1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
41 char stat_string
[ETH_GSTRING_LEN
];
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47 offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats
[] = {
49 { "rx_packets", IGB_STAT(stats
.gprc
) },
50 { "tx_packets", IGB_STAT(stats
.gptc
) },
51 { "rx_bytes", IGB_STAT(stats
.gorc
) },
52 { "tx_bytes", IGB_STAT(stats
.gotc
) },
53 { "rx_broadcast", IGB_STAT(stats
.bprc
) },
54 { "tx_broadcast", IGB_STAT(stats
.bptc
) },
55 { "rx_multicast", IGB_STAT(stats
.mprc
) },
56 { "tx_multicast", IGB_STAT(stats
.mptc
) },
57 { "rx_errors", IGB_STAT(net_stats
.rx_errors
) },
58 { "tx_errors", IGB_STAT(net_stats
.tx_errors
) },
59 { "tx_dropped", IGB_STAT(net_stats
.tx_dropped
) },
60 { "multicast", IGB_STAT(stats
.mprc
) },
61 { "collisions", IGB_STAT(stats
.colc
) },
62 { "rx_length_errors", IGB_STAT(net_stats
.rx_length_errors
) },
63 { "rx_over_errors", IGB_STAT(net_stats
.rx_over_errors
) },
64 { "rx_crc_errors", IGB_STAT(stats
.crcerrs
) },
65 { "rx_frame_errors", IGB_STAT(net_stats
.rx_frame_errors
) },
66 { "rx_no_buffer_count", IGB_STAT(stats
.rnbc
) },
67 { "rx_missed_errors", IGB_STAT(stats
.mpc
) },
68 { "tx_aborted_errors", IGB_STAT(stats
.ecol
) },
69 { "tx_carrier_errors", IGB_STAT(stats
.tncrs
) },
70 { "tx_fifo_errors", IGB_STAT(net_stats
.tx_fifo_errors
) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats
.tx_heartbeat_errors
) },
72 { "tx_window_errors", IGB_STAT(stats
.latecol
) },
73 { "tx_abort_late_coll", IGB_STAT(stats
.latecol
) },
74 { "tx_deferred_ok", IGB_STAT(stats
.dc
) },
75 { "tx_single_coll_ok", IGB_STAT(stats
.scc
) },
76 { "tx_multi_coll_ok", IGB_STAT(stats
.mcc
) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count
) },
78 { "tx_restart_queue", IGB_STAT(restart_queue
) },
79 { "rx_long_length_errors", IGB_STAT(stats
.roc
) },
80 { "rx_short_length_errors", IGB_STAT(stats
.ruc
) },
81 { "rx_align_errors", IGB_STAT(stats
.algnerrc
) },
82 { "tx_tcp_seg_good", IGB_STAT(stats
.tsctc
) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats
.tsctfc
) },
84 { "rx_flow_control_xon", IGB_STAT(stats
.xonrxc
) },
85 { "rx_flow_control_xoff", IGB_STAT(stats
.xoffrxc
) },
86 { "tx_flow_control_xon", IGB_STAT(stats
.xontxc
) },
87 { "tx_flow_control_xoff", IGB_STAT(stats
.xofftxc
) },
88 { "rx_long_byte_count", IGB_STAT(stats
.gorc
) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good
) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err
) },
91 { "rx_header_split", IGB_STAT(rx_hdr_split
) },
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed
) },
93 { "tx_smbus", IGB_STAT(stats
.mgptc
) },
94 { "rx_smbus", IGB_STAT(stats
.mgprc
) },
95 { "dropped_smbus", IGB_STAT(stats
.mgpdc
) },
97 { "lro_aggregated", IGB_STAT(lro_aggregated
) },
98 { "lro_flushed", IGB_STAT(lro_flushed
) },
99 { "lro_no_desc", IGB_STAT(lro_no_desc
) },
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues + \
105 ((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
106 (sizeof(struct igb_queue_stats) / sizeof(u64)))
107 #define IGB_GLOBAL_STATS_LEN \
108 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
109 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 static const char igb_gstrings_test
[][ETH_GSTRING_LEN
] = {
111 "Register test (offline)", "Eeprom test (offline)",
112 "Interrupt test (offline)", "Loopback test (offline)",
113 "Link test (on/offline)"
115 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
117 static int igb_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
119 struct igb_adapter
*adapter
= netdev_priv(netdev
);
120 struct e1000_hw
*hw
= &adapter
->hw
;
122 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
124 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
125 SUPPORTED_10baseT_Full
|
126 SUPPORTED_100baseT_Half
|
127 SUPPORTED_100baseT_Full
|
128 SUPPORTED_1000baseT_Full
|
131 ecmd
->advertising
= ADVERTISED_TP
;
133 if (hw
->mac
.autoneg
== 1) {
134 ecmd
->advertising
|= ADVERTISED_Autoneg
;
135 /* the e1000 autoneg seems to match ethtool nicely */
136 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
139 ecmd
->port
= PORT_TP
;
140 ecmd
->phy_address
= hw
->phy
.addr
;
142 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
146 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
150 ecmd
->port
= PORT_FIBRE
;
153 ecmd
->transceiver
= XCVR_INTERNAL
;
155 if (rd32(E1000_STATUS
) & E1000_STATUS_LU
) {
157 adapter
->hw
.mac
.ops
.get_speed_and_duplex(hw
,
158 &adapter
->link_speed
,
159 &adapter
->link_duplex
);
160 ecmd
->speed
= adapter
->link_speed
;
162 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
163 * and HALF_DUPLEX != DUPLEX_HALF */
165 if (adapter
->link_duplex
== FULL_DUPLEX
)
166 ecmd
->duplex
= DUPLEX_FULL
;
168 ecmd
->duplex
= DUPLEX_HALF
;
174 ecmd
->autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
175 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
179 static int igb_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
181 struct igb_adapter
*adapter
= netdev_priv(netdev
);
182 struct e1000_hw
*hw
= &adapter
->hw
;
184 /* When SoL/IDER sessions are active, autoneg/speed/duplex
185 * cannot be changed */
186 if (igb_check_reset_block(hw
)) {
187 dev_err(&adapter
->pdev
->dev
, "Cannot change link "
188 "characteristics when SoL/IDER is active.\n");
192 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
195 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
197 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
198 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
202 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
205 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
207 if (igb_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
208 clear_bit(__IGB_RESETTING
, &adapter
->state
);
214 if (netif_running(adapter
->netdev
)) {
220 clear_bit(__IGB_RESETTING
, &adapter
->state
);
224 static void igb_get_pauseparam(struct net_device
*netdev
,
225 struct ethtool_pauseparam
*pause
)
227 struct igb_adapter
*adapter
= netdev_priv(netdev
);
228 struct e1000_hw
*hw
= &adapter
->hw
;
231 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
233 if (hw
->fc
.type
== e1000_fc_rx_pause
)
235 else if (hw
->fc
.type
== e1000_fc_tx_pause
)
237 else if (hw
->fc
.type
== e1000_fc_full
) {
243 static int igb_set_pauseparam(struct net_device
*netdev
,
244 struct ethtool_pauseparam
*pause
)
246 struct igb_adapter
*adapter
= netdev_priv(netdev
);
247 struct e1000_hw
*hw
= &adapter
->hw
;
250 adapter
->fc_autoneg
= pause
->autoneg
;
252 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
255 if (pause
->rx_pause
&& pause
->tx_pause
)
256 hw
->fc
.type
= e1000_fc_full
;
257 else if (pause
->rx_pause
&& !pause
->tx_pause
)
258 hw
->fc
.type
= e1000_fc_rx_pause
;
259 else if (!pause
->rx_pause
&& pause
->tx_pause
)
260 hw
->fc
.type
= e1000_fc_tx_pause
;
261 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
262 hw
->fc
.type
= e1000_fc_none
;
264 hw
->fc
.original_type
= hw
->fc
.type
;
266 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
267 if (netif_running(adapter
->netdev
)) {
273 retval
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ?
274 igb_setup_link(hw
) : igb_force_mac_fc(hw
));
276 clear_bit(__IGB_RESETTING
, &adapter
->state
);
280 static u32
igb_get_rx_csum(struct net_device
*netdev
)
282 struct igb_adapter
*adapter
= netdev_priv(netdev
);
283 return adapter
->rx_csum
;
286 static int igb_set_rx_csum(struct net_device
*netdev
, u32 data
)
288 struct igb_adapter
*adapter
= netdev_priv(netdev
);
289 adapter
->rx_csum
= data
;
294 static u32
igb_get_tx_csum(struct net_device
*netdev
)
296 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
299 static int igb_set_tx_csum(struct net_device
*netdev
, u32 data
)
302 netdev
->features
|= NETIF_F_HW_CSUM
;
304 netdev
->features
&= ~NETIF_F_HW_CSUM
;
309 static int igb_set_tso(struct net_device
*netdev
, u32 data
)
311 struct igb_adapter
*adapter
= netdev_priv(netdev
);
314 netdev
->features
|= NETIF_F_TSO
;
316 netdev
->features
&= ~NETIF_F_TSO
;
319 netdev
->features
|= NETIF_F_TSO6
;
321 netdev
->features
&= ~NETIF_F_TSO6
;
323 dev_info(&adapter
->pdev
->dev
, "TSO is %s\n",
324 data
? "Enabled" : "Disabled");
328 static u32
igb_get_msglevel(struct net_device
*netdev
)
330 struct igb_adapter
*adapter
= netdev_priv(netdev
);
331 return adapter
->msg_enable
;
334 static void igb_set_msglevel(struct net_device
*netdev
, u32 data
)
336 struct igb_adapter
*adapter
= netdev_priv(netdev
);
337 adapter
->msg_enable
= data
;
340 static int igb_get_regs_len(struct net_device
*netdev
)
342 #define IGB_REGS_LEN 551
343 return IGB_REGS_LEN
* sizeof(u32
);
346 static void igb_get_regs(struct net_device
*netdev
,
347 struct ethtool_regs
*regs
, void *p
)
349 struct igb_adapter
*adapter
= netdev_priv(netdev
);
350 struct e1000_hw
*hw
= &adapter
->hw
;
354 memset(p
, 0, IGB_REGS_LEN
* sizeof(u32
));
356 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
358 /* General Registers */
359 regs_buff
[0] = rd32(E1000_CTRL
);
360 regs_buff
[1] = rd32(E1000_STATUS
);
361 regs_buff
[2] = rd32(E1000_CTRL_EXT
);
362 regs_buff
[3] = rd32(E1000_MDIC
);
363 regs_buff
[4] = rd32(E1000_SCTL
);
364 regs_buff
[5] = rd32(E1000_CONNSW
);
365 regs_buff
[6] = rd32(E1000_VET
);
366 regs_buff
[7] = rd32(E1000_LEDCTL
);
367 regs_buff
[8] = rd32(E1000_PBA
);
368 regs_buff
[9] = rd32(E1000_PBS
);
369 regs_buff
[10] = rd32(E1000_FRTIMER
);
370 regs_buff
[11] = rd32(E1000_TCPTIMER
);
373 regs_buff
[12] = rd32(E1000_EECD
);
376 /* Reading EICS for EICR because they read the
377 * same but EICS does not clear on read */
378 regs_buff
[13] = rd32(E1000_EICS
);
379 regs_buff
[14] = rd32(E1000_EICS
);
380 regs_buff
[15] = rd32(E1000_EIMS
);
381 regs_buff
[16] = rd32(E1000_EIMC
);
382 regs_buff
[17] = rd32(E1000_EIAC
);
383 regs_buff
[18] = rd32(E1000_EIAM
);
384 /* Reading ICS for ICR because they read the
385 * same but ICS does not clear on read */
386 regs_buff
[19] = rd32(E1000_ICS
);
387 regs_buff
[20] = rd32(E1000_ICS
);
388 regs_buff
[21] = rd32(E1000_IMS
);
389 regs_buff
[22] = rd32(E1000_IMC
);
390 regs_buff
[23] = rd32(E1000_IAC
);
391 regs_buff
[24] = rd32(E1000_IAM
);
392 regs_buff
[25] = rd32(E1000_IMIRVP
);
395 regs_buff
[26] = rd32(E1000_FCAL
);
396 regs_buff
[27] = rd32(E1000_FCAH
);
397 regs_buff
[28] = rd32(E1000_FCTTV
);
398 regs_buff
[29] = rd32(E1000_FCRTL
);
399 regs_buff
[30] = rd32(E1000_FCRTH
);
400 regs_buff
[31] = rd32(E1000_FCRTV
);
403 regs_buff
[32] = rd32(E1000_RCTL
);
404 regs_buff
[33] = rd32(E1000_RXCSUM
);
405 regs_buff
[34] = rd32(E1000_RLPML
);
406 regs_buff
[35] = rd32(E1000_RFCTL
);
407 regs_buff
[36] = rd32(E1000_MRQC
);
408 regs_buff
[37] = rd32(E1000_VMD_CTL
);
411 regs_buff
[38] = rd32(E1000_TCTL
);
412 regs_buff
[39] = rd32(E1000_TCTL_EXT
);
413 regs_buff
[40] = rd32(E1000_TIPG
);
414 regs_buff
[41] = rd32(E1000_DTXCTL
);
417 regs_buff
[42] = rd32(E1000_WUC
);
418 regs_buff
[43] = rd32(E1000_WUFC
);
419 regs_buff
[44] = rd32(E1000_WUS
);
420 regs_buff
[45] = rd32(E1000_IPAV
);
421 regs_buff
[46] = rd32(E1000_WUPL
);
424 regs_buff
[47] = rd32(E1000_PCS_CFG0
);
425 regs_buff
[48] = rd32(E1000_PCS_LCTL
);
426 regs_buff
[49] = rd32(E1000_PCS_LSTAT
);
427 regs_buff
[50] = rd32(E1000_PCS_ANADV
);
428 regs_buff
[51] = rd32(E1000_PCS_LPAB
);
429 regs_buff
[52] = rd32(E1000_PCS_NPTX
);
430 regs_buff
[53] = rd32(E1000_PCS_LPABNP
);
433 regs_buff
[54] = adapter
->stats
.crcerrs
;
434 regs_buff
[55] = adapter
->stats
.algnerrc
;
435 regs_buff
[56] = adapter
->stats
.symerrs
;
436 regs_buff
[57] = adapter
->stats
.rxerrc
;
437 regs_buff
[58] = adapter
->stats
.mpc
;
438 regs_buff
[59] = adapter
->stats
.scc
;
439 regs_buff
[60] = adapter
->stats
.ecol
;
440 regs_buff
[61] = adapter
->stats
.mcc
;
441 regs_buff
[62] = adapter
->stats
.latecol
;
442 regs_buff
[63] = adapter
->stats
.colc
;
443 regs_buff
[64] = adapter
->stats
.dc
;
444 regs_buff
[65] = adapter
->stats
.tncrs
;
445 regs_buff
[66] = adapter
->stats
.sec
;
446 regs_buff
[67] = adapter
->stats
.htdpmc
;
447 regs_buff
[68] = adapter
->stats
.rlec
;
448 regs_buff
[69] = adapter
->stats
.xonrxc
;
449 regs_buff
[70] = adapter
->stats
.xontxc
;
450 regs_buff
[71] = adapter
->stats
.xoffrxc
;
451 regs_buff
[72] = adapter
->stats
.xofftxc
;
452 regs_buff
[73] = adapter
->stats
.fcruc
;
453 regs_buff
[74] = adapter
->stats
.prc64
;
454 regs_buff
[75] = adapter
->stats
.prc127
;
455 regs_buff
[76] = adapter
->stats
.prc255
;
456 regs_buff
[77] = adapter
->stats
.prc511
;
457 regs_buff
[78] = adapter
->stats
.prc1023
;
458 regs_buff
[79] = adapter
->stats
.prc1522
;
459 regs_buff
[80] = adapter
->stats
.gprc
;
460 regs_buff
[81] = adapter
->stats
.bprc
;
461 regs_buff
[82] = adapter
->stats
.mprc
;
462 regs_buff
[83] = adapter
->stats
.gptc
;
463 regs_buff
[84] = adapter
->stats
.gorc
;
464 regs_buff
[86] = adapter
->stats
.gotc
;
465 regs_buff
[88] = adapter
->stats
.rnbc
;
466 regs_buff
[89] = adapter
->stats
.ruc
;
467 regs_buff
[90] = adapter
->stats
.rfc
;
468 regs_buff
[91] = adapter
->stats
.roc
;
469 regs_buff
[92] = adapter
->stats
.rjc
;
470 regs_buff
[93] = adapter
->stats
.mgprc
;
471 regs_buff
[94] = adapter
->stats
.mgpdc
;
472 regs_buff
[95] = adapter
->stats
.mgptc
;
473 regs_buff
[96] = adapter
->stats
.tor
;
474 regs_buff
[98] = adapter
->stats
.tot
;
475 regs_buff
[100] = adapter
->stats
.tpr
;
476 regs_buff
[101] = adapter
->stats
.tpt
;
477 regs_buff
[102] = adapter
->stats
.ptc64
;
478 regs_buff
[103] = adapter
->stats
.ptc127
;
479 regs_buff
[104] = adapter
->stats
.ptc255
;
480 regs_buff
[105] = adapter
->stats
.ptc511
;
481 regs_buff
[106] = adapter
->stats
.ptc1023
;
482 regs_buff
[107] = adapter
->stats
.ptc1522
;
483 regs_buff
[108] = adapter
->stats
.mptc
;
484 regs_buff
[109] = adapter
->stats
.bptc
;
485 regs_buff
[110] = adapter
->stats
.tsctc
;
486 regs_buff
[111] = adapter
->stats
.iac
;
487 regs_buff
[112] = adapter
->stats
.rpthc
;
488 regs_buff
[113] = adapter
->stats
.hgptc
;
489 regs_buff
[114] = adapter
->stats
.hgorc
;
490 regs_buff
[116] = adapter
->stats
.hgotc
;
491 regs_buff
[118] = adapter
->stats
.lenerrs
;
492 regs_buff
[119] = adapter
->stats
.scvpc
;
493 regs_buff
[120] = adapter
->stats
.hrmpc
;
495 /* These should probably be added to e1000_regs.h instead */
496 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
497 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
498 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
499 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
500 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
501 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
502 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
504 for (i
= 0; i
< 4; i
++)
505 regs_buff
[121 + i
] = rd32(E1000_SRRCTL(i
));
506 for (i
= 0; i
< 4; i
++)
507 regs_buff
[125 + i
] = rd32(E1000_PSRTYPE_REG(i
));
508 for (i
= 0; i
< 4; i
++)
509 regs_buff
[129 + i
] = rd32(E1000_RDBAL(i
));
510 for (i
= 0; i
< 4; i
++)
511 regs_buff
[133 + i
] = rd32(E1000_RDBAH(i
));
512 for (i
= 0; i
< 4; i
++)
513 regs_buff
[137 + i
] = rd32(E1000_RDLEN(i
));
514 for (i
= 0; i
< 4; i
++)
515 regs_buff
[141 + i
] = rd32(E1000_RDH(i
));
516 for (i
= 0; i
< 4; i
++)
517 regs_buff
[145 + i
] = rd32(E1000_RDT(i
));
518 for (i
= 0; i
< 4; i
++)
519 regs_buff
[149 + i
] = rd32(E1000_RXDCTL(i
));
521 for (i
= 0; i
< 10; i
++)
522 regs_buff
[153 + i
] = rd32(E1000_EITR(i
));
523 for (i
= 0; i
< 8; i
++)
524 regs_buff
[163 + i
] = rd32(E1000_IMIR(i
));
525 for (i
= 0; i
< 8; i
++)
526 regs_buff
[171 + i
] = rd32(E1000_IMIREXT(i
));
527 for (i
= 0; i
< 16; i
++)
528 regs_buff
[179 + i
] = rd32(E1000_RAL(i
));
529 for (i
= 0; i
< 16; i
++)
530 regs_buff
[195 + i
] = rd32(E1000_RAH(i
));
532 for (i
= 0; i
< 4; i
++)
533 regs_buff
[211 + i
] = rd32(E1000_TDBAL(i
));
534 for (i
= 0; i
< 4; i
++)
535 regs_buff
[215 + i
] = rd32(E1000_TDBAH(i
));
536 for (i
= 0; i
< 4; i
++)
537 regs_buff
[219 + i
] = rd32(E1000_TDLEN(i
));
538 for (i
= 0; i
< 4; i
++)
539 regs_buff
[223 + i
] = rd32(E1000_TDH(i
));
540 for (i
= 0; i
< 4; i
++)
541 regs_buff
[227 + i
] = rd32(E1000_TDT(i
));
542 for (i
= 0; i
< 4; i
++)
543 regs_buff
[231 + i
] = rd32(E1000_TXDCTL(i
));
544 for (i
= 0; i
< 4; i
++)
545 regs_buff
[235 + i
] = rd32(E1000_TDWBAL(i
));
546 for (i
= 0; i
< 4; i
++)
547 regs_buff
[239 + i
] = rd32(E1000_TDWBAH(i
));
548 for (i
= 0; i
< 4; i
++)
549 regs_buff
[243 + i
] = rd32(E1000_DCA_TXCTRL(i
));
551 for (i
= 0; i
< 4; i
++)
552 regs_buff
[247 + i
] = rd32(E1000_IP4AT_REG(i
));
553 for (i
= 0; i
< 4; i
++)
554 regs_buff
[251 + i
] = rd32(E1000_IP6AT_REG(i
));
555 for (i
= 0; i
< 32; i
++)
556 regs_buff
[255 + i
] = rd32(E1000_WUPM_REG(i
));
557 for (i
= 0; i
< 128; i
++)
558 regs_buff
[287 + i
] = rd32(E1000_FFMT_REG(i
));
559 for (i
= 0; i
< 128; i
++)
560 regs_buff
[415 + i
] = rd32(E1000_FFVT_REG(i
));
561 for (i
= 0; i
< 4; i
++)
562 regs_buff
[543 + i
] = rd32(E1000_FFLT_REG(i
));
564 regs_buff
[547] = rd32(E1000_TDFH
);
565 regs_buff
[548] = rd32(E1000_TDFT
);
566 regs_buff
[549] = rd32(E1000_TDFHS
);
567 regs_buff
[550] = rd32(E1000_TDFPC
);
571 static int igb_get_eeprom_len(struct net_device
*netdev
)
573 struct igb_adapter
*adapter
= netdev_priv(netdev
);
574 return adapter
->hw
.nvm
.word_size
* 2;
577 static int igb_get_eeprom(struct net_device
*netdev
,
578 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
580 struct igb_adapter
*adapter
= netdev_priv(netdev
);
581 struct e1000_hw
*hw
= &adapter
->hw
;
583 int first_word
, last_word
;
587 if (eeprom
->len
== 0)
590 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
592 first_word
= eeprom
->offset
>> 1;
593 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
595 eeprom_buff
= kmalloc(sizeof(u16
) *
596 (last_word
- first_word
+ 1), GFP_KERNEL
);
600 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
)
601 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, first_word
,
602 last_word
- first_word
+ 1,
605 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
606 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, first_word
+ i
, 1,
613 /* Device's eeprom is always little-endian, word addressable */
614 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
615 le16_to_cpus(&eeprom_buff
[i
]);
617 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
624 static int igb_set_eeprom(struct net_device
*netdev
,
625 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
627 struct igb_adapter
*adapter
= netdev_priv(netdev
);
628 struct e1000_hw
*hw
= &adapter
->hw
;
631 int max_len
, first_word
, last_word
, ret_val
= 0;
634 if (eeprom
->len
== 0)
637 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
640 max_len
= hw
->nvm
.word_size
* 2;
642 first_word
= eeprom
->offset
>> 1;
643 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
644 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
648 ptr
= (void *)eeprom_buff
;
650 if (eeprom
->offset
& 1) {
651 /* need read/modify/write of first changed EEPROM word */
652 /* only the second byte of the word is being modified */
653 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, first_word
, 1,
657 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
658 /* need read/modify/write of last changed EEPROM word */
659 /* only the first byte of the word is being modified */
660 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, last_word
, 1,
661 &eeprom_buff
[last_word
- first_word
]);
664 /* Device's eeprom is always little-endian, word addressable */
665 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
666 le16_to_cpus(&eeprom_buff
[i
]);
668 memcpy(ptr
, bytes
, eeprom
->len
);
670 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
671 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
673 ret_val
= hw
->nvm
.ops
.write_nvm(hw
, first_word
,
674 last_word
- first_word
+ 1, eeprom_buff
);
676 /* Update the checksum over the first part of the EEPROM if needed
677 * and flush shadow RAM for 82573 controllers */
678 if ((ret_val
== 0) && ((first_word
<= NVM_CHECKSUM_REG
)))
679 igb_update_nvm_checksum(hw
);
685 static void igb_get_drvinfo(struct net_device
*netdev
,
686 struct ethtool_drvinfo
*drvinfo
)
688 struct igb_adapter
*adapter
= netdev_priv(netdev
);
689 char firmware_version
[32];
692 strncpy(drvinfo
->driver
, igb_driver_name
, 32);
693 strncpy(drvinfo
->version
, igb_driver_version
, 32);
695 /* EEPROM image version # is reported as firmware version # for
696 * 82575 controllers */
697 adapter
->hw
.nvm
.ops
.read_nvm(&adapter
->hw
, 5, 1, &eeprom_data
);
698 sprintf(firmware_version
, "%d.%d-%d",
699 (eeprom_data
& 0xF000) >> 12,
700 (eeprom_data
& 0x0FF0) >> 4,
701 eeprom_data
& 0x000F);
703 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
704 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
705 drvinfo
->n_stats
= IGB_STATS_LEN
;
706 drvinfo
->testinfo_len
= IGB_TEST_LEN
;
707 drvinfo
->regdump_len
= igb_get_regs_len(netdev
);
708 drvinfo
->eedump_len
= igb_get_eeprom_len(netdev
);
711 static void igb_get_ringparam(struct net_device
*netdev
,
712 struct ethtool_ringparam
*ring
)
714 struct igb_adapter
*adapter
= netdev_priv(netdev
);
716 ring
->rx_max_pending
= IGB_MAX_RXD
;
717 ring
->tx_max_pending
= IGB_MAX_TXD
;
718 ring
->rx_mini_max_pending
= 0;
719 ring
->rx_jumbo_max_pending
= 0;
720 ring
->rx_pending
= adapter
->rx_ring_count
;
721 ring
->tx_pending
= adapter
->tx_ring_count
;
722 ring
->rx_mini_pending
= 0;
723 ring
->rx_jumbo_pending
= 0;
726 static int igb_set_ringparam(struct net_device
*netdev
,
727 struct ethtool_ringparam
*ring
)
729 struct igb_adapter
*adapter
= netdev_priv(netdev
);
730 struct igb_ring
*temp_ring
;
732 u32 new_rx_count
, new_tx_count
;
734 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
737 new_rx_count
= max(ring
->rx_pending
, (u32
)IGB_MIN_RXD
);
738 new_rx_count
= min(new_rx_count
, (u32
)IGB_MAX_RXD
);
739 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
741 new_tx_count
= max(ring
->tx_pending
, (u32
)IGB_MIN_TXD
);
742 new_tx_count
= min(new_tx_count
, (u32
)IGB_MAX_TXD
);
743 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
745 if ((new_tx_count
== adapter
->tx_ring_count
) &&
746 (new_rx_count
== adapter
->rx_ring_count
)) {
751 if (adapter
->num_tx_queues
> adapter
->num_rx_queues
)
752 temp_ring
= vmalloc(adapter
->num_tx_queues
* sizeof(struct igb_ring
));
754 temp_ring
= vmalloc(adapter
->num_rx_queues
* sizeof(struct igb_ring
));
758 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
761 if (netif_running(adapter
->netdev
))
765 * We can't just free everything and then setup again,
766 * because the ISRs in MSI-X mode get passed pointers
767 * to the tx and rx ring structs.
769 if (new_tx_count
!= adapter
->tx_ring_count
) {
770 memcpy(temp_ring
, adapter
->tx_ring
,
771 adapter
->num_tx_queues
* sizeof(struct igb_ring
));
773 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
774 temp_ring
[i
].count
= new_tx_count
;
775 err
= igb_setup_tx_resources(adapter
, &temp_ring
[i
]);
779 igb_free_tx_resources(&temp_ring
[i
]);
785 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
786 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
788 memcpy(adapter
->tx_ring
, temp_ring
,
789 adapter
->num_tx_queues
* sizeof(struct igb_ring
));
791 adapter
->tx_ring_count
= new_tx_count
;
794 if (new_rx_count
!= adapter
->rx_ring
->count
) {
795 memcpy(temp_ring
, adapter
->rx_ring
,
796 adapter
->num_rx_queues
* sizeof(struct igb_ring
));
798 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
799 temp_ring
[i
].count
= new_rx_count
;
800 err
= igb_setup_rx_resources(adapter
, &temp_ring
[i
]);
804 igb_free_rx_resources(&temp_ring
[i
]);
811 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
812 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
814 memcpy(adapter
->rx_ring
, temp_ring
,
815 adapter
->num_rx_queues
* sizeof(struct igb_ring
));
817 adapter
->rx_ring_count
= new_rx_count
;
822 if (netif_running(adapter
->netdev
))
825 clear_bit(__IGB_RESETTING
, &adapter
->state
);
830 /* ethtool register test data */
831 struct igb_reg_test
{
840 /* In the hardware, registers are laid out either singly, in arrays
841 * spaced 0x100 bytes apart, or in contiguous tables. We assume
842 * most tests take place on arrays or single registers (handled
843 * as a single-element array) and special-case the tables.
844 * Table tests are always pattern tests.
846 * We also make provision for some required setup steps by specifying
847 * registers to be written without any read-back testing.
850 #define PATTERN_TEST 1
851 #define SET_READ_TEST 2
852 #define WRITE_NO_TEST 3
853 #define TABLE32_TEST 4
854 #define TABLE64_TEST_LO 5
855 #define TABLE64_TEST_HI 6
858 static struct igb_reg_test reg_test_82576
[] = {
859 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
860 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
861 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
862 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
863 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
864 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
865 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
866 { E1000_RDBAL(4), 0x40, 8, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
867 { E1000_RDBAH(4), 0x40, 8, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
868 { E1000_RDLEN(4), 0x40, 8, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
869 /* Enable all four RX queues before testing. */
870 { E1000_RXDCTL(0), 0x100, 1, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
871 /* RDH is read-only for 82576, only test RDT. */
872 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
873 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
874 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
875 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
876 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
877 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
878 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
879 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
880 { E1000_TDBAL(4), 0x40, 8, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
881 { E1000_TDBAH(4), 0x40, 8, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
882 { E1000_TDLEN(4), 0x40, 8, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
883 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
884 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
885 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
886 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
887 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
888 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
889 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
891 { E1000_MTA
, 0, 128,TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
895 /* 82575 register test */
896 static struct igb_reg_test reg_test_82575
[] = {
897 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
898 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
899 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
900 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
901 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
902 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
903 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
904 /* Enable all four RX queues before testing. */
905 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
906 /* RDH is read-only for 82575, only test RDT. */
907 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
908 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
909 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
910 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
911 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
912 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
913 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
914 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
915 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
916 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0x003FFFFB },
917 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0xFFFFFFFF },
918 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
919 { E1000_TXCW
, 0x100, 1, PATTERN_TEST
, 0xC000FFFF, 0x0000FFFF },
920 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
921 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x800FFFFF, 0xFFFFFFFF },
922 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
926 static bool reg_pattern_test(struct igb_adapter
*adapter
, u64
*data
,
927 int reg
, u32 mask
, u32 write
)
931 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
932 for (pat
= 0; pat
< ARRAY_SIZE(_test
); pat
++) {
933 writel((_test
[pat
] & write
), (adapter
->hw
.hw_addr
+ reg
));
934 val
= readl(adapter
->hw
.hw_addr
+ reg
);
935 if (val
!= (_test
[pat
] & write
& mask
)) {
936 dev_err(&adapter
->pdev
->dev
, "pattern test reg %04X "
937 "failed: got 0x%08X expected 0x%08X\n",
938 reg
, val
, (_test
[pat
] & write
& mask
));
946 static bool reg_set_and_check(struct igb_adapter
*adapter
, u64
*data
,
947 int reg
, u32 mask
, u32 write
)
950 writel((write
& mask
), (adapter
->hw
.hw_addr
+ reg
));
951 val
= readl(adapter
->hw
.hw_addr
+ reg
);
952 if ((write
& mask
) != (val
& mask
)) {
953 dev_err(&adapter
->pdev
->dev
, "set/check reg %04X test failed:"
954 " got 0x%08X expected 0x%08X\n", reg
,
955 (val
& mask
), (write
& mask
));
962 #define REG_PATTERN_TEST(reg, mask, write) \
964 if (reg_pattern_test(adapter, data, reg, mask, write)) \
968 #define REG_SET_AND_CHECK(reg, mask, write) \
970 if (reg_set_and_check(adapter, data, reg, mask, write)) \
974 static int igb_reg_test(struct igb_adapter
*adapter
, u64
*data
)
976 struct e1000_hw
*hw
= &adapter
->hw
;
977 struct igb_reg_test
*test
;
978 u32 value
, before
, after
;
983 switch (adapter
->hw
.mac
.type
) {
985 test
= reg_test_82576
;
988 test
= reg_test_82575
;
992 /* Because the status register is such a special case,
993 * we handle it separately from the rest of the register
994 * tests. Some bits are read-only, some toggle, and some
995 * are writable on newer MACs.
997 before
= rd32(E1000_STATUS
);
998 value
= (rd32(E1000_STATUS
) & toggle
);
999 wr32(E1000_STATUS
, toggle
);
1000 after
= rd32(E1000_STATUS
) & toggle
;
1001 if (value
!= after
) {
1002 dev_err(&adapter
->pdev
->dev
, "failed STATUS register test "
1003 "got: 0x%08X expected: 0x%08X\n", after
, value
);
1007 /* restore previous status */
1008 wr32(E1000_STATUS
, before
);
1010 /* Perform the remainder of the register test, looping through
1011 * the test table until we either fail or reach the null entry.
1014 for (i
= 0; i
< test
->array_len
; i
++) {
1015 switch (test
->test_type
) {
1017 REG_PATTERN_TEST(test
->reg
+ (i
* test
->reg_offset
),
1022 REG_SET_AND_CHECK(test
->reg
+ (i
* test
->reg_offset
),
1028 (adapter
->hw
.hw_addr
+ test
->reg
)
1029 + (i
* test
->reg_offset
));
1032 REG_PATTERN_TEST(test
->reg
+ (i
* 4),
1036 case TABLE64_TEST_LO
:
1037 REG_PATTERN_TEST(test
->reg
+ (i
* 8),
1041 case TABLE64_TEST_HI
:
1042 REG_PATTERN_TEST((test
->reg
+ 4) + (i
* 8),
1055 static int igb_eeprom_test(struct igb_adapter
*adapter
, u64
*data
)
1062 /* Read and add up the contents of the EEPROM */
1063 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
1064 if ((adapter
->hw
.nvm
.ops
.read_nvm(&adapter
->hw
, i
, 1, &temp
))
1072 /* If Checksum is not Correct return error else test passed */
1073 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
1079 static irqreturn_t
igb_test_intr(int irq
, void *data
)
1081 struct net_device
*netdev
= (struct net_device
*) data
;
1082 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1083 struct e1000_hw
*hw
= &adapter
->hw
;
1085 adapter
->test_icr
|= rd32(E1000_ICR
);
1090 static int igb_intr_test(struct igb_adapter
*adapter
, u64
*data
)
1092 struct e1000_hw
*hw
= &adapter
->hw
;
1093 struct net_device
*netdev
= adapter
->netdev
;
1094 u32 mask
, i
= 0, shared_int
= true;
1095 u32 irq
= adapter
->pdev
->irq
;
1099 /* Hook up test interrupt handler just for this test */
1100 if (adapter
->msix_entries
) {
1101 /* NOTE: we don't test MSI-X interrupts here, yet */
1103 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1105 if (request_irq(irq
, &igb_test_intr
, 0, netdev
->name
, netdev
)) {
1109 } else if (!request_irq(irq
, &igb_test_intr
, IRQF_PROBE_SHARED
,
1110 netdev
->name
, netdev
)) {
1112 } else if (request_irq(irq
, &igb_test_intr
, IRQF_SHARED
,
1113 netdev
->name
, netdev
)) {
1117 dev_info(&adapter
->pdev
->dev
, "testing %s interrupt\n",
1118 (shared_int
? "shared" : "unshared"));
1120 /* Disable all the interrupts */
1121 wr32(E1000_IMC
, 0xFFFFFFFF);
1124 /* Test each interrupt */
1125 for (; i
< 10; i
++) {
1126 /* Interrupt to test */
1130 /* Disable the interrupt to be reported in
1131 * the cause register and then force the same
1132 * interrupt and see if one gets posted. If
1133 * an interrupt was posted to the bus, the
1136 adapter
->test_icr
= 0;
1137 wr32(E1000_IMC
, ~mask
& 0x00007FFF);
1138 wr32(E1000_ICS
, ~mask
& 0x00007FFF);
1141 if (adapter
->test_icr
& mask
) {
1147 /* Enable the interrupt to be reported in
1148 * the cause register and then force the same
1149 * interrupt and see if one gets posted. If
1150 * an interrupt was not posted to the bus, the
1153 adapter
->test_icr
= 0;
1154 wr32(E1000_IMS
, mask
);
1155 wr32(E1000_ICS
, mask
);
1158 if (!(adapter
->test_icr
& mask
)) {
1164 /* Disable the other interrupts to be reported in
1165 * the cause register and then force the other
1166 * interrupts and see if any get posted. If
1167 * an interrupt was posted to the bus, the
1170 adapter
->test_icr
= 0;
1171 wr32(E1000_IMC
, ~mask
& 0x00007FFF);
1172 wr32(E1000_ICS
, ~mask
& 0x00007FFF);
1175 if (adapter
->test_icr
) {
1182 /* Disable all the interrupts */
1183 wr32(E1000_IMC
, 0xFFFFFFFF);
1186 /* Unhook test interrupt handler */
1187 free_irq(irq
, netdev
);
1192 static void igb_free_desc_rings(struct igb_adapter
*adapter
)
1194 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1195 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1196 struct pci_dev
*pdev
= adapter
->pdev
;
1199 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1200 for (i
= 0; i
< tx_ring
->count
; i
++) {
1201 struct igb_buffer
*buf
= &(tx_ring
->buffer_info
[i
]);
1203 pci_unmap_single(pdev
, buf
->dma
, buf
->length
,
1206 dev_kfree_skb(buf
->skb
);
1210 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1211 for (i
= 0; i
< rx_ring
->count
; i
++) {
1212 struct igb_buffer
*buf
= &(rx_ring
->buffer_info
[i
]);
1214 pci_unmap_single(pdev
, buf
->dma
,
1216 PCI_DMA_FROMDEVICE
);
1218 dev_kfree_skb(buf
->skb
);
1222 if (tx_ring
->desc
) {
1223 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
,
1225 tx_ring
->desc
= NULL
;
1227 if (rx_ring
->desc
) {
1228 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
,
1230 rx_ring
->desc
= NULL
;
1233 kfree(tx_ring
->buffer_info
);
1234 tx_ring
->buffer_info
= NULL
;
1235 kfree(rx_ring
->buffer_info
);
1236 rx_ring
->buffer_info
= NULL
;
1241 static int igb_setup_desc_rings(struct igb_adapter
*adapter
)
1243 struct e1000_hw
*hw
= &adapter
->hw
;
1244 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1245 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1246 struct pci_dev
*pdev
= adapter
->pdev
;
1250 /* Setup Tx descriptor ring and Tx buffers */
1252 if (!tx_ring
->count
)
1253 tx_ring
->count
= IGB_DEFAULT_TXD
;
1255 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1256 sizeof(struct igb_buffer
),
1258 if (!tx_ring
->buffer_info
) {
1263 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1264 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1265 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1267 if (!tx_ring
->desc
) {
1271 tx_ring
->next_to_use
= tx_ring
->next_to_clean
= 0;
1273 wr32(E1000_TDBAL(0),
1274 ((u64
) tx_ring
->dma
& 0x00000000FFFFFFFF));
1275 wr32(E1000_TDBAH(0), ((u64
) tx_ring
->dma
>> 32));
1276 wr32(E1000_TDLEN(0),
1277 tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1278 wr32(E1000_TDH(0), 0);
1279 wr32(E1000_TDT(0), 0);
1281 E1000_TCTL_PSP
| E1000_TCTL_EN
|
1282 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1283 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1285 for (i
= 0; i
< tx_ring
->count
; i
++) {
1286 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1287 struct sk_buff
*skb
;
1288 unsigned int size
= 1024;
1290 skb
= alloc_skb(size
, GFP_KERNEL
);
1296 tx_ring
->buffer_info
[i
].skb
= skb
;
1297 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1298 tx_ring
->buffer_info
[i
].dma
=
1299 pci_map_single(pdev
, skb
->data
, skb
->len
,
1301 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1302 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1303 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1304 E1000_TXD_CMD_IFCS
|
1306 tx_desc
->upper
.data
= 0;
1309 /* Setup Rx descriptor ring and Rx buffers */
1311 if (!rx_ring
->count
)
1312 rx_ring
->count
= IGB_DEFAULT_RXD
;
1314 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1315 sizeof(struct igb_buffer
),
1317 if (!rx_ring
->buffer_info
) {
1322 rx_ring
->size
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
1323 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1325 if (!rx_ring
->desc
) {
1329 rx_ring
->next_to_use
= rx_ring
->next_to_clean
= 0;
1331 rctl
= rd32(E1000_RCTL
);
1332 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1333 wr32(E1000_RDBAL(0),
1334 ((u64
) rx_ring
->dma
& 0xFFFFFFFF));
1335 wr32(E1000_RDBAH(0),
1336 ((u64
) rx_ring
->dma
>> 32));
1337 wr32(E1000_RDLEN(0), rx_ring
->size
);
1338 wr32(E1000_RDH(0), 0);
1339 wr32(E1000_RDT(0), 0);
1340 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1341 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1342 E1000_RCTL_RDMTS_HALF
|
1343 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1344 wr32(E1000_RCTL
, rctl
);
1345 wr32(E1000_SRRCTL(0), 0);
1347 for (i
= 0; i
< rx_ring
->count
; i
++) {
1348 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1349 struct sk_buff
*skb
;
1351 skb
= alloc_skb(IGB_RXBUFFER_2048
+ NET_IP_ALIGN
,
1357 skb_reserve(skb
, NET_IP_ALIGN
);
1358 rx_ring
->buffer_info
[i
].skb
= skb
;
1359 rx_ring
->buffer_info
[i
].dma
=
1360 pci_map_single(pdev
, skb
->data
, IGB_RXBUFFER_2048
,
1361 PCI_DMA_FROMDEVICE
);
1362 rx_desc
->buffer_addr
= cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1363 memset(skb
->data
, 0x00, skb
->len
);
1369 igb_free_desc_rings(adapter
);
1373 static void igb_phy_disable_receiver(struct igb_adapter
*adapter
)
1375 struct e1000_hw
*hw
= &adapter
->hw
;
1377 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1378 igb_write_phy_reg(hw
, 29, 0x001F);
1379 igb_write_phy_reg(hw
, 30, 0x8FFC);
1380 igb_write_phy_reg(hw
, 29, 0x001A);
1381 igb_write_phy_reg(hw
, 30, 0x8FF0);
1384 static int igb_integrated_phy_loopback(struct igb_adapter
*adapter
)
1386 struct e1000_hw
*hw
= &adapter
->hw
;
1390 hw
->mac
.autoneg
= false;
1392 if (hw
->phy
.type
== e1000_phy_m88
) {
1393 /* Auto-MDI/MDIX Off */
1394 igb_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1395 /* reset to update Auto-MDI/MDIX */
1396 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x9140);
1398 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x8140);
1401 ctrl_reg
= rd32(E1000_CTRL
);
1403 /* force 1000, set loopback */
1404 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1406 /* Now set up the MAC to the same speed/duplex as the PHY. */
1407 ctrl_reg
= rd32(E1000_CTRL
);
1408 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1409 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1410 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1411 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1412 E1000_CTRL_FD
); /* Force Duplex to FULL */
1414 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1415 hw
->phy
.type
== e1000_phy_m88
)
1416 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1418 /* Set the ILOS bit on the fiber Nic if half duplex link is
1420 stat_reg
= rd32(E1000_STATUS
);
1421 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1422 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1425 wr32(E1000_CTRL
, ctrl_reg
);
1427 /* Disable the receiver on the PHY so when a cable is plugged in, the
1428 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1430 if (hw
->phy
.type
== e1000_phy_m88
)
1431 igb_phy_disable_receiver(adapter
);
1438 static int igb_set_phy_loopback(struct igb_adapter
*adapter
)
1440 return igb_integrated_phy_loopback(adapter
);
1443 static int igb_setup_loopback_test(struct igb_adapter
*adapter
)
1445 struct e1000_hw
*hw
= &adapter
->hw
;
1448 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1449 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1450 reg
= rd32(E1000_RCTL
);
1451 reg
|= E1000_RCTL_LBM_TCVR
;
1452 wr32(E1000_RCTL
, reg
);
1454 wr32(E1000_SCTL
, E1000_ENABLE_SERDES_LOOPBACK
);
1456 reg
= rd32(E1000_CTRL
);
1457 reg
&= ~(E1000_CTRL_RFCE
|
1460 reg
|= E1000_CTRL_SLU
|
1462 wr32(E1000_CTRL
, reg
);
1464 /* Unset switch control to serdes energy detect */
1465 reg
= rd32(E1000_CONNSW
);
1466 reg
&= ~E1000_CONNSW_ENRGSRC
;
1467 wr32(E1000_CONNSW
, reg
);
1469 /* Set PCS register for forced speed */
1470 reg
= rd32(E1000_PCS_LCTL
);
1471 reg
&= ~E1000_PCS_LCTL_AN_ENABLE
; /* Disable Autoneg*/
1472 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1473 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1474 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1475 E1000_PCS_LCTL_FSD
| /* Force Speed */
1476 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1477 wr32(E1000_PCS_LCTL
, reg
);
1480 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1481 return igb_set_phy_loopback(adapter
);
1487 static void igb_loopback_cleanup(struct igb_adapter
*adapter
)
1489 struct e1000_hw
*hw
= &adapter
->hw
;
1493 rctl
= rd32(E1000_RCTL
);
1494 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1495 wr32(E1000_RCTL
, rctl
);
1497 hw
->mac
.autoneg
= true;
1498 igb_read_phy_reg(hw
, PHY_CONTROL
, &phy_reg
);
1499 if (phy_reg
& MII_CR_LOOPBACK
) {
1500 phy_reg
&= ~MII_CR_LOOPBACK
;
1501 igb_write_phy_reg(hw
, PHY_CONTROL
, phy_reg
);
1502 igb_phy_sw_reset(hw
);
1506 static void igb_create_lbtest_frame(struct sk_buff
*skb
,
1507 unsigned int frame_size
)
1509 memset(skb
->data
, 0xFF, frame_size
);
1511 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1512 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1513 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1516 static int igb_check_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1519 if (*(skb
->data
+ 3) == 0xFF)
1520 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1521 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1526 static int igb_run_loopback_test(struct igb_adapter
*adapter
)
1528 struct e1000_hw
*hw
= &adapter
->hw
;
1529 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1530 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1531 struct pci_dev
*pdev
= adapter
->pdev
;
1532 int i
, j
, k
, l
, lc
, good_cnt
;
1536 wr32(E1000_RDT(0), rx_ring
->count
- 1);
1538 /* Calculate the loop count based on the largest descriptor ring
1539 * The idea is to wrap the largest ring a number of times using 64
1540 * send/receive pairs during each loop
1543 if (rx_ring
->count
<= tx_ring
->count
)
1544 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1546 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1549 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1550 for (i
= 0; i
< 64; i
++) { /* send the packets */
1551 igb_create_lbtest_frame(tx_ring
->buffer_info
[k
].skb
,
1553 pci_dma_sync_single_for_device(pdev
,
1554 tx_ring
->buffer_info
[k
].dma
,
1555 tx_ring
->buffer_info
[k
].length
,
1558 if (k
== tx_ring
->count
)
1561 wr32(E1000_TDT(0), k
);
1563 time
= jiffies
; /* set the start time for the receive */
1565 do { /* receive the sent packets */
1566 pci_dma_sync_single_for_cpu(pdev
,
1567 rx_ring
->buffer_info
[l
].dma
,
1569 PCI_DMA_FROMDEVICE
);
1571 ret_val
= igb_check_lbtest_frame(
1572 rx_ring
->buffer_info
[l
].skb
, 1024);
1576 if (l
== rx_ring
->count
)
1578 /* time + 20 msecs (200 msecs on 2.4) is more than
1579 * enough time to complete the receives, if it's
1580 * exceeded, break and error off
1582 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1583 if (good_cnt
!= 64) {
1584 ret_val
= 13; /* ret_val is the same as mis-compare */
1587 if (jiffies
>= (time
+ 20)) {
1588 ret_val
= 14; /* error code for time out error */
1591 } /* end loop count loop */
1595 static int igb_loopback_test(struct igb_adapter
*adapter
, u64
*data
)
1597 /* PHY loopback cannot be performed if SoL/IDER
1598 * sessions are active */
1599 if (igb_check_reset_block(&adapter
->hw
)) {
1600 dev_err(&adapter
->pdev
->dev
,
1601 "Cannot do PHY loopback test "
1602 "when SoL/IDER is active.\n");
1606 *data
= igb_setup_desc_rings(adapter
);
1609 *data
= igb_setup_loopback_test(adapter
);
1612 *data
= igb_run_loopback_test(adapter
);
1613 igb_loopback_cleanup(adapter
);
1616 igb_free_desc_rings(adapter
);
1621 static int igb_link_test(struct igb_adapter
*adapter
, u64
*data
)
1623 struct e1000_hw
*hw
= &adapter
->hw
;
1625 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1627 hw
->mac
.serdes_has_link
= false;
1629 /* On some blade server designs, link establishment
1630 * could take as long as 2-3 minutes */
1632 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1633 if (hw
->mac
.serdes_has_link
)
1636 } while (i
++ < 3750);
1640 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1641 if (hw
->mac
.autoneg
)
1644 if (!(rd32(E1000_STATUS
) &
1651 static void igb_diag_test(struct net_device
*netdev
,
1652 struct ethtool_test
*eth_test
, u64
*data
)
1654 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1655 u16 autoneg_advertised
;
1656 u8 forced_speed_duplex
, autoneg
;
1657 bool if_running
= netif_running(netdev
);
1659 set_bit(__IGB_TESTING
, &adapter
->state
);
1660 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1663 /* save speed, duplex, autoneg settings */
1664 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1665 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1666 autoneg
= adapter
->hw
.mac
.autoneg
;
1668 dev_info(&adapter
->pdev
->dev
, "offline testing starting\n");
1670 /* Link test performed before hardware reset so autoneg doesn't
1671 * interfere with test result */
1672 if (igb_link_test(adapter
, &data
[4]))
1673 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1676 /* indicate we're in test mode */
1681 if (igb_reg_test(adapter
, &data
[0]))
1682 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1685 if (igb_eeprom_test(adapter
, &data
[1]))
1686 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1689 if (igb_intr_test(adapter
, &data
[2]))
1690 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1693 if (igb_loopback_test(adapter
, &data
[3]))
1694 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1696 /* restore speed, duplex, autoneg settings */
1697 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1698 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1699 adapter
->hw
.mac
.autoneg
= autoneg
;
1701 /* force this routine to wait until autoneg complete/timeout */
1702 adapter
->hw
.phy
.autoneg_wait_to_complete
= true;
1704 adapter
->hw
.phy
.autoneg_wait_to_complete
= false;
1706 clear_bit(__IGB_TESTING
, &adapter
->state
);
1710 dev_info(&adapter
->pdev
->dev
, "online testing starting\n");
1712 if (igb_link_test(adapter
, &data
[4]))
1713 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1715 /* Online tests aren't run; pass by default */
1721 clear_bit(__IGB_TESTING
, &adapter
->state
);
1723 msleep_interruptible(4 * 1000);
1726 static int igb_wol_exclusion(struct igb_adapter
*adapter
,
1727 struct ethtool_wolinfo
*wol
)
1729 struct e1000_hw
*hw
= &adapter
->hw
;
1730 int retval
= 1; /* fail by default */
1732 switch (hw
->device_id
) {
1733 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1734 /* WoL not supported */
1737 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1738 case E1000_DEV_ID_82576_FIBER
:
1739 case E1000_DEV_ID_82576_SERDES
:
1740 /* Wake events not supported on port B */
1741 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
) {
1745 /* return success for non excluded adapter ports */
1749 /* dual port cards only support WoL on port A from now on
1750 * unless it was enabled in the eeprom for port B
1751 * so exclude FUNC_1 ports from having WoL enabled */
1752 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
&&
1753 !adapter
->eeprom_wol
) {
1764 static void igb_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1766 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1768 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1769 WAKE_BCAST
| WAKE_MAGIC
;
1772 /* this function will set ->supported = 0 and return 1 if wol is not
1773 * supported by this hardware */
1774 if (igb_wol_exclusion(adapter
, wol
) ||
1775 !device_can_wakeup(&adapter
->pdev
->dev
))
1778 /* apply any specific unsupported masks here */
1779 switch (adapter
->hw
.device_id
) {
1784 if (adapter
->wol
& E1000_WUFC_EX
)
1785 wol
->wolopts
|= WAKE_UCAST
;
1786 if (adapter
->wol
& E1000_WUFC_MC
)
1787 wol
->wolopts
|= WAKE_MCAST
;
1788 if (adapter
->wol
& E1000_WUFC_BC
)
1789 wol
->wolopts
|= WAKE_BCAST
;
1790 if (adapter
->wol
& E1000_WUFC_MAG
)
1791 wol
->wolopts
|= WAKE_MAGIC
;
1796 static int igb_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1798 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1799 struct e1000_hw
*hw
= &adapter
->hw
;
1801 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1804 if (igb_wol_exclusion(adapter
, wol
) ||
1805 !device_can_wakeup(&adapter
->pdev
->dev
))
1806 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1808 switch (hw
->device_id
) {
1813 /* these settings will always override what we currently have */
1816 if (wol
->wolopts
& WAKE_UCAST
)
1817 adapter
->wol
|= E1000_WUFC_EX
;
1818 if (wol
->wolopts
& WAKE_MCAST
)
1819 adapter
->wol
|= E1000_WUFC_MC
;
1820 if (wol
->wolopts
& WAKE_BCAST
)
1821 adapter
->wol
|= E1000_WUFC_BC
;
1822 if (wol
->wolopts
& WAKE_MAGIC
)
1823 adapter
->wol
|= E1000_WUFC_MAG
;
1825 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1830 /* toggle LED 4 times per second = 2 "blinks" per second */
1831 #define IGB_ID_INTERVAL (HZ/4)
1833 /* bit defines for adapter->led_status */
1834 #define IGB_LED_ON 0
1836 static int igb_phys_id(struct net_device
*netdev
, u32 data
)
1838 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1839 struct e1000_hw
*hw
= &adapter
->hw
;
1841 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
1842 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
1845 msleep_interruptible(data
* 1000);
1848 clear_bit(IGB_LED_ON
, &adapter
->led_status
);
1849 igb_cleanup_led(hw
);
1854 static int igb_set_coalesce(struct net_device
*netdev
,
1855 struct ethtool_coalesce
*ec
)
1857 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1858 struct e1000_hw
*hw
= &adapter
->hw
;
1861 if ((ec
->rx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
1862 ((ec
->rx_coalesce_usecs
> 3) &&
1863 (ec
->rx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
1864 (ec
->rx_coalesce_usecs
== 2))
1867 /* convert to rate of irq's per second */
1868 if (ec
->rx_coalesce_usecs
&& ec
->rx_coalesce_usecs
<= 3) {
1869 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1870 adapter
->itr
= IGB_START_ITR
;
1872 adapter
->itr_setting
= ec
->rx_coalesce_usecs
<< 2;
1873 adapter
->itr
= adapter
->itr_setting
;
1876 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1877 wr32(adapter
->rx_ring
[i
].itr_register
, adapter
->itr
);
1882 static int igb_get_coalesce(struct net_device
*netdev
,
1883 struct ethtool_coalesce
*ec
)
1885 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1887 if (adapter
->itr_setting
<= 3)
1888 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1890 ec
->rx_coalesce_usecs
= adapter
->itr_setting
>> 2;
1896 static int igb_nway_reset(struct net_device
*netdev
)
1898 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1899 if (netif_running(netdev
))
1900 igb_reinit_locked(adapter
);
1904 static int igb_get_sset_count(struct net_device
*netdev
, int sset
)
1908 return IGB_STATS_LEN
;
1910 return IGB_TEST_LEN
;
1916 static void igb_get_ethtool_stats(struct net_device
*netdev
,
1917 struct ethtool_stats
*stats
, u64
*data
)
1919 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1921 int stat_count
= sizeof(struct igb_queue_stats
) / sizeof(u64
);
1924 #ifdef CONFIG_IGB_LRO
1925 int aggregated
= 0, flushed
= 0, no_desc
= 0;
1927 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1928 aggregated
+= adapter
->rx_ring
[i
].lro_mgr
.stats
.aggregated
;
1929 flushed
+= adapter
->rx_ring
[i
].lro_mgr
.stats
.flushed
;
1930 no_desc
+= adapter
->rx_ring
[i
].lro_mgr
.stats
.no_desc
;
1932 adapter
->lro_aggregated
= aggregated
;
1933 adapter
->lro_flushed
= flushed
;
1934 adapter
->lro_no_desc
= no_desc
;
1937 igb_update_stats(adapter
);
1938 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
1939 char *p
= (char *)adapter
+igb_gstrings_stats
[i
].stat_offset
;
1940 data
[i
] = (igb_gstrings_stats
[i
].sizeof_stat
==
1941 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1943 for (j
= 0; j
< adapter
->num_tx_queues
; j
++) {
1945 queue_stat
= (u64
*)&adapter
->tx_ring
[j
].tx_stats
;
1946 for (k
= 0; k
< stat_count
; k
++)
1947 data
[i
+ k
] = queue_stat
[k
];
1950 for (j
= 0; j
< adapter
->num_rx_queues
; j
++) {
1952 queue_stat
= (u64
*)&adapter
->rx_ring
[j
].rx_stats
;
1953 for (k
= 0; k
< stat_count
; k
++)
1954 data
[i
+ k
] = queue_stat
[k
];
1959 static void igb_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
1961 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1965 switch (stringset
) {
1967 memcpy(data
, *igb_gstrings_test
,
1968 IGB_TEST_LEN
*ETH_GSTRING_LEN
);
1971 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
1972 memcpy(p
, igb_gstrings_stats
[i
].stat_string
,
1974 p
+= ETH_GSTRING_LEN
;
1976 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1977 sprintf(p
, "tx_queue_%u_packets", i
);
1978 p
+= ETH_GSTRING_LEN
;
1979 sprintf(p
, "tx_queue_%u_bytes", i
);
1980 p
+= ETH_GSTRING_LEN
;
1982 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1983 sprintf(p
, "rx_queue_%u_packets", i
);
1984 p
+= ETH_GSTRING_LEN
;
1985 sprintf(p
, "rx_queue_%u_bytes", i
);
1986 p
+= ETH_GSTRING_LEN
;
1988 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1993 static struct ethtool_ops igb_ethtool_ops
= {
1994 .get_settings
= igb_get_settings
,
1995 .set_settings
= igb_set_settings
,
1996 .get_drvinfo
= igb_get_drvinfo
,
1997 .get_regs_len
= igb_get_regs_len
,
1998 .get_regs
= igb_get_regs
,
1999 .get_wol
= igb_get_wol
,
2000 .set_wol
= igb_set_wol
,
2001 .get_msglevel
= igb_get_msglevel
,
2002 .set_msglevel
= igb_set_msglevel
,
2003 .nway_reset
= igb_nway_reset
,
2004 .get_link
= ethtool_op_get_link
,
2005 .get_eeprom_len
= igb_get_eeprom_len
,
2006 .get_eeprom
= igb_get_eeprom
,
2007 .set_eeprom
= igb_set_eeprom
,
2008 .get_ringparam
= igb_get_ringparam
,
2009 .set_ringparam
= igb_set_ringparam
,
2010 .get_pauseparam
= igb_get_pauseparam
,
2011 .set_pauseparam
= igb_set_pauseparam
,
2012 .get_rx_csum
= igb_get_rx_csum
,
2013 .set_rx_csum
= igb_set_rx_csum
,
2014 .get_tx_csum
= igb_get_tx_csum
,
2015 .set_tx_csum
= igb_set_tx_csum
,
2016 .get_sg
= ethtool_op_get_sg
,
2017 .set_sg
= ethtool_op_set_sg
,
2018 .get_tso
= ethtool_op_get_tso
,
2019 .set_tso
= igb_set_tso
,
2020 .self_test
= igb_diag_test
,
2021 .get_strings
= igb_get_strings
,
2022 .phys_id
= igb_phys_id
,
2023 .get_sset_count
= igb_get_sset_count
,
2024 .get_ethtool_stats
= igb_get_ethtool_stats
,
2025 .get_coalesce
= igb_get_coalesce
,
2026 .set_coalesce
= igb_set_coalesce
,
2027 .get_flags
= ethtool_op_get_flags
,
2028 #ifdef CONFIG_IGB_LRO
2029 .set_flags
= ethtool_op_set_flags
,
2033 void igb_set_ethtool_ops(struct net_device
*netdev
)
2035 SET_ETHTOOL_OPS(netdev
, &igb_ethtool_ops
);