h/w */
735 ctrl_ext
= rd32(E1000_CTRL_EXT
);
737 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
742 * igb_get_hw_control - get control of the h/w from f/w
743 * @adapter: address of board private structure
745 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
746 * For ASF and Pass Through versions of f/w this means that
747 * the driver is loaded.
750 static void igb_get_hw_control(struct igb_adapter
*adapter
)
752 struct e1000_hw
*hw
= &adapter
->hw
;
755 /* Let firmware know the driver has taken over */
756 ctrl_ext
= rd32(E1000_CTRL_EXT
);
758 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
762 * igb_configure - configure the hardware for RX and TX
763 * @adapter: private board structure
765 static void igb_configure(struct igb_adapter
*adapter
)
767 struct net_device
*netdev
= adapter
->netdev
;
770 igb_get_hw_control(adapter
);
771 igb_set_multi(netdev
);
773 igb_restore_vlan(adapter
);
775 igb_configure_tx(adapter
);
776 igb_setup_rctl(adapter
);
777 igb_configure_rx(adapter
);
779 igb_rx_fifo_flush_82575(&adapter
->hw
);
781 /* call IGB_DESC_UNUSED which always leaves
782 * at least 1 descriptor unused to make sure
783 * next_to_use != next_to_clean */
784 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
785 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
786 igb_alloc_rx_buffers_adv(ring
, IGB_DESC_UNUSED(ring
));
790 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
795 * igb_up - Open the interface and prepare it to handle traffic
796 * @adapter: board private structure
799 int igb_up(struct igb_adapter
*adapter
)
801 struct e1000_hw
*hw
= &adapter
->hw
;
804 /* hardware has been reset, we need to reload some things */
805 igb_configure(adapter
);
807 clear_bit(__IGB_DOWN
, &adapter
->state
);
809 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
810 napi_enable(&adapter
->rx_ring
[i
].napi
);
811 if (adapter
->msix_entries
)
812 igb_configure_msix(adapter
);
814 /* Clear any pending interrupts. */
816 igb_irq_enable(adapter
);
818 /* Fire a link change interrupt to start the watchdog. */
819 wr32(E1000_ICS
, E1000_ICS_LSC
);
823 void igb_down(struct igb_adapter
*adapter
)
825 struct e1000_hw
*hw
= &adapter
->hw
;
826 struct net_device
*netdev
= adapter
->netdev
;
830 /* signal that we're down so the interrupt handler does not
831 * reschedule our watchdog timer */
832 set_bit(__IGB_DOWN
, &adapter
->state
);
834 /* disable receives in the hardware */
835 rctl
= rd32(E1000_RCTL
);
836 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
837 /* flush and sleep below */
839 netif_tx_stop_all_queues(netdev
);
841 /* disable transmits in the hardware */
842 tctl
= rd32(E1000_TCTL
);
843 tctl
&= ~E1000_TCTL_EN
;
844 wr32(E1000_TCTL
, tctl
);
845 /* flush both disables and wait for them to finish */
849 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
850 napi_disable(&adapter
->rx_ring
[i
].napi
);
852 igb_irq_disable(adapter
);
854 del_timer_sync(&adapter
->watchdog_timer
);
855 del_timer_sync(&adapter
->phy_info_timer
);
857 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
858 netif_carrier_off(netdev
);
859 adapter
->link_speed
= 0;
860 adapter
->link_duplex
= 0;
862 if (!pci_channel_offline(adapter
->pdev
))
864 igb_clean_all_tx_rings(adapter
);
865 igb_clean_all_rx_rings(adapter
);
868 void igb_reinit_locked(struct igb_adapter
*adapter
)
870 WARN_ON(in_interrupt());
871 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
875 clear_bit(__IGB_RESETTING
, &adapter
->state
);
878 void igb_reset(struct igb_adapter
*adapter
)
880 struct e1000_hw
*hw
= &adapter
->hw
;
881 struct e1000_mac_info
*mac
= &hw
->mac
;
882 struct e1000_fc_info
*fc
= &hw
->fc
;
883 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
886 /* Repartition Pba for greater than 9k mtu
887 * To take effect CTRL.RST is required.
889 if (mac
->type
!= e1000_82576
) {
896 if ((adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
897 (mac
->type
< e1000_82576
)) {
898 /* adjust PBA for jumbo frames */
899 wr32(E1000_PBA
, pba
);
901 /* To maintain wire speed transmits, the Tx FIFO should be
902 * large enough to accommodate two full transmit packets,
903 * rounded up to the next 1KB and expressed in KB. Likewise,
904 * the Rx FIFO should be large enough to accommodate at least
905 * one full receive packet and is similarly rounded up and
906 * expressed in KB. */
907 pba
= rd32(E1000_PBA
);
908 /* upper 16 bits has Tx packet buffer allocation size in KB */
909 tx_space
= pba
>> 16;
910 /* lower 16 bits has Rx packet buffer allocation size in KB */
912 /* the tx fifo also stores 16 bytes of information about the tx
913 * but don't include ethernet FCS because hardware appends it */
914 min_tx_space
= (adapter
->max_frame_size
+
915 sizeof(struct e1000_tx_desc
) -
917 min_tx_space
= ALIGN(min_tx_space
, 1024);
919 /* software strips receive CRC, so leave room for it */
920 min_rx_space
= adapter
->max_frame_size
;
921 min_rx_space
= ALIGN(min_rx_space
, 1024);
924 /* If current Tx allocation is less than the min Tx FIFO size,
925 * and the min Tx FIFO size is less than the current Rx FIFO
926 * allocation, take space away from current Rx allocation */
927 if (tx_space
< min_tx_space
&&
928 ((min_tx_space
- tx_space
) < pba
)) {
929 pba
= pba
- (min_tx_space
- tx_space
);
931 /* if short on rx space, rx wins and must trump tx
933 if (pba
< min_rx_space
)
936 wr32(E1000_PBA
, pba
);
939 /* flow control settings */
940 /* The high water mark must be low enough to fit one full frame
941 * (or the size used for early receive) above it in the Rx FIFO.
942 * Set it to the lower of:
943 * - 90% of the Rx FIFO size, or
944 * - the full Rx FIFO size minus one full frame */
945 hwm
= min(((pba
<< 10) * 9 / 10),
946 ((pba
<< 10) - 2 * adapter
->max_frame_size
));
948 if (mac
->type
< e1000_82576
) {
949 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
950 fc
->low_water
= fc
->high_water
- 8;
952 fc
->high_water
= hwm
& 0xFFF0; /* 16-byte granularity */
953 fc
->low_water
= fc
->high_water
- 16;
955 fc
->pause_time
= 0xFFFF;
957 fc
->type
= fc
->original_type
;
959 /* Allow time for pending master requests to run */
960 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
963 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
964 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
966 igb_update_mng_vlan(adapter
);
968 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
969 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
971 igb_reset_adaptive(&adapter
->hw
);
972 igb_get_phy_info(&adapter
->hw
);
976 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
977 * @pdev: PCI device information struct
979 * Returns true if an adapter needs ioport resources
981 static int igb_is_need_ioport(struct pci_dev
*pdev
)
983 switch (pdev
->device
) {
984 /* Currently there are no adapters that need ioport resources */
990 static const struct net_device_ops igb_netdev_ops
= {
991 .ndo_open
= igb_open
,
992 .ndo_stop
= igb_close
,
993 .ndo_start_xmit
= igb_xmit_frame_adv
,
994 .ndo_get_stats
= igb_get_stats
,
995 .ndo_set_multicast_list
= igb_set_multi
,
996 .ndo_set_mac_address
= igb_set_mac
,
997 .ndo_change_mtu
= igb_change_mtu
,
998 .ndo_do_ioctl
= igb_ioctl
,
999 .ndo_tx_timeout
= igb_tx_timeout
,
1000 .ndo_validate_addr
= eth_validate_addr
,
1001 .ndo_vlan_rx_register
= igb_vlan_rx_register
,
1002 .ndo_vlan_rx_add_vid
= igb_vlan_rx_add_vid
,
1003 .ndo_vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
,
1004 #ifdef CONFIG_NET_POLL_CONTROLLER
1005 .ndo_poll_controller
= igb_netpoll
,
1010 * igb_probe - Device Initialization Routine
1011 * @pdev: PCI device information struct
1012 * @ent: entry in igb_pci_tbl
1014 * Returns 0 on success, negative on failure
1016 * igb_probe initializes an adapter identified by a pci_dev structure.
1017 * The OS initialization, configuring of the adapter private structure,
1018 * and a hardware reset occur.
1020 static int __devinit
igb_probe(struct pci_dev
*pdev
,
1021 const struct pci_device_id
*ent
)
1023 struct net_device
*netdev
;
1024 struct igb_adapter
*adapter
;
1025 struct e1000_hw
*hw
;
1026 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
1027 unsigned long mmio_start
, mmio_len
;
1028 int i
, err
, pci_using_dac
;
1029 u16 eeprom_data
= 0;
1030 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
1032 int bars
, need_ioport
;
1034 /* do not allocate ioport bars when not needed */
1035 need_ioport
= igb_is_need_ioport(pdev
);
1037 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1038 err
= pci_enable_device(pdev
);
1040 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
1041 err
= pci_enable_device_mem(pdev
);
1047 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
1049 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
1053 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
1055 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
1057 dev_err(&pdev
->dev
, "No usable DMA "
1058 "configuration, aborting\n");
1064 err
= pci_request_selected_regions(pdev
, bars
, igb_driver_name
);
1068 err
= pci_enable_pcie_error_reporting(pdev
);
1070 dev_err(&pdev
->dev
, "pci_enable_pcie_error_reporting failed "
1072 /* non-fatal, continue */
1075 pci_set_master(pdev
);
1076 pci_save_state(pdev
);
1079 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
), IGB_MAX_TX_QUEUES
);
1081 goto err_alloc_etherdev
;
1083 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1085 pci_set_drvdata(pdev
, netdev
);
1086 adapter
= netdev_priv(netdev
);
1087 adapter
->netdev
= netdev
;
1088 adapter
->pdev
= pdev
;
1091 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
1092 adapter
->bars
= bars
;
1093 adapter
->need_ioport
= need_ioport
;
1095 mmio_start
= pci_resource_start(pdev
, 0);
1096 mmio_len
= pci_resource_len(pdev
, 0);
1099 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
1100 if (!adapter
->hw
.hw_addr
)
1103 netdev
->netdev_ops
= &igb_netdev_ops
;
1104 igb_set_ethtool_ops(netdev
);
1105 netdev
->watchdog_timeo
= 5 * HZ
;
1107 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1109 netdev
->mem_start
= mmio_start
;
1110 netdev
->mem_end
= mmio_start
+ mmio_len
;
1112 /* PCI config space info */
1113 hw
->vendor_id
= pdev
->vendor
;
1114 hw
->device_id
= pdev
->device
;
1115 hw
->revision_id
= pdev
->revision
;
1116 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1117 hw
->subsystem_device_id
= pdev
->subsystem_device
;
1119 /* setup the private structure */
1121 /* Copy the default MAC, PHY and NVM function pointers */
1122 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
1123 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
1124 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
1125 /* Initialize skew-specific constants */
1126 err
= ei
->get_invariants(hw
);
1130 err
= igb_sw_init(adapter
);
1134 igb_get_bus_info_pcie(hw
);
1137 switch (hw
->mac
.type
) {
1139 adapter
->flags
|= IGB_FLAG_NEED_CTX_IDX
;
1146 hw
->phy
.autoneg_wait_to_complete
= false;
1147 hw
->mac
.adaptive_ifs
= true;
1149 /* Copper options */
1150 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1151 hw
->phy
.mdix
= AUTO_ALL_MODES
;
1152 hw
->phy
.disable_polarity_correction
= false;
1153 hw
->phy
.ms_type
= e1000_ms_hw_default
;
1156 if (igb_check_reset_block(hw
))
1157 dev_info(&pdev
->dev
,
1158 "PHY reset is blocked due to SOL/IDER session.\n");
1160 netdev
->features
= NETIF_F_SG
|
1162 NETIF_F_HW_VLAN_TX
|
1163 NETIF_F_HW_VLAN_RX
|
1164 NETIF_F_HW_VLAN_FILTER
;
1166 netdev
->features
|= NETIF_F_TSO
;
1167 netdev
->features
|= NETIF_F_TSO6
;
1169 #ifdef CONFIG_IGB_LRO
1170 netdev
->features
|= NETIF_F_LRO
;
1173 netdev
->vlan_features
|= NETIF_F_TSO
;
1174 netdev
->vlan_features
|= NETIF_F_TSO6
;
1175 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1176 netdev
->vlan_features
|= NETIF_F_SG
;
1179 netdev
->features
|= NETIF_F_HIGHDMA
;
1181 netdev
->features
|= NETIF_F_LLTX
;
1182 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
1184 /* before reading the NVM, reset the controller to put the device in a
1185 * known good starting state */
1186 hw
->mac
.ops
.reset_hw(hw
);
1188 /* make sure the NVM is good */
1189 if (igb_validate_nvm_checksum(hw
) < 0) {
1190 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1195 /* copy the MAC address out of the NVM */
1196 if (hw
->mac
.ops
.read_mac_addr(hw
))
1197 dev_err(&pdev
->dev
, "NVM Read Error\n");
1199 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1200 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1202 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1203 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1208 init_timer(&adapter
->watchdog_timer
);
1209 adapter
->watchdog_timer
.function
= &igb_watchdog
;
1210 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1212 init_timer(&adapter
->phy_info_timer
);
1213 adapter
->phy_info_timer
.function
= &igb_update_phy_info
;
1214 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1216 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1217 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1219 /* Initialize link & ring properties that are user-changeable */
1220 adapter
->tx_ring
->count
= 256;
1221 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1222 adapter
->tx_ring
[i
].count
= adapter
->tx_ring
->count
;
1223 adapter
->rx_ring
->count
= 256;
1224 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1225 adapter
->rx_ring
[i
].count
= adapter
->rx_ring
->count
;
1227 adapter
->fc_autoneg
= true;
1228 hw
->mac
.autoneg
= true;
1229 hw
->phy
.autoneg_advertised
= 0x2f;
1231 hw
->fc
.original_type
= e1000_fc_default
;
1232 hw
->fc
.type
= e1000_fc_default
;
1234 adapter
->itr_setting
= 3;
1235 adapter
->itr
= IGB_START_ITR
;
1237 igb_validate_mdi_setting(hw
);
1239 adapter
->rx_csum
= 1;
1241 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1242 * enable the ACPI Magic Packet filter
1245 if (hw
->bus
.func
== 0 ||
1246 hw
->device_id
== E1000_DEV_ID_82575EB_COPPER
)
1247 hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL3_PORT_A
, 1,
1250 if (eeprom_data
& eeprom_apme_mask
)
1251 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1253 /* now that we have the eeprom settings, apply the special cases where
1254 * the eeprom may be wrong or the board simply won't support wake on
1255 * lan on a particular port */
1256 switch (pdev
->device
) {
1257 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1258 adapter
->eeprom_wol
= 0;
1260 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1261 case E1000_DEV_ID_82576_FIBER
:
1262 case E1000_DEV_ID_82576_SERDES
:
1263 /* Wake events only supported on port A for dual fiber
1264 * regardless of eeprom setting */
1265 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1266 adapter
->eeprom_wol
= 0;
1270 /* initialize the wol settings based on the eeprom settings */
1271 adapter
->wol
= adapter
->eeprom_wol
;
1272 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1274 /* reset the hardware with the new settings */
1277 /* let the f/w know that the h/w is now under the control of the
1279 igb_get_hw_control(adapter
);
1281 /* tell the stack to leave us alone until igb_open() is called */
1282 netif_carrier_off(netdev
);
1283 netif_tx_stop_all_queues(netdev
);
1285 strcpy(netdev
->name
, "eth%d");
1286 err
= register_netdev(netdev
);
1290 #ifdef CONFIG_IGB_DCA
1291 if (dca_add_requester(&pdev
->dev
) == 0) {
1292 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
1293 dev_info(&pdev
->dev
, "DCA enabled\n");
1294 /* Always use CB2 mode, difference is masked
1295 * in the CB driver. */
1296 wr32(E1000_DCA_CTRL
, 2);
1297 igb_setup_dca(adapter
);
1301 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1302 /* print bus type/speed/width info */
1303 dev_info(&pdev
->dev
, "%s: (PCIe:%s:%s) %pM\n",
1305 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1306 ? "2.5Gb/s" : "unknown"),
1307 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
)
1308 ? "Width x4" : (hw
->bus
.width
== e1000_bus_width_pcie_x1
)
1309 ? "Width x1" : "unknown"),
1312 igb_read_part_num(hw
, &part_num
);
1313 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1314 (part_num
>> 8), (part_num
& 0xff));
1316 dev_info(&pdev
->dev
,
1317 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1318 adapter
->msix_entries
? "MSI-X" :
1319 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
1320 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1325 igb_release_hw_control(adapter
);
1327 if (!igb_check_reset_block(hw
))
1330 if (hw
->flash_address
)
1331 iounmap(hw
->flash_address
);
1333 igb_remove_device(hw
);
1334 igb_free_queues(adapter
);
1337 iounmap(hw
->hw_addr
);
1339 free_netdev(netdev
);
1341 pci_release_selected_regions(pdev
, bars
);
1344 pci_disable_device(pdev
);
1349 * igb_remove - Device Removal Routine
1350 * @pdev: PCI device information struct
1352 * igb_remove is called by the PCI subsystem to alert the driver
1353 * that it should release a PCI device. The could be caused by a
1354 * Hot-Plug event, or because the driver is going to be removed from
1357 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1359 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1360 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1361 #ifdef CONFIG_IGB_DCA
1362 struct e1000_hw
*hw
= &adapter
->hw
;
1366 /* flush_scheduled work may reschedule our watchdog task, so
1367 * explicitly disable watchdog tasks from being rescheduled */
1368 set_bit(__IGB_DOWN
, &adapter
->state
);
1369 del_timer_sync(&adapter
->watchdog_timer
);
1370 del_timer_sync(&adapter
->phy_info_timer
);
1372 flush_scheduled_work();
1374 #ifdef CONFIG_IGB_DCA
1375 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
1376 dev_info(&pdev
->dev
, "DCA disabled\n");
1377 dca_remove_requester(&pdev
->dev
);
1378 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
1379 wr32(E1000_DCA_CTRL
, 1);
1383 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1384 * would have already happened in close and is redundant. */
1385 igb_release_hw_control(adapter
);
1387 unregister_netdev(netdev
);
1389 if (!igb_check_reset_block(&adapter
->hw
))
1390 igb_reset_phy(&adapter
->hw
);
1392 igb_remove_device(&adapter
->hw
);
1393 igb_reset_interrupt_capability(adapter
);
1395 igb_free_queues(adapter
);
1397 iounmap(adapter
->hw
.hw_addr
);
1398 if (adapter
->hw
.flash_address
)
1399 iounmap(adapter
->hw
.flash_address
);
1400 pci_release_selected_regions(pdev
, adapter
->bars
);
1402 free_netdev(netdev
);
1404 err
= pci_disable_pcie_error_reporting(pdev
);
1407 "pci_disable_pcie_error_reporting failed 0x%x\n", err
);
1409 pci_disable_device(pdev
);
1413 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1414 * @adapter: board private structure to initialize
1416 * igb_sw_init initializes the Adapter private data structure.
1417 * Fields are initialized based on PCI device information and
1418 * OS network device settings (MTU size).
1420 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1422 struct e1000_hw
*hw
= &adapter
->hw
;
1423 struct net_device
*netdev
= adapter
->netdev
;
1424 struct pci_dev
*pdev
= adapter
->pdev
;
1426 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1428 adapter
->tx_ring_count
= IGB_DEFAULT_TXD
;
1429 adapter
->rx_ring_count
= IGB_DEFAULT_RXD
;
1430 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1431 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1432 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1433 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1435 /* Number of supported queues. */
1436 /* Having more queues than CPUs doesn't make sense. */
1437 adapter
->num_rx_queues
= min_t(u32
, IGB_MAX_RX_QUEUES
, num_online_cpus());
1438 adapter
->num_tx_queues
= min_t(u32
, IGB_MAX_TX_QUEUES
, num_online_cpus());
1440 /* This call may decrease the number of queues depending on
1441 * interrupt mode. */
1442 igb_set_interrupt_capability(adapter
);
1444 if (igb_alloc_queues(adapter
)) {
1445 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1449 /* Explicitly disable IRQ since the NIC can be in any state. */
1450 igb_irq_disable(adapter
);
1452 set_bit(__IGB_DOWN
, &adapter
->state
);
1457 * igb_open - Called when a network interface is made active
1458 * @netdev: network interface device structure
1460 * Returns 0 on success, negative value on failure
1462 * The open entry point is called when a network interface is made
1463 * active by the system (IFF_UP). At this point all resources needed
1464 * for transmit and receive operations are allocated, the interrupt
1465 * handler is registered with the OS, the watchdog timer is started,
1466 * and the stack is notified that the interface is ready.
1468 static int igb_open(struct net_device
*netdev
)
1470 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1471 struct e1000_hw
*hw
= &adapter
->hw
;
1475 /* disallow open during test */
1476 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1479 /* allocate transmit descriptors */
1480 err
= igb_setup_all_tx_resources(adapter
);
1484 /* allocate receive descriptors */
1485 err
= igb_setup_all_rx_resources(adapter
);
1489 /* e1000_power_up_phy(adapter); */
1491 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1492 if ((adapter
->hw
.mng_cookie
.status
&
1493 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1494 igb_update_mng_vlan(adapter
);
1496 /* before we allocate an interrupt, we must be ready to handle it.
1497 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1498 * as soon as we call pci_request_irq, so we have to setup our
1499 * clean_rx handler before we do so. */
1500 igb_configure(adapter
);
1502 err
= igb_request_irq(adapter
);
1506 /* From here on the code is the same as igb_up() */
1507 clear_bit(__IGB_DOWN
, &adapter
->state
);
1509 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1510 napi_enable(&adapter
->rx_ring
[i
].napi
);
1512 /* Clear any pending interrupts. */
1515 igb_irq_enable(adapter
);
1517 netif_tx_start_all_queues(netdev
);
1519 /* Fire a link status change interrupt to start the watchdog. */
1520 wr32(E1000_ICS
, E1000_ICS_LSC
);
1525 igb_release_hw_control(adapter
);
1526 /* e1000_power_down_phy(adapter); */
1527 igb_free_all_rx_resources(adapter
);
1529 igb_free_all_tx_resources(adapter
);
1537 * igb_close - Disables a network interface
1538 * @netdev: network interface device structure
1540 * Returns 0, this is not allowed to fail
1542 * The close entry point is called when an interface is de-activated
1543 * by the OS. The hardware is still under the driver's control, but
1544 * needs to be disabled. A global MAC reset is issued to stop the
1545 * hardware, and all transmit and receive resources are freed.
1547 static int igb_close(struct net_device
*netdev
)
1549 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1551 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1554 igb_free_irq(adapter
);
1556 igb_free_all_tx_resources(adapter
);
1557 igb_free_all_rx_resources(adapter
);
1559 /* kill manageability vlan ID if supported, but not if a vlan with
1560 * the same ID is registered on the host OS (let 8021q kill it) */
1561 if ((adapter
->hw
.mng_cookie
.status
&
1562 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1564 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1565 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1571 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1572 * @adapter: board private structure
1573 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1575 * Return 0 on success, negative on failure
1578 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1579 struct igb_ring
*tx_ring
)
1581 struct pci_dev
*pdev
= adapter
->pdev
;
1584 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1585 tx_ring
->buffer_info
= vmalloc(size
);
1586 if (!tx_ring
->buffer_info
)
1588 memset(tx_ring
->buffer_info
, 0, size
);
1590 /* round up to nearest 4K */
1591 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1592 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1594 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1600 tx_ring
->adapter
= adapter
;
1601 tx_ring
->next_to_use
= 0;
1602 tx_ring
->next_to_clean
= 0;
1606 vfree(tx_ring
->buffer_info
);
1607 dev_err(&adapter
->pdev
->dev
,
1608 "Unable to allocate memory for the transmit descriptor ring\n");
1613 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1614 * (Descriptors) for all queues
1615 * @adapter: board private structure
1617 * Return 0 on success, negative on failure
1619 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1624 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1625 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1627 dev_err(&adapter
->pdev
->dev
,
1628 "Allocation for Tx Queue %u failed\n", i
);
1629 for (i
--; i
>= 0; i
--)
1630 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
1635 for (i
= 0; i
< IGB_MAX_TX_QUEUES
; i
++) {
1636 r_idx
= i
% adapter
->num_tx_queues
;
1637 adapter
->multi_tx_table
[i
] = &adapter
->tx_ring
[r_idx
];
1643 * igb_configure_tx - Configure transmit Unit after Reset
1644 * @adapter: board private structure
1646 * Configure the Tx unit of the MAC after a reset.
1648 static void igb_configure_tx(struct igb_adapter
*adapter
)
1651 struct e1000_hw
*hw
= &adapter
->hw
;
1656 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1657 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
1659 wr32(E1000_TDLEN(j
),
1660 ring
->count
* sizeof(struct e1000_tx_desc
));
1662 wr32(E1000_TDBAL(j
),
1663 tdba
& 0x00000000ffffffffULL
);
1664 wr32(E1000_TDBAH(j
), tdba
>> 32);
1666 ring
->head
= E1000_TDH(j
);
1667 ring
->tail
= E1000_TDT(j
);
1668 writel(0, hw
->hw_addr
+ ring
->tail
);
1669 writel(0, hw
->hw_addr
+ ring
->head
);
1670 txdctl
= rd32(E1000_TXDCTL(j
));
1671 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1672 wr32(E1000_TXDCTL(j
), txdctl
);
1674 /* Turn off Relaxed Ordering on head write-backs. The
1675 * writebacks MUST be delivered in order or it will
1676 * completely screw up our bookeeping.
1678 txctrl
= rd32(E1000_DCA_TXCTRL(j
));
1679 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1680 wr32(E1000_DCA_TXCTRL(j
), txctrl
);
1685 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1687 /* Program the Transmit Control Register */
1689 tctl
= rd32(E1000_TCTL
);
1690 tctl
&= ~E1000_TCTL_CT
;
1691 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1692 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1694 igb_config_collision_dist(hw
);
1696 /* Setup Transmit Descriptor Settings for eop descriptor */
1697 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1699 /* Enable transmits */
1700 tctl
|= E1000_TCTL_EN
;
1702 wr32(E1000_TCTL
, tctl
);
1706 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1707 * @adapter: board private structure
1708 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1710 * Returns 0 on success, negative on failure
1713 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1714 struct igb_ring
*rx_ring
)
1716 struct pci_dev
*pdev
= adapter
->pdev
;
1719 #ifdef CONFIG_IGB_LRO
1720 size
= sizeof(struct net_lro_desc
) * MAX_LRO_DESCRIPTORS
;
1721 rx_ring
->lro_mgr
.lro_arr
= vmalloc(size
);
1722 if (!rx_ring
->lro_mgr
.lro_arr
)
1724 memset(rx_ring
->lro_mgr
.lro_arr
, 0, size
);
1727 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1728 rx_ring
->buffer_info
= vmalloc(size
);
1729 if (!rx_ring
->buffer_info
)
1731 memset(rx_ring
->buffer_info
, 0, size
);
1733 desc_len
= sizeof(union e1000_adv_rx_desc
);
1735 /* Round up to nearest 4K */
1736 rx_ring
->size
= rx_ring
->count
* desc_len
;
1737 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1739 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1745 rx_ring
->next_to_clean
= 0;
1746 rx_ring
->next_to_use
= 0;
1748 rx_ring
->adapter
= adapter
;
1753 #ifdef CONFIG_IGB_LRO
1754 vfree(rx_ring
->lro_mgr
.lro_arr
);
1755 rx_ring
->lro_mgr
.lro_arr
= NULL
;
1757 vfree(rx_ring
->buffer_info
);
1758 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
1759 "the receive descriptor ring\n");
1764 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1765 * (Descriptors) for all queues
1766 * @adapter: board private structure
1768 * Return 0 on success, negative on failure
1770 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
1774 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1775 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1777 dev_err(&adapter
->pdev
->dev
,
1778 "Allocation for Rx Queue %u failed\n", i
);
1779 for (i
--; i
>= 0; i
--)
1780 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
1789 * igb_setup_rctl - configure the receive control registers
1790 * @adapter: Board private structure
1792 static void igb_setup_rctl(struct igb_adapter
*adapter
)
1794 struct e1000_hw
*hw
= &adapter
->hw
;
1799 rctl
= rd32(E1000_RCTL
);
1801 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1802 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1804 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_RDMTS_HALF
|
1805 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1808 * enable stripping of CRC. It's unlikely this will break BMC
1809 * redirection as it did with e1000. Newer features require
1810 * that the HW strips the CRC.
1812 rctl
|= E1000_RCTL_SECRC
;
1815 * disable store bad packets and clear size bits.
1817 rctl
&= ~(E1000_RCTL_SBP
| E1000_RCTL_SZ_256
);
1819 /* enable LPE when to prevent packets larger than max_frame_size */
1820 rctl
|= E1000_RCTL_LPE
;
1822 /* Setup buffer sizes */
1823 switch (adapter
->rx_buffer_len
) {
1824 case IGB_RXBUFFER_256
:
1825 rctl
|= E1000_RCTL_SZ_256
;
1827 case IGB_RXBUFFER_512
:
1828 rctl
|= E1000_RCTL_SZ_512
;
1831 srrctl
= ALIGN(adapter
->rx_buffer_len
, 1024)
1832 >> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1836 /* 82575 and greater support packet-split where the protocol
1837 * header is placed in skb->data and the packet data is
1838 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1839 * In the case of a non-split, skb->data is linearly filled,
1840 * followed by the page buffers. Therefore, skb->data is
1841 * sized to hold the largest protocol header.
1843 /* allocations using alloc_page take too long for regular MTU
1844 * so only enable packet split for jumbo frames */
1845 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1846 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
1847 srrctl
|= adapter
->rx_ps_hdr_size
<<
1848 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1849 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1851 adapter
->rx_ps_hdr_size
= 0;
1852 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1855 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1856 j
= adapter
->rx_ring
[i
].reg_idx
;
1857 wr32(E1000_SRRCTL(j
), srrctl
);
1860 wr32(E1000_RCTL
, rctl
);
1864 * igb_configure_rx - Configure receive Unit after Reset
1865 * @adapter: board private structure
1867 * Configure the Rx unit of the MAC after a reset.
1869 static void igb_configure_rx(struct igb_adapter
*adapter
)
1872 struct e1000_hw
*hw
= &adapter
->hw
;
1877 /* disable receives while setting up the descriptors */
1878 rctl
= rd32(E1000_RCTL
);
1879 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1883 if (adapter
->itr_setting
> 3)
1884 wr32(E1000_ITR
, adapter
->itr
);
1886 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1887 * the Base and Length of the Rx Descriptor Ring */
1888 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1889 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
1892 wr32(E1000_RDBAL(j
),
1893 rdba
& 0x00000000ffffffffULL
);
1894 wr32(E1000_RDBAH(j
), rdba
>> 32);
1895 wr32(E1000_RDLEN(j
),
1896 ring
->count
* sizeof(union e1000_adv_rx_desc
));
1898 ring
->head
= E1000_RDH(j
);
1899 ring
->tail
= E1000_RDT(j
);
1900 writel(0, hw
->hw_addr
+ ring
->tail
);
1901 writel(0, hw
->hw_addr
+ ring
->head
);
1903 rxdctl
= rd32(E1000_RXDCTL(j
));
1904 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1905 rxdctl
&= 0xFFF00000;
1906 rxdctl
|= IGB_RX_PTHRESH
;
1907 rxdctl
|= IGB_RX_HTHRESH
<< 8;
1908 rxdctl
|= IGB_RX_WTHRESH
<< 16;
1909 wr32(E1000_RXDCTL(j
), rxdctl
);
1910 #ifdef CONFIG_IGB_LRO
1911 /* Intitial LRO Settings */
1912 ring
->lro_mgr
.max_aggr
= MAX_LRO_AGGR
;
1913 ring
->lro_mgr
.max_desc
= MAX_LRO_DESCRIPTORS
;
1914 ring
->lro_mgr
.get_skb_header
= igb_get_skb_hdr
;
1915 ring
->lro_mgr
.features
= LRO_F_NAPI
| LRO_F_EXTRACT_VLAN_ID
;
1916 ring
->lro_mgr
.dev
= adapter
->netdev
;
1917 ring
->lro_mgr
.ip_summed
= CHECKSUM_UNNECESSARY
;
1918 ring
->lro_mgr
.ip_summed_aggr
= CHECKSUM_UNNECESSARY
;
1922 if (adapter
->num_rx_queues
> 1) {
1931 get_random_bytes(&random
[0], 40);
1933 if (hw
->mac
.type
>= e1000_82576
)
1937 for (j
= 0; j
< (32 * 4); j
++) {
1939 adapter
->rx_ring
[(j
% adapter
->num_rx_queues
)].reg_idx
<< shift
;
1942 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
1944 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
1946 /* Fill out hash function seeds */
1947 for (j
= 0; j
< 10; j
++)
1948 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
1950 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1951 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1952 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
1953 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
1954 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
1955 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
1956 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
1957 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
1960 wr32(E1000_MRQC
, mrqc
);
1962 /* Multiqueue and raw packet checksumming are mutually
1963 * exclusive. Note that this not the same as TCP/IP
1964 * checksumming, which works fine. */
1965 rxcsum
= rd32(E1000_RXCSUM
);
1966 rxcsum
|= E1000_RXCSUM_PCSD
;
1967 wr32(E1000_RXCSUM
, rxcsum
);
1969 /* Enable Receive Checksum Offload for TCP and UDP */
1970 rxcsum
= rd32(E1000_RXCSUM
);
1971 if (adapter
->rx_csum
) {
1972 rxcsum
|= E1000_RXCSUM_TUOFL
;
1974 /* Enable IPv4 payload checksum for UDP fragments
1975 * Must be used in conjunction with packet-split. */
1976 if (adapter
->rx_ps_hdr_size
)
1977 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1979 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1980 /* don't need to clear IPPCSE as it defaults to 0 */
1982 wr32(E1000_RXCSUM
, rxcsum
);
1987 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
1989 wr32(E1000_RLPML
, adapter
->max_frame_size
);
1991 /* Enable Receives */
1992 wr32(E1000_RCTL
, rctl
);
1996 * igb_free_tx_resources - Free Tx Resources per Queue
1997 * @tx_ring: Tx descriptor ring for a specific queue
1999 * Free all transmit software resources
2001 void igb_free_tx_resources(struct igb_ring
*tx_ring
)
2003 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
2005 igb_clean_tx_ring(tx_ring
);
2007 vfree(tx_ring
->buffer_info
);
2008 tx_ring
->buffer_info
= NULL
;
2010 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2012 tx_ring
->desc
= NULL
;
2016 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2017 * @adapter: board private structure
2019 * Free all transmit software resources
2021 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
2025 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2026 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
2029 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
2030 struct igb_buffer
*buffer_info
)
2032 if (buffer_info
->dma
) {
2033 pci_unmap_page(adapter
->pdev
,
2035 buffer_info
->length
,
2037 buffer_info
->dma
= 0;
2039 if (buffer_info
->skb
) {
2040 dev_kfree_skb_any(buffer_info
->skb
);
2041 buffer_info
->skb
= NULL
;
2043 buffer_info
->time_stamp
= 0;
2044 /* buffer_info must be completely set up in the transmit path */
2048 * igb_clean_tx_ring - Free Tx Buffers
2049 * @tx_ring: ring to be cleaned
2051 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
2053 struct igb_adapter
*adapter
= tx_ring
->adapter
;
2054 struct igb_buffer
*buffer_info
;
2058 if (!tx_ring
->buffer_info
)
2060 /* Free all the Tx ring sk_buffs */
2062 for (i
= 0; i
< tx_ring
->count
; i
++) {
2063 buffer_info
= &tx_ring
->buffer_info
[i
];
2064 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
2067 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
2068 memset(tx_ring
->buffer_info
, 0, size
);
2070 /* Zero out the descriptor ring */
2072 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2074 tx_ring
->next_to_use
= 0;
2075 tx_ring
->next_to_clean
= 0;
2077 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2078 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2082 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2083 * @adapter: board private structure
2085 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
2089 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2090 igb_clean_tx_ring(&adapter
->tx_ring
[i
]);
2094 * igb_free_rx_resources - Free Rx Resources
2095 * @rx_ring: ring to clean the resources from
2097 * Free all receive software resources
2099 void igb_free_rx_resources(struct igb_ring
*rx_ring
)
2101 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
2103 igb_clean_rx_ring(rx_ring
);
2105 vfree(rx_ring
->buffer_info
);
2106 rx_ring
->buffer_info
= NULL
;
2108 #ifdef CONFIG_IGB_LRO
2109 vfree(rx_ring
->lro_mgr
.lro_arr
);
2110 rx_ring
->lro_mgr
.lro_arr
= NULL
;
2113 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2115 rx_ring
->desc
= NULL
;
2119 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2120 * @adapter: board private structure
2122 * Free all receive software resources
2124 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
2128 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2129 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2133 * igb_clean_rx_ring - Free Rx Buffers per Queue
2134 * @rx_ring: ring to free buffers from
2136 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
2138 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2139 struct igb_buffer
*buffer_info
;
2140 struct pci_dev
*pdev
= adapter
->pdev
;
2144 if (!rx_ring
->buffer_info
)
2146 /* Free all the Rx ring sk_buffs */
2147 for (i
= 0; i
< rx_ring
->count
; i
++) {
2148 buffer_info
= &rx_ring
->buffer_info
[i
];
2149 if (buffer_info
->dma
) {
2150 if (adapter
->rx_ps_hdr_size
)
2151 pci_unmap_single(pdev
, buffer_info
->dma
,
2152 adapter
->rx_ps_hdr_size
,
2153 PCI_DMA_FROMDEVICE
);
2155 pci_unmap_single(pdev
, buffer_info
->dma
,
2156 adapter
->rx_buffer_len
,
2157 PCI_DMA_FROMDEVICE
);
2158 buffer_info
->dma
= 0;
2161 if (buffer_info
->skb
) {
2162 dev_kfree_skb(buffer_info
->skb
);
2163 buffer_info
->skb
= NULL
;
2165 if (buffer_info
->page
) {
2166 if (buffer_info
->page_dma
)
2167 pci_unmap_page(pdev
, buffer_info
->page_dma
,
2169 PCI_DMA_FROMDEVICE
);
2170 put_page(buffer_info
->page
);
2171 buffer_info
->page
= NULL
;
2172 buffer_info
->page_dma
= 0;
2173 buffer_info
->page_offset
= 0;
2177 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
2178 memset(rx_ring
->buffer_info
, 0, size
);
2180 /* Zero out the descriptor ring */
2181 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2183 rx_ring
->next_to_clean
= 0;
2184 rx_ring
->next_to_use
= 0;
2186 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
2187 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
2191 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2192 * @adapter: board private structure
2194 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
2198 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2199 igb_clean_rx_ring(&adapter
->rx_ring
[i
]);
2203 * igb_set_mac - Change the Ethernet Address of the NIC
2204 * @netdev: network interface device structure
2205 * @p: pointer to an address structure
2207 * Returns 0 on success, negative on failure
2209 static int igb_set_mac(struct net_device
*netdev
, void *p
)
2211 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2212 struct sockaddr
*addr
= p
;
2214 if (!is_valid_ether_addr(addr
->sa_data
))
2215 return -EADDRNOTAVAIL
;
2217 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2218 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2220 adapter
->hw
.mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2226 * igb_set_multi - Multicast and Promiscuous mode set
2227 * @netdev: network interface device structure
2229 * The set_multi entry point is called whenever the multicast address
2230 * list or the network interface flags are updated. This routine is
2231 * responsible for configuring the hardware for proper multicast,
2232 * promiscuous mode, and all-multi behavior.
2234 static void igb_set_multi(struct net_device
*netdev
)
2236 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2237 struct e1000_hw
*hw
= &adapter
->hw
;
2238 struct e1000_mac_info
*mac
= &hw
->mac
;
2239 struct dev_mc_list
*mc_ptr
;
2244 /* Check for Promiscuous and All Multicast modes */
2246 rctl
= rd32(E1000_RCTL
);
2248 if (netdev
->flags
& IFF_PROMISC
) {
2249 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2250 rctl
&= ~E1000_RCTL_VFE
;
2252 if (netdev
->flags
& IFF_ALLMULTI
) {
2253 rctl
|= E1000_RCTL_MPE
;
2254 rctl
&= ~E1000_RCTL_UPE
;
2256 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2257 rctl
|= E1000_RCTL_VFE
;
2259 wr32(E1000_RCTL
, rctl
);
2261 if (!netdev
->mc_count
) {
2262 /* nothing to program, so clear mc list */
2263 igb_update_mc_addr_list_82575(hw
, NULL
, 0, 1,
2264 mac
->rar_entry_count
);
2268 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2272 /* The shared function expects a packed array of only addresses. */
2273 mc_ptr
= netdev
->mc_list
;
2275 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2278 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2279 mc_ptr
= mc_ptr
->next
;
2281 igb_update_mc_addr_list_82575(hw
, mta_list
, i
, 1,
2282 mac
->rar_entry_count
);
2286 /* Need to wait a few seconds after link up to get diagnostic information from
2288 static void igb_update_phy_info(unsigned long data
)
2290 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2291 igb_get_phy_info(&adapter
->hw
);
2295 * igb_watchdog - Timer Call-back
2296 * @data: pointer to adapter cast into an unsigned long
2298 static void igb_watchdog(unsigned long data
)
2300 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2301 /* Do the rest outside of interrupt context */
2302 schedule_work(&adapter
->watchdog_task
);
2305 static void igb_watchdog_task(struct work_struct
*work
)
2307 struct igb_adapter
*adapter
= container_of(work
,
2308 struct igb_adapter
, watchdog_task
);
2309 struct e1000_hw
*hw
= &adapter
->hw
;
2311 struct net_device
*netdev
= adapter
->netdev
;
2312 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2313 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2319 if ((netif_carrier_ok(netdev
)) &&
2320 (rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2323 ret_val
= hw
->mac
.ops
.check_for_link(&adapter
->hw
);
2324 if ((ret_val
== E1000_ERR_PHY
) &&
2325 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2327 E1000_PHY_CTRL_GBE_DISABLE
))
2328 dev_info(&adapter
->pdev
->dev
,
2329 "Gigabit has been disabled, downgrading speed\n");
2331 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
2332 !(rd32(E1000_TXCW
) & E1000_TXCW_ANE
))
2333 link
= mac
->serdes_has_link
;
2335 link
= rd32(E1000_STATUS
) &
2339 if (!netif_carrier_ok(netdev
)) {
2341 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2342 &adapter
->link_speed
,
2343 &adapter
->link_duplex
);
2345 ctrl
= rd32(E1000_CTRL
);
2346 /* Links status message must follow this format */
2347 printk(KERN_INFO
"igb: %s NIC Link is Up %d Mbps %s, "
2348 "Flow Control: %s\n",
2350 adapter
->link_speed
,
2351 adapter
->link_duplex
== FULL_DUPLEX
?
2352 "Full Duplex" : "Half Duplex",
2353 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2354 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2355 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2356 E1000_CTRL_TFCE
) ? "TX" : "None")));
2358 /* tweak tx_queue_len according to speed/duplex and
2359 * adjust the timeout factor */
2360 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2361 adapter
->tx_timeout_factor
= 1;
2362 switch (adapter
->link_speed
) {
2364 netdev
->tx_queue_len
= 10;
2365 adapter
->tx_timeout_factor
= 14;
2368 netdev
->tx_queue_len
= 100;
2369 /* maybe add some timeout factor ? */
2373 netif_carrier_on(netdev
);
2374 netif_tx_wake_all_queues(netdev
);
2376 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2377 mod_timer(&adapter
->phy_info_timer
,
2378 round_jiffies(jiffies
+ 2 * HZ
));
2381 if (netif_carrier_ok(netdev
)) {
2382 adapter
->link_speed
= 0;
2383 adapter
->link_duplex
= 0;
2384 /* Links status message must follow this format */
2385 printk(KERN_INFO
"igb: %s NIC Link is Down\n",
2387 netif_carrier_off(netdev
);
2388 netif_tx_stop_all_queues(netdev
);
2389 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2390 mod_timer(&adapter
->phy_info_timer
,
2391 round_jiffies(jiffies
+ 2 * HZ
));
2396 igb_update_stats(adapter
);
2398 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2399 adapter
->tpt_old
= adapter
->stats
.tpt
;
2400 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2401 adapter
->colc_old
= adapter
->stats
.colc
;
2403 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2404 adapter
->gorc_old
= adapter
->stats
.gorc
;
2405 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2406 adapter
->gotc_old
= adapter
->stats
.gotc
;
2408 igb_update_adaptive(&adapter
->hw
);
2410 if (!netif_carrier_ok(netdev
)) {
2411 if (IGB_DESC_UNUSED(tx_ring
) + 1 < tx_ring
->count
) {
2412 /* We've lost link, so the controller stops DMA,
2413 * but we've got queued Tx work that's never going
2414 * to get done, so reset controller to flush Tx.
2415 * (Do the reset outside of interrupt context). */
2416 adapter
->tx_timeout_count
++;
2417 schedule_work(&adapter
->reset_task
);
2421 /* Cause software interrupt to ensure rx ring is cleaned */
2422 if (adapter
->msix_entries
) {
2423 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2424 eics
|= adapter
->rx_ring
[i
].eims_value
;
2425 wr32(E1000_EICS
, eics
);
2427 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2430 /* Force detection of hung controller every watchdog period */
2431 tx_ring
->detect_tx_hung
= true;
2433 /* Reset the timer */
2434 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2435 mod_timer(&adapter
->watchdog_timer
,
2436 round_jiffies(jiffies
+ 2 * HZ
));
2439 enum latency_range
{
2443 latency_invalid
= 255
2448 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2450 * Stores a new ITR value based on strictly on packet size. This
2451 * algorithm is less sophisticated than that used in igb_update_itr,
2452 * due to the difficulty of synchronizing statistics across multiple
2453 * receive rings. The divisors and thresholds used by this fuction
2454 * were determined based on theoretical maximum wire speed and testing
2455 * data, in order to minimize response time while increasing bulk
2457 * This functionality is controlled by the InterruptThrottleRate module
2458 * parameter (see igb_param.c)
2459 * NOTE: This function is called only when operating in a multiqueue
2460 * receive environment.
2461 * @rx_ring: pointer to ring
2463 static void igb_update_ring_itr(struct igb_ring
*rx_ring
)
2465 int new_val
= rx_ring
->itr_val
;
2466 int avg_wire_size
= 0;
2467 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2469 if (!rx_ring
->total_packets
)
2470 goto clear_counts
; /* no packets, so don't do anything */
2472 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2473 * ints/sec - ITR timer value of 120 ticks.
2475 if (adapter
->link_speed
!= SPEED_1000
) {
2479 avg_wire_size
= rx_ring
->total_bytes
/ rx_ring
->total_packets
;
2481 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2482 avg_wire_size
+= 24;
2484 /* Don't starve jumbo frames */
2485 avg_wire_size
= min(avg_wire_size
, 3000);
2487 /* Give a little boost to mid-size frames */
2488 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
2489 new_val
= avg_wire_size
/ 3;
2491 new_val
= avg_wire_size
/ 2;
2494 if (new_val
!= rx_ring
->itr_val
) {
2495 rx_ring
->itr_val
= new_val
;
2496 rx_ring
->set_itr
= 1;
2499 rx_ring
->total_bytes
= 0;
2500 rx_ring
->total_packets
= 0;
2504 * igb_update_itr - update the dynamic ITR value based on statistics
2505 * Stores a new ITR value based on packets and byte
2506 * counts during the last interrupt. The advantage of per interrupt
2507 * computation is faster updates and more accurate ITR for the current
2508 * traffic pattern. Constants in this function were computed
2509 * based on theoretical maximum wire speed and thresholds were set based
2510 * on testing data as well as attempting to minimize response time
2511 * while increasing bulk throughput.
2512 * this functionality is controlled by the InterruptThrottleRate module
2513 * parameter (see igb_param.c)
2514 * NOTE: These calculations are only valid when operating in a single-
2515 * queue environment.
2516 * @adapter: pointer to adapter
2517 * @itr_setting: current adapter->itr
2518 * @packets: the number of packets during this measurement interval
2519 * @bytes: the number of bytes during this measurement interval
2521 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2522 int packets
, int bytes
)
2524 unsigned int retval
= itr_setting
;
2527 goto update_itr_done
;
2529 switch (itr_setting
) {
2530 case lowest_latency
:
2531 /* handle TSO and jumbo frames */
2532 if (bytes
/packets
> 8000)
2533 retval
= bulk_latency
;
2534 else if ((packets
< 5) && (bytes
> 512))
2535 retval
= low_latency
;
2537 case low_latency
: /* 50 usec aka 20000 ints/s */
2538 if (bytes
> 10000) {
2539 /* this if handles the TSO accounting */
2540 if (bytes
/packets
> 8000) {
2541 retval
= bulk_latency
;
2542 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2543 retval
= bulk_latency
;
2544 } else if ((packets
> 35)) {
2545 retval
= lowest_latency
;
2547 } else if (bytes
/packets
> 2000) {
2548 retval
= bulk_latency
;
2549 } else if (packets
<= 2 && bytes
< 512) {
2550 retval
= lowest_latency
;
2553 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2554 if (bytes
> 25000) {
2556 retval
= low_latency
;
2557 } else if (bytes
< 6000) {
2558 retval
= low_latency
;
2567 static void igb_set_itr(struct igb_adapter
*adapter
)
2570 u32 new_itr
= adapter
->itr
;
2572 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2573 if (adapter
->link_speed
!= SPEED_1000
) {
2579 adapter
->rx_itr
= igb_update_itr(adapter
,
2581 adapter
->rx_ring
->total_packets
,
2582 adapter
->rx_ring
->total_bytes
);
2584 if (adapter
->rx_ring
->buddy
) {
2585 adapter
->tx_itr
= igb_update_itr(adapter
,
2587 adapter
->tx_ring
->total_packets
,
2588 adapter
->tx_ring
->total_bytes
);
2590 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2592 current_itr
= adapter
->rx_itr
;
2595 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2596 if (adapter
->itr_setting
== 3 &&
2597 current_itr
== lowest_latency
)
2598 current_itr
= low_latency
;
2600 switch (current_itr
) {
2601 /* counts and packets in update_itr are dependent on these numbers */
2602 case lowest_latency
:
2606 new_itr
= 20000; /* aka hwitr = ~200 */
2616 adapter
->rx_ring
->total_bytes
= 0;
2617 adapter
->rx_ring
->total_packets
= 0;
2618 if (adapter
->rx_ring
->buddy
) {
2619 adapter
->rx_ring
->buddy
->total_bytes
= 0;
2620 adapter
->rx_ring
->buddy
->total_packets
= 0;
2623 if (new_itr
!= adapter
->itr
) {
2624 /* this attempts to bias the interrupt rate towards Bulk
2625 * by adding intermediate steps when interrupt rate is
2627 new_itr
= new_itr
> adapter
->itr
?
2628 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2630 /* Don't write the value here; it resets the adapter's
2631 * internal timer, and causes us to delay far longer than
2632 * we should between interrupts. Instead, we write the ITR
2633 * value at the beginning of the next interrupt so the timing
2634 * ends up being correct.
2636 adapter
->itr
= new_itr
;
2637 adapter
->rx_ring
->itr_val
= 1000000000 / (new_itr
* 256);
2638 adapter
->rx_ring
->set_itr
= 1;
2645 #define IGB_TX_FLAGS_CSUM 0x00000001
2646 #define IGB_TX_FLAGS_VLAN 0x00000002
2647 #define IGB_TX_FLAGS_TSO 0x00000004
2648 #define IGB_TX_FLAGS_IPV4 0x00000008
2649 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2650 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2652 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
2653 struct igb_ring
*tx_ring
,
2654 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2656 struct e1000_adv_tx_context_desc
*context_desc
;
2659 struct igb_buffer
*buffer_info
;
2660 u32 info
= 0, tu_cmd
= 0;
2661 u32 mss_l4len_idx
, l4len
;
2664 if (skb_header_cloned(skb
)) {
2665 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2670 l4len
= tcp_hdrlen(skb
);
2673 if (skb
->protocol
== htons(ETH_P_IP
)) {
2674 struct iphdr
*iph
= ip_hdr(skb
);
2677 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2681 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2682 ipv6_hdr(skb
)->payload_len
= 0;
2683 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2684 &ipv6_hdr(skb
)->daddr
,
2688 i
= tx_ring
->next_to_use
;
2690 buffer_info
= &tx_ring
->buffer_info
[i
];
2691 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2692 /* VLAN MACLEN IPLEN */
2693 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2694 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2695 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2696 *hdr_len
+= skb_network_offset(skb
);
2697 info
|= skb_network_header_len(skb
);
2698 *hdr_len
+= skb_network_header_len(skb
);
2699 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2701 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2702 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2704 if (skb
->protocol
== htons(ETH_P_IP
))
2705 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2706 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2708 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2711 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
2712 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
2714 /* Context index must be unique per ring. */
2715 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
2716 mss_l4len_idx
|= tx_ring
->queue_index
<< 4;
2718 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2719 context_desc
->seqnum_seed
= 0;
2721 buffer_info
->time_stamp
= jiffies
;
2722 buffer_info
->next_to_watch
= i
;
2723 buffer_info
->dma
= 0;
2725 if (i
== tx_ring
->count
)
2728 tx_ring
->next_to_use
= i
;
2733 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
2734 struct igb_ring
*tx_ring
,
2735 struct sk_buff
*skb
, u32 tx_flags
)
2737 struct e1000_adv_tx_context_desc
*context_desc
;
2739 struct igb_buffer
*buffer_info
;
2740 u32 info
= 0, tu_cmd
= 0;
2742 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2743 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
2744 i
= tx_ring
->next_to_use
;
2745 buffer_info
= &tx_ring
->buffer_info
[i
];
2746 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2748 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2749 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2750 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2751 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2752 info
|= skb_network_header_len(skb
);
2754 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2756 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2758 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2759 switch (skb
->protocol
) {
2760 case __constant_htons(ETH_P_IP
):
2761 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2762 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2763 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2765 case __constant_htons(ETH_P_IPV6
):
2766 /* XXX what about other V6 headers?? */
2767 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2768 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2771 if (unlikely(net_ratelimit()))
2772 dev_warn(&adapter
->pdev
->dev
,
2773 "partial checksum but proto=%x!\n",
2779 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2780 context_desc
->seqnum_seed
= 0;
2781 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
2782 context_desc
->mss_l4len_idx
=
2783 cpu_to_le32(tx_ring
->queue_index
<< 4);
2785 buffer_info
->time_stamp
= jiffies
;
2786 buffer_info
->next_to_watch
= i
;
2787 buffer_info
->dma
= 0;
2790 if (i
== tx_ring
->count
)
2792 tx_ring
->next_to_use
= i
;
2801 #define IGB_MAX_TXD_PWR 16
2802 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2804 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
2805 struct igb_ring
*tx_ring
, struct sk_buff
*skb
,
2808 struct igb_buffer
*buffer_info
;
2809 unsigned int len
= skb_headlen(skb
);
2810 unsigned int count
= 0, i
;
2813 i
= tx_ring
->next_to_use
;
2815 buffer_info
= &tx_ring
->buffer_info
[i
];
2816 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2817 buffer_info
->length
= len
;
2818 /* set time_stamp *before* dma to help avoid a possible race */
2819 buffer_info
->time_stamp
= jiffies
;
2820 buffer_info
->next_to_watch
= i
;
2821 buffer_info
->dma
= pci_map_single(adapter
->pdev
, skb
->data
, len
,
2825 if (i
== tx_ring
->count
)
2828 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2829 struct skb_frag_struct
*frag
;
2831 frag
= &skb_shinfo(skb
)->frags
[f
];
2834 buffer_info
= &tx_ring
->buffer_info
[i
];
2835 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2836 buffer_info
->length
= len
;
2837 buffer_info
->time_stamp
= jiffies
;
2838 buffer_info
->next_to_watch
= i
;
2839 buffer_info
->dma
= pci_map_page(adapter
->pdev
,
2847 if (i
== tx_ring
->count
)
2851 i
= ((i
== 0) ? tx_ring
->count
- 1 : i
- 1);
2852 tx_ring
->buffer_info
[i
].skb
= skb
;
2853 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2858 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
2859 struct igb_ring
*tx_ring
,
2860 int tx_flags
, int count
, u32 paylen
,
2863 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2864 struct igb_buffer
*buffer_info
;
2865 u32 olinfo_status
= 0, cmd_type_len
;
2868 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2869 E1000_ADVTXD_DCMD_DEXT
);
2871 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2872 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2874 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
2875 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2877 /* insert tcp checksum */
2878 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2880 /* insert ip checksum */
2881 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
2882 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2884 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
2885 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2888 if ((adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
) &&
2889 (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
2890 IGB_TX_FLAGS_VLAN
)))
2891 olinfo_status
|= tx_ring
->queue_index
<< 4;
2893 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2895 i
= tx_ring
->next_to_use
;
2897 buffer_info
= &tx_ring
->buffer_info
[i
];
2898 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
2899 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2900 tx_desc
->read
.cmd_type_len
=
2901 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2902 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2904 if (i
== tx_ring
->count
)
2908 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2909 /* Force memory writes to complete before letting h/w
2910 * know there are new descriptors to fetch. (Only
2911 * applicable for weak-ordered memory model archs,
2912 * such as IA-64). */
2915 tx_ring
->next_to_use
= i
;
2916 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2917 /* we need this if more than one processor can write to our tail
2918 * at a time, it syncronizes IO on IA64/Altix systems */
2922 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
2923 struct igb_ring
*tx_ring
, int size
)
2925 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2927 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
2929 /* Herbert's original patch had:
2930 * smp_mb__after_netif_stop_queue();
2931 * but since that doesn't exist yet, just open code it. */
2934 /* We need to check again in a case another CPU has just
2935 * made room available. */
2936 if (IGB_DESC_UNUSED(tx_ring
) < size
)
2940 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
2941 ++adapter
->restart_queue
;
2945 static int igb_maybe_stop_tx(struct net_device
*netdev
,
2946 struct igb_ring
*tx_ring
, int size
)
2948 if (IGB_DESC_UNUSED(tx_ring
) >= size
)
2950 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
2953 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2955 static int igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
2956 struct net_device
*netdev
,
2957 struct igb_ring
*tx_ring
)
2959 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2961 unsigned int tx_flags
= 0;
2966 len
= skb_headlen(skb
);
2968 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
2969 dev_kfree_skb_any(skb
);
2970 return NETDEV_TX_OK
;
2973 if (skb
->len
<= 0) {
2974 dev_kfree_skb_any(skb
);
2975 return NETDEV_TX_OK
;
2978 /* need: 1 descriptor per page,
2979 * + 2 desc gap to keep tail from touching head,
2980 * + 1 desc for skb->data,
2981 * + 1 desc for context descriptor,
2982 * otherwise try next time */
2983 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2984 /* this is a hard error */
2985 return NETDEV_TX_BUSY
;
2989 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2990 tx_flags
|= IGB_TX_FLAGS_VLAN
;
2991 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
2994 if (skb
->protocol
== htons(ETH_P_IP
))
2995 tx_flags
|= IGB_TX_FLAGS_IPV4
;
2997 first
= tx_ring
->next_to_use
;
2999 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
3003 dev_kfree_skb_any(skb
);
3004 return NETDEV_TX_OK
;
3008 tx_flags
|= IGB_TX_FLAGS_TSO
;
3009 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
))
3010 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
3011 tx_flags
|= IGB_TX_FLAGS_CSUM
;
3013 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
,
3014 igb_tx_map_adv(adapter
, tx_ring
, skb
, first
),
3017 netdev
->trans_start
= jiffies
;
3019 /* Make sure there is space in the ring for the next send. */
3020 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
3022 return NETDEV_TX_OK
;
3025 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*netdev
)
3027 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3028 struct igb_ring
*tx_ring
;
3031 r_idx
= skb
->queue_mapping
& (IGB_MAX_TX_QUEUES
- 1);
3032 tx_ring
= adapter
->multi_tx_table
[r_idx
];
3034 /* This goes back to the question of how to logically map a tx queue
3035 * to a flow. Right now, performance is impacted slightly negatively
3036 * if using multiple tx queues. If the stack breaks away from a
3037 * single qdisc implementation, we can look at this again. */
3038 return (igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
));
3042 * igb_tx_timeout - Respond to a Tx Hang
3043 * @netdev: network interface device structure
3045 static void igb_tx_timeout(struct net_device
*netdev
)
3047 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3048 struct e1000_hw
*hw
= &adapter
->hw
;
3050 /* Do the reset outside of interrupt context */
3051 adapter
->tx_timeout_count
++;
3052 schedule_work(&adapter
->reset_task
);
3053 wr32(E1000_EICS
, adapter
->eims_enable_mask
&
3054 ~(E1000_EIMS_TCP_TIMER
| E1000_EIMS_OTHER
));
3057 static void igb_reset_task(struct work_struct
*work
)
3059 struct igb_adapter
*adapter
;
3060 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
3062 igb_reinit_locked(adapter
);
3066 * igb_get_stats - Get System Network Statistics
3067 * @netdev: network interface device structure
3069 * Returns the address of the device statistics structure.
3070 * The statistics are actually updated from the timer callback.
3072 static struct net_device_stats
*
3073 igb_get_stats(struct net_device
*netdev
)
3075 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3077 /* only return the current stats */
3078 return &adapter
->net_stats
;
3082 * igb_change_mtu - Change the Maximum Transfer Unit
3083 * @netdev: network interface device structure
3084 * @new_mtu: new value for maximum frame size
3086 * Returns 0 on success, negative on failure
3088 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
3090 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3091 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3093 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3094 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3095 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
3099 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3100 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3101 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
3105 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
3107 /* igb_down has a dependency on max_frame_size */
3108 adapter
->max_frame_size
= max_frame
;
3109 if (netif_running(netdev
))
3112 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3113 * means we reserve 2 more, this pushes us to allocate from the next
3115 * i.e. RXBUFFER_2048 --> size-4096 slab
3118 if (max_frame
<= IGB_RXBUFFER_256
)
3119 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
3120 else if (max_frame
<= IGB_RXBUFFER_512
)
3121 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
3122 else if (max_frame
<= IGB_RXBUFFER_1024
)
3123 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3124 else if (max_frame
<= IGB_RXBUFFER_2048
)
3125 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
3127 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3128 adapter
->rx_buffer_len
= IGB_RXBUFFER_16384
;
3130 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
3132 /* adjust allocation if LPE protects us, and we aren't using SBP */
3133 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3134 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
3135 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3137 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
3138 netdev
->mtu
, new_mtu
);
3139 netdev
->mtu
= new_mtu
;
3141 if (netif_running(netdev
))
3146 clear_bit(__IGB_RESETTING
, &adapter
->state
);
3152 * igb_update_stats - Update the board statistics counters
3153 * @adapter: board private structure
3156 void igb_update_stats(struct igb_adapter
*adapter
)
3158 struct e1000_hw
*hw
= &adapter
->hw
;
3159 struct pci_dev
*pdev
= adapter
->pdev
;
3162 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3165 * Prevent stats update while adapter is being reset, or if the pci
3166 * connection is down.
3168 if (adapter
->link_speed
== 0)
3170 if (pci_channel_offline(pdev
))
3173 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
3174 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
3175 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
3176 rd32(E1000_GORCH
); /* clear GORCL */
3177 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
3178 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
3179 adapter
->stats
.roc
+= rd32(E1000_ROC
);
3181 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
3182 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
3183 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
3184 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
3185 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
3186 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
3187 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
3188 adapter
->stats
.sec
+= rd32(E1000_SEC
);
3190 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
3191 adapter
->stats
.scc
+= rd32(E1000_SCC
);
3192 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
3193 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
3194 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
3195 adapter
->stats
.dc
+= rd32(E1000_DC
);
3196 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
3197 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
3198 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
3199 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
3200 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
3201 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
3202 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
3203 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
3204 rd32(E1000_GOTCH
); /* clear GOTCL */
3205 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
3206 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
3207 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
3208 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
3209 adapter
->stats
.tor
+= rd32(E1000_TORH
);
3210 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
3211 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
3213 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
3214 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
3215 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
3216 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
3217 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
3218 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
3220 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
3221 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
3223 /* used for adaptive IFS */
3225 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
3226 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3227 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
3228 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3230 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
3231 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
3232 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
3233 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
3234 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
3236 adapter
->stats
.iac
+= rd32(E1000_IAC
);
3237 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
3238 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
3239 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
3240 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
3241 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
3242 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
3243 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
3244 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
3246 /* Fill out the OS statistics structure */
3247 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3248 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3252 /* RLEC on some newer hardware can be incorrect so build
3253 * our own version based on RUC and ROC */
3254 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3255 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3256 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3257 adapter
->stats
.cexterr
;
3258 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3260 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3261 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3262 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3265 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3266 adapter
->stats
.latecol
;
3267 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3268 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3269 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3271 /* Tx Dropped needs to be maintained elsewhere */
3274 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3275 if ((adapter
->link_speed
== SPEED_1000
) &&
3276 (!igb_read_phy_reg(hw
, PHY_1000T_STATUS
,
3278 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3279 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3283 /* Management Stats */
3284 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3285 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3286 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3290 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3292 struct net_device
*netdev
= data
;
3293 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3294 struct e1000_hw
*hw
= &adapter
->hw
;
3295 u32 icr
= rd32(E1000_ICR
);
3297 /* reading ICR causes bit 31 of EICR to be cleared */
3298 if (!(icr
& E1000_ICR_LSC
))
3299 goto no_link_interrupt
;
3300 hw
->mac
.get_link_status
= 1;
3301 /* guard against interrupt when we're going down */
3302 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3303 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3306 wr32(E1000_IMS
, E1000_IMS_LSC
);
3307 wr32(E1000_EIMS
, adapter
->eims_other
);
3312 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3314 struct igb_ring
*tx_ring
= data
;
3315 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3316 struct e1000_hw
*hw
= &adapter
->hw
;
3318 #ifdef CONFIG_IGB_DCA
3319 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3320 igb_update_tx_dca(tx_ring
);
3322 tx_ring
->total_bytes
= 0;
3323 tx_ring
->total_packets
= 0;
3325 /* auto mask will automatically reenable the interrupt when we write
3327 if (!igb_clean_tx_irq(tx_ring
))
3328 /* Ring was not completely cleaned, so fire another interrupt */
3329 wr32(E1000_EICS
, tx_ring
->eims_value
);
3331 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3336 static void igb_write_itr(struct igb_ring
*ring
)
3338 struct e1000_hw
*hw
= &ring
->adapter
->hw
;
3339 if ((ring
->adapter
->itr_setting
& 3) && ring
->set_itr
) {
3340 switch (hw
->mac
.type
) {
3342 wr32(ring
->itr_register
,
3347 wr32(ring
->itr_register
,
3349 (ring
->itr_val
<< 16));
3356 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3358 struct igb_ring
*rx_ring
= data
;
3360 /* Write the ITR value calculated at the end of the
3361 * previous interrupt.
3364 igb_write_itr(rx_ring
);
3366 if (netif_rx_schedule_prep(&rx_ring
->napi
))
3367 __netif_rx_schedule(&rx_ring
->napi
);
3369 #ifdef CONFIG_IGB_DCA
3370 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3371 igb_update_rx_dca(rx_ring
);
3376 #ifdef CONFIG_IGB_DCA
3377 static void igb_update_rx_dca(struct igb_ring
*rx_ring
)
3380 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3381 struct e1000_hw
*hw
= &adapter
->hw
;
3382 int cpu
= get_cpu();
3383 int q
= rx_ring
->reg_idx
;
3385 if (rx_ring
->cpu
!= cpu
) {
3386 dca_rxctrl
= rd32(E1000_DCA_RXCTRL(q
));
3387 if (hw
->mac
.type
== e1000_82576
) {
3388 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK_82576
;
3389 dca_rxctrl
|= dca_get_tag(cpu
) <<
3390 E1000_DCA_RXCTRL_CPUID_SHIFT
;
3392 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK
;
3393 dca_rxctrl
|= dca_get_tag(cpu
);
3395 dca_rxctrl
|= E1000_DCA_RXCTRL_DESC_DCA_EN
;
3396 dca_rxctrl
|= E1000_DCA_RXCTRL_HEAD_DCA_EN
;
3397 dca_rxctrl
|= E1000_DCA_RXCTRL_DATA_DCA_EN
;
3398 wr32(E1000_DCA_RXCTRL(q
), dca_rxctrl
);
3404 static void igb_update_tx_dca(struct igb_ring
*tx_ring
)
3407 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3408 struct e1000_hw
*hw
= &adapter
->hw
;
3409 int cpu
= get_cpu();
3410 int q
= tx_ring
->reg_idx
;
3412 if (tx_ring
->cpu
!= cpu
) {
3413 dca_txctrl
= rd32(E1000_DCA_TXCTRL(q
));
3414 if (hw
->mac
.type
== e1000_82576
) {
3415 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK_82576
;
3416 dca_txctrl
|= dca_get_tag(cpu
) <<
3417 E1000_DCA_TXCTRL_CPUID_SHIFT
;
3419 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK
;
3420 dca_txctrl
|= dca_get_tag(cpu
);
3422 dca_txctrl
|= E1000_DCA_TXCTRL_DESC_DCA_EN
;
3423 wr32(E1000_DCA_TXCTRL(q
), dca_txctrl
);
3429 static void igb_setup_dca(struct igb_adapter
*adapter
)
3433 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
3436 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3437 adapter
->tx_ring
[i
].cpu
= -1;
3438 igb_update_tx_dca(&adapter
->tx_ring
[i
]);
3440 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3441 adapter
->rx_ring
[i
].cpu
= -1;
3442 igb_update_rx_dca(&adapter
->rx_ring
[i
]);
3446 static int __igb_notify_dca(struct device
*dev
, void *data
)
3448 struct net_device
*netdev
= dev_get_drvdata(dev
);
3449 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3450 struct e1000_hw
*hw
= &adapter
->hw
;
3451 unsigned long event
= *(unsigned long *)data
;
3454 case DCA_PROVIDER_ADD
:
3455 /* if already enabled, don't do it again */
3456 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3458 /* Always use CB2 mode, difference is masked
3459 * in the CB driver. */
3460 wr32(E1000_DCA_CTRL
, 2);
3461 if (dca_add_requester(dev
) == 0) {
3462 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
3463 dev_info(&adapter
->pdev
->dev
, "DCA enabled\n");
3464 igb_setup_dca(adapter
);
3467 /* Fall Through since DCA is disabled. */
3468 case DCA_PROVIDER_REMOVE
:
3469 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
3470 /* without this a class_device is left
3471 * hanging around in the sysfs model */
3472 dca_remove_requester(dev
);
3473 dev_info(&adapter
->pdev
->dev
, "DCA disabled\n");
3474 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
3475 wr32(E1000_DCA_CTRL
, 1);
3483 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
3488 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
3491 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
3493 #endif /* CONFIG_IGB_DCA */
3496 * igb_intr_msi - Interrupt Handler
3497 * @irq: interrupt number
3498 * @data: pointer to a network interface device structure
3500 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
3502 struct net_device
*netdev
= data
;
3503 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3504 struct e1000_hw
*hw
= &adapter
->hw
;
3505 /* read ICR disables interrupts using IAM */
3506 u32 icr
= rd32(E1000_ICR
);
3508 igb_write_itr(adapter
->rx_ring
);
3510 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3511 hw
->mac
.get_link_status
= 1;
3512 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3513 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3516 netif_rx_schedule(&adapter
->rx_ring
[0].napi
);
3522 * igb_intr - Interrupt Handler
3523 * @irq: interrupt number
3524 * @data: pointer to a network interface device structure
3526 static irqreturn_t
igb_intr(int irq
, void *data
)
3528 struct net_device
*netdev
= data
;
3529 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3530 struct e1000_hw
*hw
= &adapter
->hw
;
3531 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3532 * need for the IMC write */
3533 u32 icr
= rd32(E1000_ICR
);
3536 return IRQ_NONE
; /* Not our interrupt */
3538 igb_write_itr(adapter
->rx_ring
);
3540 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3541 * not set, then the adapter didn't send an interrupt */
3542 if (!(icr
& E1000_ICR_INT_ASSERTED
))
3545 eicr
= rd32(E1000_EICR
);
3547 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3548 hw
->mac
.get_link_status
= 1;
3549 /* guard against interrupt when we're going down */
3550 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3551 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3554 netif_rx_schedule(&adapter
->rx_ring
[0].napi
);
3560 * igb_poll - NAPI Rx polling callback
3561 * @napi: napi polling structure
3562 * @budget: count of how many packets we should handle
3564 static int igb_poll(struct napi_struct
*napi
, int budget
)
3566 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3567 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3568 struct net_device
*netdev
= adapter
->netdev
;
3569 int tx_clean_complete
, work_done
= 0;
3571 /* this poll routine only supports one tx and one rx queue */
3572 #ifdef CONFIG_IGB_DCA
3573 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3574 igb_update_tx_dca(&adapter
->tx_ring
[0]);
3576 tx_clean_complete
= igb_clean_tx_irq(&adapter
->tx_ring
[0]);
3578 #ifdef CONFIG_IGB_DCA
3579 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3580 igb_update_rx_dca(&adapter
->rx_ring
[0]);
3582 igb_clean_rx_irq_adv(&adapter
->rx_ring
[0], &work_done
, budget
);
3584 /* If no Tx and not enough Rx work done, exit the polling mode */
3585 if ((tx_clean_complete
&& (work_done
< budget
)) ||
3586 !netif_running(netdev
)) {
3587 if (adapter
->itr_setting
& 3)
3588 igb_set_itr(adapter
);
3589 netif_rx_complete(napi
);
3590 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3591 igb_irq_enable(adapter
);
3598 static int igb_clean_rx_ring_msix(struct napi_struct
*napi
, int budget
)
3600 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3601 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3602 struct e1000_hw
*hw
= &adapter
->hw
;
3603 struct net_device
*netdev
= adapter
->netdev
;
3606 #ifdef CONFIG_IGB_DCA
3607 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3608 igb_update_rx_dca(rx_ring
);
3610 igb_clean_rx_irq_adv(rx_ring
, &work_done
, budget
);
3613 /* If not enough Rx work done, exit the polling mode */
3614 if ((work_done
== 0) || !netif_running(netdev
)) {
3615 netif_rx_complete(napi
);
3617 if (adapter
->itr_setting
& 3) {
3618 if (adapter
->num_rx_queues
== 1)
3619 igb_set_itr(adapter
);
3621 igb_update_ring_itr(rx_ring
);
3624 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3625 wr32(E1000_EIMS
, rx_ring
->eims_value
);
3634 * igb_clean_tx_irq - Reclaim resources after transmit completes
3635 * @adapter: board private structure
3636 * returns true if ring is completely cleaned
3638 static bool igb_clean_tx_irq(struct igb_ring
*tx_ring
)
3640 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3641 struct net_device
*netdev
= adapter
->netdev
;
3642 struct e1000_hw
*hw
= &adapter
->hw
;
3643 struct igb_buffer
*buffer_info
;
3644 struct sk_buff
*skb
;
3645 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
3646 unsigned int total_bytes
= 0, total_packets
= 0;
3647 unsigned int i
, eop
, count
= 0;
3648 bool cleaned
= false;
3650 i
= tx_ring
->next_to_clean
;
3651 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3652 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
3654 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3655 (count
< tx_ring
->count
)) {
3656 for (cleaned
= false; !cleaned
; count
++) {
3657 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
3658 buffer_info
= &tx_ring
->buffer_info
[i
];
3659 cleaned
= (i
== eop
);
3660 skb
= buffer_info
->skb
;
3663 unsigned int segs
, bytecount
;
3664 /* gso_segs is currently only valid for tcp */
3665 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3666 /* multiply data chunks by size of headers */
3667 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3669 total_packets
+= segs
;
3670 total_bytes
+= bytecount
;
3673 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
3674 tx_desc
->wb
.status
= 0;
3677 if (i
== tx_ring
->count
)
3681 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3682 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
3685 tx_ring
->next_to_clean
= i
;
3687 if (unlikely(count
&&
3688 netif_carrier_ok(netdev
) &&
3689 IGB_DESC_UNUSED(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
3690 /* Make sure that anybody stopping the queue after this
3691 * sees the new next_to_clean.
3694 if (__netif_subqueue_stopped(netdev
, tx_ring
->queue_index
) &&
3695 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
3696 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
3697 ++adapter
->restart_queue
;
3701 if (tx_ring
->detect_tx_hung
) {
3702 /* Detect a transmit hang in hardware, this serializes the
3703 * check with the clearing of time_stamp and movement of i */
3704 tx_ring
->detect_tx_hung
= false;
3705 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3706 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3707 (adapter
->tx_timeout_factor
* HZ
))
3708 && !(rd32(E1000_STATUS
) &
3709 E1000_STATUS_TXOFF
)) {
3711 /* detected Tx unit hang */
3712 dev_err(&adapter
->pdev
->dev
,
3713 "Detected Tx Unit Hang\n"
3717 " next_to_use <%x>\n"
3718 " next_to_clean <%x>\n"
3719 "buffer_info[next_to_clean]\n"
3720 " time_stamp <%lx>\n"
3721 " next_to_watch <%x>\n"
3723 " desc.status <%x>\n",
3724 tx_ring
->queue_index
,
3725 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
3726 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
3727 tx_ring
->next_to_use
,
3728 tx_ring
->next_to_clean
,
3729 tx_ring
->buffer_info
[i
].time_stamp
,
3732 eop_desc
->wb
.status
);
3733 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
3736 tx_ring
->total_bytes
+= total_bytes
;
3737 tx_ring
->total_packets
+= total_packets
;
3738 tx_ring
->tx_stats
.bytes
+= total_bytes
;
3739 tx_ring
->tx_stats
.packets
+= total_packets
;
3740 adapter
->net_stats
.tx_bytes
+= total_bytes
;
3741 adapter
->net_stats
.tx_packets
+= total_packets
;
3742 return (count
< tx_ring
->count
);
3745 #ifdef CONFIG_IGB_LRO
3747 * igb_get_skb_hdr - helper function for LRO header processing
3748 * @skb: pointer to sk_buff to be added to LRO packet
3749 * @iphdr: pointer to ip header structure
3750 * @tcph: pointer to tcp header structure
3751 * @hdr_flags: pointer to header flags
3752 * @priv: pointer to the receive descriptor for the current sk_buff
3754 static int igb_get_skb_hdr(struct sk_buff
*skb
, void **iphdr
, void **tcph
,
3755 u64
*hdr_flags
, void *priv
)
3757 union e1000_adv_rx_desc
*rx_desc
= priv
;
3758 u16 pkt_type
= rx_desc
->wb
.lower
.lo_dword
.pkt_info
&
3759 (E1000_RXDADV_PKTTYPE_IPV4
| E1000_RXDADV_PKTTYPE_TCP
);
3761 /* Verify that this is a valid IPv4 TCP packet */
3762 if (pkt_type
!= (E1000_RXDADV_PKTTYPE_IPV4
|
3763 E1000_RXDADV_PKTTYPE_TCP
))
3766 /* Set network headers */
3767 skb_reset_network_header(skb
);
3768 skb_set_transport_header(skb
, ip_hdrlen(skb
));
3769 *iphdr
= ip_hdr(skb
);
3770 *tcph
= tcp_hdr(skb
);
3771 *hdr_flags
= LRO_IPV4
| LRO_TCP
;
3776 #endif /* CONFIG_IGB_LRO */
3779 * igb_receive_skb - helper function to handle rx indications
3780 * @ring: pointer to receive ring receving this packet
3781 * @status: descriptor status field as written by hardware
3782 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3783 * @skb: pointer to sk_buff to be indicated to stack
3785 static void igb_receive_skb(struct igb_ring
*ring
, u8 status
,
3786 union e1000_adv_rx_desc
* rx_desc
,
3787 struct sk_buff
*skb
)
3789 struct igb_adapter
* adapter
= ring
->adapter
;
3790 bool vlan_extracted
= (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
));
3792 #ifdef CONFIG_IGB_LRO
3793 if (adapter
->netdev
->features
& NETIF_F_LRO
&&
3794 skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
3796 lro_vlan_hwaccel_receive_skb(&ring
->lro_mgr
, skb
,
3798 le16_to_cpu(rx_desc
->wb
.upper
.vlan
),
3801 lro_receive_skb(&ring
->lro_mgr
,skb
, rx_desc
);
3806 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3807 le16_to_cpu(rx_desc
->wb
.upper
.vlan
));
3810 netif_receive_skb(skb
);
3811 #ifdef CONFIG_IGB_LRO
3817 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
3818 u32 status_err
, struct sk_buff
*skb
)
3820 skb
->ip_summed
= CHECKSUM_NONE
;
3822 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3823 if ((status_err
& E1000_RXD_STAT_IXSM
) || !adapter
->rx_csum
)
3825 /* TCP/UDP checksum error bit is set */
3827 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
3828 /* let the stack verify checksum errors */
3829 adapter
->hw_csum_err
++;
3832 /* It must be a TCP or UDP packet with a valid checksum */
3833 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
3834 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3836 adapter
->hw_csum_good
++;
3839 static bool igb_clean_rx_irq_adv(struct igb_ring
*rx_ring
,
3840 int *work_done
, int budget
)
3842 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3843 struct net_device
*netdev
= adapter
->netdev
;
3844 struct pci_dev
*pdev
= adapter
->pdev
;
3845 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
3846 struct igb_buffer
*buffer_info
, *next_buffer
;
3847 struct sk_buff
*skb
;
3849 u32 length
, hlen
, staterr
;
3850 bool cleaned
= false;
3851 int cleaned_count
= 0;
3852 unsigned int total_bytes
= 0, total_packets
= 0;
3854 i
= rx_ring
->next_to_clean
;
3855 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3856 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3858 while (staterr
& E1000_RXD_STAT_DD
) {
3859 if (*work_done
>= budget
)
3862 buffer_info
= &rx_ring
->buffer_info
[i
];
3864 /* HW will not DMA in data larger than the given buffer, even
3865 * if it parses the (NFS, of course) header to be larger. In
3866 * that case, it fills the header buffer and spills the rest
3869 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hdr_info
) &
3870 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
3871 if (hlen
> adapter
->rx_ps_hdr_size
)
3872 hlen
= adapter
->rx_ps_hdr_size
;
3874 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3878 skb
= buffer_info
->skb
;
3879 prefetch(skb
->data
- NET_IP_ALIGN
);
3880 buffer_info
->skb
= NULL
;
3881 if (!adapter
->rx_ps_hdr_size
) {
3882 pci_unmap_single(pdev
, buffer_info
->dma
,
3883 adapter
->rx_buffer_len
+
3885 PCI_DMA_FROMDEVICE
);
3886 skb_put(skb
, length
);
3890 if (!skb_shinfo(skb
)->nr_frags
) {
3891 pci_unmap_single(pdev
, buffer_info
->dma
,
3892 adapter
->rx_ps_hdr_size
+
3894 PCI_DMA_FROMDEVICE
);
3899 pci_unmap_page(pdev
, buffer_info
->page_dma
,
3900 PAGE_SIZE
/ 2, PCI_DMA_FROMDEVICE
);
3901 buffer_info
->page_dma
= 0;
3903 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
3905 buffer_info
->page_offset
,
3908 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
3909 (page_count(buffer_info
->page
) != 1))
3910 buffer_info
->page
= NULL
;
3912 get_page(buffer_info
->page
);
3915 skb
->data_len
+= length
;
3917 skb
->truesize
+= length
;
3921 if (i
== rx_ring
->count
)
3923 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3925 next_buffer
= &rx_ring
->buffer_info
[i
];
3927 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
3928 buffer_info
->skb
= next_buffer
->skb
;
3929 buffer_info
->dma
= next_buffer
->dma
;
3930 next_buffer
->skb
= skb
;
3931 next_buffer
->dma
= 0;
3935 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
3936 dev_kfree_skb_irq(skb
);
3940 total_bytes
+= skb
->len
;
3943 igb_rx_checksum_adv(adapter
, staterr
, skb
);
3945 skb
->protocol
= eth_type_trans(skb
, netdev
);
3947 igb_receive_skb(rx_ring
, staterr
, rx_desc
, skb
);
3950 rx_desc
->wb
.upper
.status_error
= 0;
3952 /* return some buffers to hardware, one at a time is too slow */
3953 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
3954 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
3958 /* use prefetched values */
3960 buffer_info
= next_buffer
;
3962 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3965 rx_ring
->next_to_clean
= i
;
3966 cleaned_count
= IGB_DESC_UNUSED(rx_ring
);
3968 #ifdef CONFIG_IGB_LRO
3969 if (rx_ring
->lro_used
) {
3970 lro_flush_all(&rx_ring
->lro_mgr
);
3971 rx_ring
->lro_used
= 0;
3976 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
3978 rx_ring
->total_packets
+= total_packets
;
3979 rx_ring
->total_bytes
+= total_bytes
;
3980 rx_ring
->rx_stats
.packets
+= total_packets
;
3981 rx_ring
->rx_stats
.bytes
+= total_bytes
;
3982 adapter
->net_stats
.rx_bytes
+= total_bytes
;
3983 adapter
->net_stats
.rx_packets
+= total_packets
;
3989 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3990 * @adapter: address of board private structure
3992 static void igb_alloc_rx_buffers_adv(struct igb_ring
*rx_ring
,
3995 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3996 struct net_device
*netdev
= adapter
->netdev
;
3997 struct pci_dev
*pdev
= adapter
->pdev
;
3998 union e1000_adv_rx_desc
*rx_desc
;
3999 struct igb_buffer
*buffer_info
;
4000 struct sk_buff
*skb
;
4003 i
= rx_ring
->next_to_use
;
4004 buffer_info
= &rx_ring
->buffer_info
[i
];
4006 while (cleaned_count
--) {
4007 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4009 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
4010 if (!buffer_info
->page
) {
4011 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4012 if (!buffer_info
->page
) {
4013 adapter
->alloc_rx_buff_failed
++;
4016 buffer_info
->page_offset
= 0;
4018 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
4020 buffer_info
->page_dma
=
4023 buffer_info
->page_offset
,
4025 PCI_DMA_FROMDEVICE
);
4028 if (!buffer_info
->skb
) {
4031 if (adapter
->rx_ps_hdr_size
)
4032 bufsz
= adapter
->rx_ps_hdr_size
;
4034 bufsz
= adapter
->rx_buffer_len
;
4035 bufsz
+= NET_IP_ALIGN
;
4036 skb
= netdev_alloc_skb(netdev
, bufsz
);
4039 adapter
->alloc_rx_buff_failed
++;
4043 /* Make buffer alignment 2 beyond a 16 byte boundary
4044 * this will result in a 16 byte aligned IP header after
4045 * the 14 byte MAC header is removed
4047 skb_reserve(skb
, NET_IP_ALIGN
);
4049 buffer_info
->skb
= skb
;
4050 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4052 PCI_DMA_FROMDEVICE
);
4055 /* Refresh the desc even if buffer_addrs didn't change because
4056 * each write-back erases this info. */
4057 if (adapter
->rx_ps_hdr_size
) {
4058 rx_desc
->read
.pkt_addr
=
4059 cpu_to_le64(buffer_info
->page_dma
);
4060 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
4062 rx_desc
->read
.pkt_addr
=
4063 cpu_to_le64(buffer_info
->dma
);
4064 rx_desc
->read
.hdr_addr
= 0;
4068 if (i
== rx_ring
->count
)
4070 buffer_info
= &rx_ring
->buffer_info
[i
];
4074 if (rx_ring
->next_to_use
!= i
) {
4075 rx_ring
->next_to_use
= i
;
4077 i
= (rx_ring
->count
- 1);
4081 /* Force memory writes to complete before letting h/w
4082 * know there are new descriptors to fetch. (Only
4083 * applicable for weak-ordered memory model archs,
4084 * such as IA-64). */
4086 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
4096 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4098 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4099 struct mii_ioctl_data
*data
= if_mii(ifr
);
4101 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4106 data
->phy_id
= adapter
->hw
.phy
.addr
;
4109 if (!capable(CAP_NET_ADMIN
))
4111 if (igb_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4128 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4134 return igb_mii_ioctl(netdev
, ifr
, cmd
);
4140 static void igb_vlan_rx_register(struct net_device
*netdev
,
4141 struct vlan_group
*grp
)
4143 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4144 struct e1000_hw
*hw
= &adapter
->hw
;
4147 igb_irq_disable(adapter
);
4148 adapter
->vlgrp
= grp
;
4151 /* enable VLAN tag insert/strip */
4152 ctrl
= rd32(E1000_CTRL
);
4153 ctrl
|= E1000_CTRL_VME
;
4154 wr32(E1000_CTRL
, ctrl
);
4156 /* enable VLAN receive filtering */
4157 rctl
= rd32(E1000_RCTL
);
4158 rctl
&= ~E1000_RCTL_CFIEN
;
4159 wr32(E1000_RCTL
, rctl
);
4160 igb_update_mng_vlan(adapter
);
4162 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
4164 /* disable VLAN tag insert/strip */
4165 ctrl
= rd32(E1000_CTRL
);
4166 ctrl
&= ~E1000_CTRL_VME
;
4167 wr32(E1000_CTRL
, ctrl
);
4169 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
4170 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4171 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
4174 adapter
->max_frame_size
);
4177 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4178 igb_irq_enable(adapter
);
4181 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4183 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4184 struct e1000_hw
*hw
= &adapter
->hw
;
4187 if ((adapter
->hw
.mng_cookie
.status
&
4188 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
4189 (vid
== adapter
->mng_vlan_id
))
4191 /* add VID to filter table */
4192 index
= (vid
>> 5) & 0x7F;
4193 vfta
= array_rd32(E1000_VFTA
, index
);
4194 vfta
|= (1 << (vid
& 0x1F));
4195 igb_write_vfta(&adapter
->hw
, index
, vfta
);
4198 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4200 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4201 struct e1000_hw
*hw
= &adapter
->hw
;
4204 igb_irq_disable(adapter
);
4205 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4207 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4208 igb_irq_enable(adapter
);
4210 if ((adapter
->hw
.mng_cookie
.status
&
4211 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
4212 (vid
== adapter
->mng_vlan_id
)) {
4213 /* release control to f/w */
4214 igb_release_hw_control(adapter
);
4218 /* remove VID from filter table */
4219 index
= (vid
>> 5) & 0x7F;
4220 vfta
= array_rd32(E1000_VFTA
, index
);
4221 vfta
&= ~(1 << (vid
& 0x1F));
4222 igb_write_vfta(&adapter
->hw
, index
, vfta
);
4225 static void igb_restore_vlan(struct igb_adapter
*adapter
)
4227 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4229 if (adapter
->vlgrp
) {
4231 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4232 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4234 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
4239 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
4241 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4245 /* Fiber NICs only allow 1000 gbps Full duplex */
4246 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
4247 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4248 dev_err(&adapter
->pdev
->dev
,
4249 "Unsupported Speed/Duplex configuration\n");
4254 case SPEED_10
+ DUPLEX_HALF
:
4255 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
4257 case SPEED_10
+ DUPLEX_FULL
:
4258 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
4260 case SPEED_100
+ DUPLEX_HALF
:
4261 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
4263 case SPEED_100
+ DUPLEX_FULL
:
4264 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
4266 case SPEED_1000
+ DUPLEX_FULL
:
4268 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
4270 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4272 dev_err(&adapter
->pdev
->dev
,
4273 "Unsupported Speed/Duplex configuration\n");
4280 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4282 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4283 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4284 struct e1000_hw
*hw
= &adapter
->hw
;
4285 u32 ctrl
, rctl
, status
;
4286 u32 wufc
= adapter
->wol
;
4291 netif_device_detach(netdev
);
4293 if (netif_running(netdev
))
4296 igb_reset_interrupt_capability(adapter
);
4298 igb_free_queues(adapter
);
4301 retval
= pci_save_state(pdev
);
4306 status
= rd32(E1000_STATUS
);
4307 if (status
& E1000_STATUS_LU
)
4308 wufc
&= ~E1000_WUFC_LNKC
;
4311 igb_setup_rctl(adapter
);
4312 igb_set_multi(netdev
);
4314 /* turn on all-multi mode if wake on multicast is enabled */
4315 if (wufc
& E1000_WUFC_MC
) {
4316 rctl
= rd32(E1000_RCTL
);
4317 rctl
|= E1000_RCTL_MPE
;
4318 wr32(E1000_RCTL
, rctl
);
4321 ctrl
= rd32(E1000_CTRL
);
4322 /* advertise wake from D3Cold */
4323 #define E1000_CTRL_ADVD3WUC 0x00100000
4324 /* phy power management enable */
4325 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4326 ctrl
|= E1000_CTRL_ADVD3WUC
;
4327 wr32(E1000_CTRL
, ctrl
);
4329 /* Allow time for pending master requests to run */
4330 igb_disable_pcie_master(&adapter
->hw
);
4332 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
4333 wr32(E1000_WUFC
, wufc
);
4336 wr32(E1000_WUFC
, 0);
4339 /* make sure adapter isn't asleep if manageability/wol is enabled */
4340 if (wufc
|| adapter
->en_mng_pt
) {
4341 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4342 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4344 igb_shutdown_fiber_serdes_link_82575(hw
);
4345 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4346 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4349 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4350 * would have already happened in close and is redundant. */
4351 igb_release_hw_control(adapter
);
4353 pci_disable_device(pdev
);
4355 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4361 static int igb_resume(struct pci_dev
*pdev
)
4363 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4364 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4365 struct e1000_hw
*hw
= &adapter
->hw
;
4368 pci_set_power_state(pdev
, PCI_D0
);
4369 pci_restore_state(pdev
);
4371 if (adapter
->need_ioport
)
4372 err
= pci_enable_device(pdev
);
4374 err
= pci_enable_device_mem(pdev
);
4377 "igb: Cannot enable PCI device from suspend\n");
4380 pci_set_master(pdev
);
4382 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4383 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4385 igb_set_interrupt_capability(adapter
);
4387 if (igb_alloc_queues(adapter
)) {
4388 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
4392 /* e1000_power_up_phy(adapter); */
4395 wr32(E1000_WUS
, ~0);
4397 if (netif_running(netdev
)) {
4398 err
= igb_open(netdev
);
4403 netif_device_attach(netdev
);
4405 /* let the f/w know that the h/w is now under the control of the
4407 igb_get_hw_control(adapter
);
4413 static void igb_shutdown(struct pci_dev
*pdev
)
4415 igb_suspend(pdev
, PMSG_SUSPEND
);
4418 #ifdef CONFIG_NET_POLL_CONTROLLER
4420 * Polling 'interrupt' - used by things like netconsole to send skbs
4421 * without having to re-enable interrupts. It's not called while
4422 * the interrupt routine is executing.
4424 static void igb_netpoll(struct net_device
*netdev
)
4426 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4430 igb_irq_disable(adapter
);
4431 adapter
->flags
|= IGB_FLAG_IN_NETPOLL
;
4433 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4434 igb_clean_tx_irq(&adapter
->tx_ring
[i
]);
4436 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4437 igb_clean_rx_irq_adv(&adapter
->rx_ring
[i
],
4439 adapter
->rx_ring
[i
].napi
.weight
);
4441 adapter
->flags
&= ~IGB_FLAG_IN_NETPOLL
;
4442 igb_irq_enable(adapter
);
4444 #endif /* CONFIG_NET_POLL_CONTROLLER */
4447 * igb_io_error_detected - called when PCI error is detected
4448 * @pdev: Pointer to PCI device
4449 * @state: The current pci connection state
4451 * This function is called after a PCI bus error affecting
4452 * this device has been detected.
4454 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
4455 pci_channel_state_t state
)
4457 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4458 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4460 netif_device_detach(netdev
);
4462 if (netif_running(netdev
))
4464 pci_disable_device(pdev
);
4466 /* Request a slot slot reset. */
4467 return PCI_ERS_RESULT_NEED_RESET
;
4471 * igb_io_slot_reset - called after the pci bus has been reset.
4472 * @pdev: Pointer to PCI device
4474 * Restart the card from scratch, as if from a cold-boot. Implementation
4475 * resembles the first-half of the igb_resume routine.
4477 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
4479 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4480 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4481 struct e1000_hw
*hw
= &adapter
->hw
;
4482 pci_ers_result_t result
;
4485 if (adapter
->need_ioport
)
4486 err
= pci_enable_device(pdev
);
4488 err
= pci_enable_device_mem(pdev
);
4492 "Cannot re-enable PCI device after reset.\n");
4493 result
= PCI_ERS_RESULT_DISCONNECT
;
4495 pci_set_master(pdev
);
4496 pci_restore_state(pdev
);
4498 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4499 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4502 wr32(E1000_WUS
, ~0);
4503 result
= PCI_ERS_RESULT_RECOVERED
;
4506 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
4508 dev_err(&pdev
->dev
, "pci_cleanup_aer_uncorrect_error_status "
4509 "failed 0x%0x\n", err
);
4510 /* non-fatal, continue */
4517 * igb_io_resume - called when traffic can start flowing again.
4518 * @pdev: Pointer to PCI device
4520 * This callback is called when the error recovery driver tells us that
4521 * its OK to resume normal operation. Implementation resembles the
4522 * second-half of the igb_resume routine.
4524 static void igb_io_resume(struct pci_dev
*pdev
)
4526 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4527 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4529 if (netif_running(netdev
)) {
4530 if (igb_up(adapter
)) {
4531 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
4536 netif_device_attach(netdev
);
4538 /* let the f/w know that the h/w is now under the control of the
4540 igb_get_hw_control(adapter
);