added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / media / dvb / frontends / itd1000.c
blob600dad6b41ea8a59641bea1bc5bc36b3aea36e71
1 /*
2 * Driver for the Integrant ITD1000 "Zero-IF Tuner IC for Direct Broadcast Satellite"
4 * Copyright (c) 2007-8 Patrick Boettcher <pb@linuxtv.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/delay.h>
25 #include <linux/dvb/frontend.h>
26 #include <linux/i2c.h>
28 #include "dvb_frontend.h"
30 #include "itd1000.h"
31 #include "itd1000_priv.h"
33 static int debug;
34 module_param(debug, int, 0644);
35 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
37 #define deb(args...) do { \
38 if (debug) { \
39 printk(KERN_DEBUG "ITD1000: " args);\
40 printk("\n"); \
41 } \
42 } while (0)
44 #define warn(args...) do { \
45 printk(KERN_WARNING "ITD1000: " args); \
46 printk("\n"); \
47 } while (0)
49 #define info(args...) do { \
50 printk(KERN_INFO "ITD1000: " args); \
51 printk("\n"); \
52 } while (0)
54 /* don't write more than one byte with flexcop behind */
55 static int itd1000_write_regs(struct itd1000_state *state, u8 reg, u8 v[], u8 len)
57 u8 buf[1+len];
58 struct i2c_msg msg = {
59 .addr = state->cfg->i2c_address, .flags = 0, .buf = buf, .len = len+1
61 buf[0] = reg;
62 memcpy(&buf[1], v, len);
64 /* deb("wr %02x: %02x", reg, v[0]); */
66 if (i2c_transfer(state->i2c, &msg, 1) != 1) {
67 printk(KERN_WARNING "itd1000 I2C write failed\n");
68 return -EREMOTEIO;
70 return 0;
73 static int itd1000_read_reg(struct itd1000_state *state, u8 reg)
75 u8 val;
76 struct i2c_msg msg[2] = {
77 { .addr = state->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
78 { .addr = state->cfg->i2c_address, .flags = I2C_M_RD, .buf = &val, .len = 1 },
81 /* ugly flexcop workaround */
82 itd1000_write_regs(state, (reg - 1) & 0xff, &state->shadow[(reg - 1) & 0xff], 1);
84 if (i2c_transfer(state->i2c, msg, 2) != 2) {
85 warn("itd1000 I2C read failed");
86 return -EREMOTEIO;
88 return val;
91 static inline int itd1000_write_reg(struct itd1000_state *state, u8 r, u8 v)
93 int ret = itd1000_write_regs(state, r, &v, 1);
94 state->shadow[r] = v;
95 return ret;
99 static struct {
100 u32 symbol_rate;
101 u8 pgaext : 4; /* PLLFH */
102 u8 bbgvmin : 4; /* BBGVMIN */
103 } itd1000_lpf_pga[] = {
104 { 0, 0x8, 0x3 },
105 { 5200000, 0x8, 0x3 },
106 { 12200000, 0x4, 0x3 },
107 { 15400000, 0x2, 0x3 },
108 { 19800000, 0x2, 0x3 },
109 { 21500000, 0x2, 0x3 },
110 { 24500000, 0x2, 0x3 },
111 { 28400000, 0x2, 0x3 },
112 { 33400000, 0x2, 0x3 },
113 { 34400000, 0x1, 0x4 },
114 { 34400000, 0x1, 0x4 },
115 { 38400000, 0x1, 0x4 },
116 { 38400000, 0x1, 0x4 },
117 { 40400000, 0x1, 0x4 },
118 { 45400000, 0x1, 0x4 },
121 static void itd1000_set_lpf_bw(struct itd1000_state *state, u32 symbol_rate)
123 u8 i;
124 u8 con1 = itd1000_read_reg(state, CON1) & 0xfd;
125 u8 pllfh = itd1000_read_reg(state, PLLFH) & 0x0f;
126 u8 bbgvmin = itd1000_read_reg(state, BBGVMIN) & 0xf0;
127 u8 bw = itd1000_read_reg(state, BW) & 0xf0;
129 deb("symbol_rate = %d", symbol_rate);
131 /* not sure what is that ? - starting to download the table */
132 itd1000_write_reg(state, CON1, con1 | (1 << 1));
134 for (i = 0; i < ARRAY_SIZE(itd1000_lpf_pga); i++)
135 if (symbol_rate < itd1000_lpf_pga[i].symbol_rate) {
136 deb("symrate: index: %d pgaext: %x, bbgvmin: %x", i, itd1000_lpf_pga[i].pgaext, itd1000_lpf_pga[i].bbgvmin);
137 itd1000_write_reg(state, PLLFH, pllfh | (itd1000_lpf_pga[i].pgaext << 4));
138 itd1000_write_reg(state, BBGVMIN, bbgvmin | (itd1000_lpf_pga[i].bbgvmin));
139 itd1000_write_reg(state, BW, bw | (i & 0x0f));
140 break;
143 itd1000_write_reg(state, CON1, con1 | (0 << 1));
146 static struct {
147 u8 vcorg;
148 u32 fmax_rg;
149 } itd1000_vcorg[] = {
150 { 1, 920000 },
151 { 2, 971000 },
152 { 3, 1031000 },
153 { 4, 1091000 },
154 { 5, 1171000 },
155 { 6, 1281000 },
156 { 7, 1381000 },
157 { 8, 500000 }, /* this is intentional. */
158 { 9, 1451000 },
159 { 10, 1531000 },
160 { 11, 1631000 },
161 { 12, 1741000 },
162 { 13, 1891000 },
163 { 14, 2071000 },
164 { 15, 2250000 },
167 static void itd1000_set_vco(struct itd1000_state *state, u32 freq_khz)
169 u8 i;
170 u8 gvbb_i2c = itd1000_read_reg(state, GVBB_I2C) & 0xbf;
171 u8 vco_chp1_i2c = itd1000_read_reg(state, VCO_CHP1_I2C) & 0x0f;
172 u8 adcout;
174 /* reserved bit again (reset ?) */
175 itd1000_write_reg(state, GVBB_I2C, gvbb_i2c | (1 << 6));
177 for (i = 0; i < ARRAY_SIZE(itd1000_vcorg); i++) {
178 if (freq_khz < itd1000_vcorg[i].fmax_rg) {
179 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | (itd1000_vcorg[i].vcorg << 4));
180 msleep(1);
182 adcout = itd1000_read_reg(state, PLLLOCK) & 0x0f;
184 deb("VCO: %dkHz: %d -> ADCOUT: %d %02x", freq_khz, itd1000_vcorg[i].vcorg, adcout, vco_chp1_i2c);
186 if (adcout > 13) {
187 if (!(itd1000_vcorg[i].vcorg == 7 || itd1000_vcorg[i].vcorg == 15))
188 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg + 1) << 4));
189 } else if (adcout < 2) {
190 if (!(itd1000_vcorg[i].vcorg == 1 || itd1000_vcorg[i].vcorg == 9))
191 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg - 1) << 4));
193 break;
198 static const struct {
199 u32 freq;
200 u8 values[10]; /* RFTR, RFST1 - RFST9 */
201 } itd1000_fre_values[] = {
202 { 1075000, { 0x59, 0x1d, 0x1c, 0x17, 0x16, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
203 { 1250000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
204 { 1450000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
205 { 1650000, { 0x69, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
206 { 1750000, { 0x69, 0x1e, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
207 { 1850000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
208 { 1900000, { 0x69, 0x1d, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
209 { 1950000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0d, 0x0b, 0x0a } },
210 { 2050000, { 0x69, 0x1e, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0b, 0x0a } },
211 { 2150000, { 0x69, 0x1d, 0x1c, 0x17, 0x15, 0x14, 0x13, 0x0f, 0x0e, 0x0b } }
215 #define FREF 16
217 static void itd1000_set_lo(struct itd1000_state *state, u32 freq_khz)
219 int i, j;
220 u32 plln, pllf;
221 u64 tmp;
223 plln = (freq_khz * 1000) / 2 / FREF;
225 /* Compute the factional part times 1000 */
226 tmp = plln % 1000000;
227 plln /= 1000000;
229 tmp *= 1048576;
230 do_div(tmp, 1000000);
231 pllf = (u32) tmp;
233 state->frequency = ((plln * 1000) + (pllf * 1000)/1048576) * 2*FREF;
234 deb("frequency: %dkHz (wanted) %dkHz (set), PLLF = %d, PLLN = %d", freq_khz, state->frequency, pllf, plln);
236 itd1000_write_reg(state, PLLNH, 0x80); /* PLLNH */;
237 itd1000_write_reg(state, PLLNL, plln & 0xff);
238 itd1000_write_reg(state, PLLFH, (itd1000_read_reg(state, PLLFH) & 0xf0) | ((pllf >> 16) & 0x0f));
239 itd1000_write_reg(state, PLLFM, (pllf >> 8) & 0xff);
240 itd1000_write_reg(state, PLLFL, (pllf >> 0) & 0xff);
242 for (i = 0; i < ARRAY_SIZE(itd1000_fre_values); i++) {
243 if (freq_khz <= itd1000_fre_values[i].freq) {
244 deb("fre_values: %d", i);
245 itd1000_write_reg(state, RFTR, itd1000_fre_values[i].values[0]);
246 for (j = 0; j < 9; j++)
247 itd1000_write_reg(state, RFST1+j, itd1000_fre_values[i].values[j+1]);
248 break;
252 itd1000_set_vco(state, freq_khz);
255 static int itd1000_set_parameters(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
257 struct itd1000_state *state = fe->tuner_priv;
258 u8 pllcon1;
260 itd1000_set_lo(state, p->frequency);
261 itd1000_set_lpf_bw(state, p->u.qpsk.symbol_rate);
263 pllcon1 = itd1000_read_reg(state, PLLCON1) & 0x7f;
264 itd1000_write_reg(state, PLLCON1, pllcon1 | (1 << 7));
265 itd1000_write_reg(state, PLLCON1, pllcon1);
267 return 0;
270 static int itd1000_get_frequency(struct dvb_frontend *fe, u32 *frequency)
272 struct itd1000_state *state = fe->tuner_priv;
273 *frequency = state->frequency;
274 return 0;
277 static int itd1000_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
279 return 0;
282 static u8 itd1000_init_tab[][2] = {
283 { PLLCON1, 0x65 }, /* Register does not change */
284 { PLLNH, 0x80 }, /* Bits [7:6] do not change */
285 { RESERVED_0X6D, 0x3b },
286 { VCO_CHP2_I2C, 0x12 },
287 { 0x72, 0xf9 }, /* No such regsister defined */
288 { RESERVED_0X73, 0xff },
289 { RESERVED_0X74, 0xb2 },
290 { RESERVED_0X75, 0xc7 },
291 { EXTGVBBRF, 0xf0 },
292 { DIVAGCCK, 0x80 },
293 { BBTR, 0xa0 },
294 { RESERVED_0X7E, 0x4f },
295 { 0x82, 0x88 }, /* No such regsister defined */
296 { 0x83, 0x80 }, /* No such regsister defined */
297 { 0x84, 0x80 }, /* No such regsister defined */
298 { RESERVED_0X85, 0x74 },
299 { RESERVED_0X86, 0xff },
300 { RESERVED_0X88, 0x02 },
301 { RESERVED_0X89, 0x16 },
302 { RFST0, 0x1f },
303 { RESERVED_0X94, 0x66 },
304 { RESERVED_0X95, 0x66 },
305 { RESERVED_0X96, 0x77 },
306 { RESERVED_0X97, 0x99 },
307 { RESERVED_0X98, 0xff },
308 { RESERVED_0X99, 0xfc },
309 { RESERVED_0X9A, 0xba },
310 { RESERVED_0X9B, 0xaa },
313 static u8 itd1000_reinit_tab[][2] = {
314 { VCO_CHP1_I2C, 0x8a },
315 { BW, 0x87 },
316 { GVBB_I2C, 0x03 },
317 { BBGVMIN, 0x03 },
318 { CON1, 0x2e },
322 static int itd1000_init(struct dvb_frontend *fe)
324 struct itd1000_state *state = fe->tuner_priv;
325 int i;
327 for (i = 0; i < ARRAY_SIZE(itd1000_init_tab); i++)
328 itd1000_write_reg(state, itd1000_init_tab[i][0], itd1000_init_tab[i][1]);
330 for (i = 0; i < ARRAY_SIZE(itd1000_reinit_tab); i++)
331 itd1000_write_reg(state, itd1000_reinit_tab[i][0], itd1000_reinit_tab[i][1]);
333 return 0;
336 static int itd1000_sleep(struct dvb_frontend *fe)
338 return 0;
341 static int itd1000_release(struct dvb_frontend *fe)
343 kfree(fe->tuner_priv);
344 fe->tuner_priv = NULL;
345 return 0;
348 static const struct dvb_tuner_ops itd1000_tuner_ops = {
349 .info = {
350 .name = "Integrant ITD1000",
351 .frequency_min = 950000,
352 .frequency_max = 2150000,
353 .frequency_step = 125, /* kHz for QPSK frontends */
356 .release = itd1000_release,
358 .init = itd1000_init,
359 .sleep = itd1000_sleep,
361 .set_params = itd1000_set_parameters,
362 .get_frequency = itd1000_get_frequency,
363 .get_bandwidth = itd1000_get_bandwidth
367 struct dvb_frontend *itd1000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct itd1000_config *cfg)
369 struct itd1000_state *state = NULL;
370 u8 i = 0;
372 state = kzalloc(sizeof(struct itd1000_state), GFP_KERNEL);
373 if (state == NULL)
374 return NULL;
376 state->cfg = cfg;
377 state->i2c = i2c;
379 i = itd1000_read_reg(state, 0);
380 if (i != 0) {
381 kfree(state);
382 return NULL;
384 info("successfully identified (ID: %d)", i);
386 memset(state->shadow, 0xff, sizeof(state->shadow));
387 for (i = 0x65; i < 0x9c; i++)
388 state->shadow[i] = itd1000_read_reg(state, i);
390 memcpy(&fe->ops.tuner_ops, &itd1000_tuner_ops, sizeof(struct dvb_tuner_ops));
392 fe->tuner_priv = state;
394 return fe;
396 EXPORT_SYMBOL(itd1000_attach);
398 MODULE_AUTHOR("Patrick Boettcher <pb@linuxtv.org>");
399 MODULE_DESCRIPTION("Integrant ITD1000 driver");
400 MODULE_LICENSE("GPL");