added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / ide / ide-iops.c
blob923e7cd7d5131e726e1b060639bdde1a72e59ede
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat
5 */
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/ide.h>
22 #include <linux/bitops.h>
23 #include <linux/nmi.h>
25 #include <asm/byteorder.h>
26 #include <asm/irq.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
31 * Conventional PIO operations for ATA devices
34 static u8 ide_inb (unsigned long port)
36 return (u8) inb(port);
39 static void ide_outb (u8 val, unsigned long port)
41 outb(val, port);
45 * MMIO operations, typically used for SATA controllers
48 static u8 ide_mm_inb (unsigned long port)
50 return (u8) readb((void __iomem *) port);
53 static void ide_mm_outb (u8 value, unsigned long port)
55 writeb(value, (void __iomem *) port);
58 void SELECT_DRIVE (ide_drive_t *drive)
60 ide_hwif_t *hwif = drive->hwif;
61 const struct ide_port_ops *port_ops = hwif->port_ops;
62 ide_task_t task;
64 if (port_ops && port_ops->selectproc)
65 port_ops->selectproc(drive);
67 memset(&task, 0, sizeof(task));
68 task.tf_flags = IDE_TFLAG_OUT_DEVICE;
70 drive->hwif->tp_ops->tf_load(drive, &task);
73 void SELECT_MASK(ide_drive_t *drive, int mask)
75 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
77 if (port_ops && port_ops->maskproc)
78 port_ops->maskproc(drive, mask);
81 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
83 if (hwif->host_flags & IDE_HFLAG_MMIO)
84 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
85 else
86 outb(cmd, hwif->io_ports.command_addr);
88 EXPORT_SYMBOL_GPL(ide_exec_command);
90 u8 ide_read_status(ide_hwif_t *hwif)
92 if (hwif->host_flags & IDE_HFLAG_MMIO)
93 return readb((void __iomem *)hwif->io_ports.status_addr);
94 else
95 return inb(hwif->io_ports.status_addr);
97 EXPORT_SYMBOL_GPL(ide_read_status);
99 u8 ide_read_altstatus(ide_hwif_t *hwif)
101 if (hwif->host_flags & IDE_HFLAG_MMIO)
102 return readb((void __iomem *)hwif->io_ports.ctl_addr);
103 else
104 return inb(hwif->io_ports.ctl_addr);
106 EXPORT_SYMBOL_GPL(ide_read_altstatus);
108 void ide_set_irq(ide_hwif_t *hwif, int on)
110 u8 ctl = ATA_DEVCTL_OBS;
112 if (on == 4) { /* hack for SRST */
113 ctl |= 4;
114 on &= ~4;
117 ctl |= on ? 0 : 2;
119 if (hwif->host_flags & IDE_HFLAG_MMIO)
120 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
121 else
122 outb(ctl, hwif->io_ports.ctl_addr);
124 EXPORT_SYMBOL_GPL(ide_set_irq);
126 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
128 ide_hwif_t *hwif = drive->hwif;
129 struct ide_io_ports *io_ports = &hwif->io_ports;
130 struct ide_taskfile *tf = &task->tf;
131 void (*tf_outb)(u8 addr, unsigned long port);
132 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
133 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
135 if (mmio)
136 tf_outb = ide_mm_outb;
137 else
138 tf_outb = ide_outb;
140 if (task->tf_flags & IDE_TFLAG_FLAGGED)
141 HIHI = 0xFF;
143 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
144 u16 data = (tf->hob_data << 8) | tf->data;
146 if (mmio)
147 writew(data, (void __iomem *)io_ports->data_addr);
148 else
149 outw(data, io_ports->data_addr);
152 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
153 tf_outb(tf->hob_feature, io_ports->feature_addr);
154 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
155 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
156 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
157 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
158 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
159 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
160 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
161 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
163 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
164 tf_outb(tf->feature, io_ports->feature_addr);
165 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
166 tf_outb(tf->nsect, io_ports->nsect_addr);
167 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
168 tf_outb(tf->lbal, io_ports->lbal_addr);
169 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
170 tf_outb(tf->lbam, io_ports->lbam_addr);
171 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
172 tf_outb(tf->lbah, io_ports->lbah_addr);
174 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
175 tf_outb((tf->device & HIHI) | drive->select,
176 io_ports->device_addr);
178 EXPORT_SYMBOL_GPL(ide_tf_load);
180 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
182 ide_hwif_t *hwif = drive->hwif;
183 struct ide_io_ports *io_ports = &hwif->io_ports;
184 struct ide_taskfile *tf = &task->tf;
185 void (*tf_outb)(u8 addr, unsigned long port);
186 u8 (*tf_inb)(unsigned long port);
187 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
189 if (mmio) {
190 tf_outb = ide_mm_outb;
191 tf_inb = ide_mm_inb;
192 } else {
193 tf_outb = ide_outb;
194 tf_inb = ide_inb;
197 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
198 u16 data;
200 if (mmio)
201 data = readw((void __iomem *)io_ports->data_addr);
202 else
203 data = inw(io_ports->data_addr);
205 tf->data = data & 0xff;
206 tf->hob_data = (data >> 8) & 0xff;
209 /* be sure we're looking at the low order bits */
210 tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
212 if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
213 tf->feature = tf_inb(io_ports->feature_addr);
214 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
215 tf->nsect = tf_inb(io_ports->nsect_addr);
216 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
217 tf->lbal = tf_inb(io_ports->lbal_addr);
218 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
219 tf->lbam = tf_inb(io_ports->lbam_addr);
220 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
221 tf->lbah = tf_inb(io_ports->lbah_addr);
222 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
223 tf->device = tf_inb(io_ports->device_addr);
225 if (task->tf_flags & IDE_TFLAG_LBA48) {
226 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
228 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
229 tf->hob_feature = tf_inb(io_ports->feature_addr);
230 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
231 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
232 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
233 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
234 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
235 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
236 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
237 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
240 EXPORT_SYMBOL_GPL(ide_tf_read);
243 * Some localbus EIDE interfaces require a special access sequence
244 * when using 32-bit I/O instructions to transfer data. We call this
245 * the "vlb_sync" sequence, which consists of three successive reads
246 * of the sector count register location, with interrupts disabled
247 * to ensure that the reads all happen together.
249 static void ata_vlb_sync(unsigned long port)
251 (void)inb(port);
252 (void)inb(port);
253 (void)inb(port);
257 * This is used for most PIO data transfers *from* the IDE interface
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd len is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
263 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
264 unsigned int len)
266 ide_hwif_t *hwif = drive->hwif;
267 struct ide_io_ports *io_ports = &hwif->io_ports;
268 unsigned long data_addr = io_ports->data_addr;
269 u8 io_32bit = drive->io_32bit;
270 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
272 len++;
274 if (io_32bit) {
275 unsigned long uninitialized_var(flags);
277 if ((io_32bit & 2) && !mmio) {
278 local_irq_save_nort(flags);
279 ata_vlb_sync(io_ports->nsect_addr);
282 if (mmio)
283 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
284 else
285 insl(data_addr, buf, len / 4);
287 if ((io_32bit & 2) && !mmio)
288 local_irq_restore_nort(flags);
290 if ((len & 3) >= 2) {
291 if (mmio)
292 __ide_mm_insw((void __iomem *)data_addr,
293 (u8 *)buf + (len & ~3), 1);
294 else
295 insw(data_addr, (u8 *)buf + (len & ~3), 1);
297 } else {
298 if (mmio)
299 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
300 else
301 insw(data_addr, buf, len / 2);
304 EXPORT_SYMBOL_GPL(ide_input_data);
307 * This is used for most PIO data transfers *to* the IDE interface
309 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
310 unsigned int len)
312 ide_hwif_t *hwif = drive->hwif;
313 struct ide_io_ports *io_ports = &hwif->io_ports;
314 unsigned long data_addr = io_ports->data_addr;
315 u8 io_32bit = drive->io_32bit;
316 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
318 len++;
320 if (io_32bit) {
321 unsigned long uninitialized_var(flags);
323 if ((io_32bit & 2) && !mmio) {
324 local_irq_save_nort(flags);
325 ata_vlb_sync(io_ports->nsect_addr);
328 if (mmio)
329 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
330 else
331 outsl(data_addr, buf, len / 4);
333 if ((io_32bit & 2) && !mmio)
334 local_irq_restore_nort(flags);
336 if ((len & 3) >= 2) {
337 if (mmio)
338 __ide_mm_outsw((void __iomem *)data_addr,
339 (u8 *)buf + (len & ~3), 1);
340 else
341 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
343 } else {
344 if (mmio)
345 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
346 else
347 outsw(data_addr, buf, len / 2);
350 EXPORT_SYMBOL_GPL(ide_output_data);
352 u8 ide_read_error(ide_drive_t *drive)
354 ide_task_t task;
356 memset(&task, 0, sizeof(task));
357 task.tf_flags = IDE_TFLAG_IN_FEATURE;
359 drive->hwif->tp_ops->tf_read(drive, &task);
361 return task.tf.error;
363 EXPORT_SYMBOL_GPL(ide_read_error);
365 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
367 ide_task_t task;
369 memset(&task, 0, sizeof(task));
370 task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
371 IDE_TFLAG_IN_NSECT;
373 drive->hwif->tp_ops->tf_read(drive, &task);
375 *bcount = (task.tf.lbah << 8) | task.tf.lbam;
376 *ireason = task.tf.nsect & 3;
378 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
380 const struct ide_tp_ops default_tp_ops = {
381 .exec_command = ide_exec_command,
382 .read_status = ide_read_status,
383 .read_altstatus = ide_read_altstatus,
385 .set_irq = ide_set_irq,
387 .tf_load = ide_tf_load,
388 .tf_read = ide_tf_read,
390 .input_data = ide_input_data,
391 .output_data = ide_output_data,
394 void ide_fix_driveid(u16 *id)
396 #ifndef __LITTLE_ENDIAN
397 # ifdef __BIG_ENDIAN
398 int i;
400 for (i = 0; i < 256; i++)
401 id[i] = __le16_to_cpu(id[i]);
402 # else
403 # error "Please fix <asm/byteorder.h>"
404 # endif
405 #endif
409 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
410 * removing leading/trailing blanks and compressing internal blanks.
411 * It is primarily used to tidy up the model name/number fields as
412 * returned by the ATA_CMD_ID_ATA[PI] commands.
415 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
417 u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
419 if (byteswap) {
420 /* convert from big-endian to host byte order */
421 for (p = s ; p != end ; p += 2)
422 be16_to_cpus((u16 *) p);
425 /* strip leading blanks */
426 p = s;
427 while (s != end && *s == ' ')
428 ++s;
429 /* compress internal blanks and strip trailing blanks */
430 while (s != end && *s) {
431 if (*s++ != ' ' || (s != end && *s && *s != ' '))
432 *p++ = *(s-1);
434 /* wipe out trailing garbage */
435 while (p != end)
436 *p++ = '\0';
439 EXPORT_SYMBOL(ide_fixstring);
442 * Needed for PCI irq sharing
444 int drive_is_ready (ide_drive_t *drive)
446 ide_hwif_t *hwif = drive->hwif;
447 u8 stat = 0;
449 if (drive->waiting_for_dma)
450 return hwif->dma_ops->dma_test_irq(drive);
453 * We do a passive status test under shared PCI interrupts on
454 * cards that truly share the ATA side interrupt, but may also share
455 * an interrupt with another pci card/device. We make no assumptions
456 * about possible isa-pnp and pci-pnp issues yet.
458 if (hwif->io_ports.ctl_addr &&
459 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
460 stat = hwif->tp_ops->read_altstatus(hwif);
461 else
462 /* Note: this may clear a pending IRQ!! */
463 stat = hwif->tp_ops->read_status(hwif);
465 if (stat & ATA_BUSY)
466 /* drive busy: definitely not interrupting */
467 return 0;
469 /* drive ready: *might* be interrupting */
470 return 1;
473 EXPORT_SYMBOL(drive_is_ready);
476 * This routine busy-waits for the drive status to be not "busy".
477 * It then checks the status for all of the "good" bits and none
478 * of the "bad" bits, and if all is okay it returns 0. All other
479 * cases return error -- caller may then invoke ide_error().
481 * This routine should get fixed to not hog the cpu during extra long waits..
482 * That could be done by busy-waiting for the first jiffy or two, and then
483 * setting a timer to wake up at half second intervals thereafter,
484 * until timeout is achieved, before timing out.
486 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
488 ide_hwif_t *hwif = drive->hwif;
489 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
490 unsigned long flags;
491 int i;
492 u8 stat;
494 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
495 stat = tp_ops->read_status(hwif);
497 if (stat & ATA_BUSY) {
498 local_save_flags(flags);
499 local_irq_enable_in_hardirq();
500 timeout += jiffies;
501 while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
502 if (time_after(jiffies, timeout)) {
504 * One last read after the timeout in case
505 * heavy interrupt load made us not make any
506 * progress during the timeout..
508 stat = tp_ops->read_status(hwif);
509 if ((stat & ATA_BUSY) == 0)
510 break;
512 local_irq_restore_nort(flags);
513 *rstat = stat;
514 return -EBUSY;
517 local_irq_restore_nort(flags);
520 * Allow status to settle, then read it again.
521 * A few rare drives vastly violate the 400ns spec here,
522 * so we'll wait up to 10usec for a "good" status
523 * rather than expensively fail things immediately.
524 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
526 for (i = 0; i < 10; i++) {
527 udelay(1);
528 stat = tp_ops->read_status(hwif);
530 if (OK_STAT(stat, good, bad)) {
531 *rstat = stat;
532 return 0;
535 *rstat = stat;
536 return -EFAULT;
540 * In case of error returns error value after doing "*startstop = ide_error()".
541 * The caller should return the updated value of "startstop" in this case,
542 * "startstop" is unchanged when the function returns 0.
544 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
546 int err;
547 u8 stat;
549 /* bail early if we've exceeded max_failures */
550 if (drive->max_failures && (drive->failures > drive->max_failures)) {
551 *startstop = ide_stopped;
552 return 1;
555 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
557 if (err) {
558 char *s = (err == -EBUSY) ? "status timeout" : "status error";
559 *startstop = ide_error(drive, s, stat);
562 return err;
565 EXPORT_SYMBOL(ide_wait_stat);
568 * ide_in_drive_list - look for drive in black/white list
569 * @id: drive identifier
570 * @table: list to inspect
572 * Look for a drive in the blacklist and the whitelist tables
573 * Returns 1 if the drive is found in the table.
576 int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
578 for ( ; table->id_model; table++)
579 if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
580 (!table->id_firmware ||
581 strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
582 return 1;
583 return 0;
586 EXPORT_SYMBOL_GPL(ide_in_drive_list);
589 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
590 * Some optical devices with the buggy firmwares have the same problem.
592 static const struct drive_list_entry ivb_list[] = {
593 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
594 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
595 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
596 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
597 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
598 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
599 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
600 { "SAMSUNG SP0822N" , "WA100-10" },
601 { NULL , NULL }
605 * All hosts that use the 80c ribbon must use!
606 * The name is derived from upper byte of word 93 and the 80c ribbon.
608 u8 eighty_ninty_three (ide_drive_t *drive)
610 ide_hwif_t *hwif = drive->hwif;
611 u16 *id = drive->id;
612 int ivb = ide_in_drive_list(id, ivb_list);
614 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
615 return 1;
617 if (ivb)
618 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
619 drive->name);
621 if (ata_id_is_sata(id) && !ivb)
622 return 1;
624 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
625 goto no_80w;
628 * FIXME:
629 * - change master/slave IDENTIFY order
630 * - force bit13 (80c cable present) check also for !ivb devices
631 * (unless the slave device is pre-ATA3)
633 if (id[ATA_ID_HW_CONFIG] & 0x4000)
634 return 1;
636 if (ivb) {
637 const char *model = (char *)&id[ATA_ID_PROD];
639 if (strstr(model, "TSSTcorp CDDVDW SH-S202")) {
641 * These ATAPI devices always report 80c cable
642 * so we have to depend on the host in this case.
644 if (hwif->cbl == ATA_CBL_PATA80)
645 return 1;
646 } else {
647 /* Depend on the device side cable detection. */
648 if (id[ATA_ID_HW_CONFIG] & 0x2000)
649 return 1;
652 no_80w:
653 if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
654 return 0;
656 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
657 "limiting max speed to UDMA33\n",
658 drive->name,
659 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
661 drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
663 return 0;
666 int ide_driveid_update(ide_drive_t *drive)
668 ide_hwif_t *hwif = drive->hwif;
669 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
670 u16 *id;
671 unsigned long flags;
672 u8 stat;
675 * Re-read drive->id for possible DMA mode
676 * change (copied from ide-probe.c)
679 SELECT_MASK(drive, 1);
680 tp_ops->set_irq(hwif, 0);
681 msleep(50);
682 tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
684 if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
685 SELECT_MASK(drive, 0);
686 return 0;
689 msleep(50); /* wait for IRQ and ATA_DRQ */
690 stat = tp_ops->read_status(hwif);
692 if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
693 SELECT_MASK(drive, 0);
694 printk("%s: CHECK for good STATUS\n", drive->name);
695 return 0;
697 local_irq_save_nort(flags);
698 SELECT_MASK(drive, 0);
699 id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
700 if (!id) {
701 local_irq_restore_nort(flags);
702 return 0;
704 tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
705 (void)tp_ops->read_status(hwif); /* clear drive IRQ */
706 local_irq_enable_nort();
707 local_irq_restore_nort(flags);
708 ide_fix_driveid(id);
710 drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES];
711 drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
712 drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
713 /* anything more ? */
715 kfree(id);
717 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
718 ide_dma_off(drive);
720 return 1;
723 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
725 ide_hwif_t *hwif = drive->hwif;
726 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
727 u16 *id = drive->id, i;
728 int error = 0;
729 u8 stat;
730 ide_task_t task;
732 #ifdef CONFIG_BLK_DEV_IDEDMA
733 if (hwif->dma_ops) /* check if host supports DMA */
734 hwif->dma_ops->dma_host_set(drive, 0);
735 #endif
737 /* Skip setting PIO flow-control modes on pre-EIDE drives */
738 if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
739 goto skip;
742 * Don't use ide_wait_cmd here - it will
743 * attempt to set_geometry and recalibrate,
744 * but for some reason these don't work at
745 * this point (lost interrupt).
748 * Select the drive, and issue the SETFEATURES command
750 disable_irq_nosync(hwif->irq);
753 * FIXME: we race against the running IRQ here if
754 * this is called from non IRQ context. If we use
755 * disable_irq() we hang on the error path. Work
756 * is needed.
759 udelay(1);
760 SELECT_DRIVE(drive);
761 SELECT_MASK(drive, 1);
762 udelay(1);
763 tp_ops->set_irq(hwif, 0);
765 memset(&task, 0, sizeof(task));
766 task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
767 task.tf.feature = SETFEATURES_XFER;
768 task.tf.nsect = speed;
770 tp_ops->tf_load(drive, &task);
772 tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
774 if (drive->quirk_list == 2)
775 tp_ops->set_irq(hwif, 1);
777 error = __ide_wait_stat(drive, drive->ready_stat,
778 ATA_BUSY | ATA_DRQ | ATA_ERR,
779 WAIT_CMD, &stat);
781 SELECT_MASK(drive, 0);
783 enable_irq(hwif->irq);
785 if (error) {
786 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
787 return error;
790 id[ATA_ID_UDMA_MODES] &= ~0xFF00;
791 id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
792 id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
794 skip:
795 #ifdef CONFIG_BLK_DEV_IDEDMA
796 if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
797 hwif->dma_ops->dma_host_set(drive, 1);
798 else if (hwif->dma_ops) /* check if host supports DMA */
799 ide_dma_off_quietly(drive);
800 #endif
802 if (speed >= XFER_UDMA_0) {
803 i = 1 << (speed - XFER_UDMA_0);
804 id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
805 } else if (speed >= XFER_MW_DMA_0) {
806 i = 1 << (speed - XFER_MW_DMA_0);
807 id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
808 } else if (speed >= XFER_SW_DMA_0) {
809 i = 1 << (speed - XFER_SW_DMA_0);
810 id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
813 if (!drive->init_speed)
814 drive->init_speed = speed;
815 drive->current_speed = speed;
816 return error;
820 * This should get invoked any time we exit the driver to
821 * wait for an interrupt response from a drive. handler() points
822 * at the appropriate code to handle the next interrupt, and a
823 * timer is started to prevent us from waiting forever in case
824 * something goes wrong (see the ide_timer_expiry() handler later on).
826 * See also ide_execute_command
828 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
829 unsigned int timeout, ide_expiry_t *expiry)
831 ide_hwif_t *hwif = drive->hwif;
833 BUG_ON(hwif->handler);
834 hwif->handler = handler;
835 hwif->expiry = expiry;
836 hwif->timer.expires = jiffies + timeout;
837 hwif->req_gen_timer = hwif->req_gen;
838 add_timer(&hwif->timer);
841 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
842 unsigned int timeout, ide_expiry_t *expiry)
844 ide_hwif_t *hwif = drive->hwif;
845 unsigned long flags;
847 spin_lock_irqsave(&hwif->lock, flags);
848 __ide_set_handler(drive, handler, timeout, expiry);
849 spin_unlock_irqrestore(&hwif->lock, flags);
852 EXPORT_SYMBOL(ide_set_handler);
855 * ide_execute_command - execute an IDE command
856 * @drive: IDE drive to issue the command against
857 * @command: command byte to write
858 * @handler: handler for next phase
859 * @timeout: timeout for command
860 * @expiry: handler to run on timeout
862 * Helper function to issue an IDE command. This handles the
863 * atomicity requirements, command timing and ensures that the
864 * handler and IRQ setup do not race. All IDE command kick off
865 * should go via this function or do equivalent locking.
868 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
869 unsigned timeout, ide_expiry_t *expiry)
871 ide_hwif_t *hwif = drive->hwif;
872 unsigned long flags;
874 spin_lock_irqsave(&hwif->lock, flags);
875 __ide_set_handler(drive, handler, timeout, expiry);
876 hwif->tp_ops->exec_command(hwif, cmd);
878 * Drive takes 400nS to respond, we must avoid the IRQ being
879 * serviced before that.
881 * FIXME: we could skip this delay with care on non shared devices
883 ndelay(400);
884 spin_unlock_irqrestore(&hwif->lock, flags);
886 EXPORT_SYMBOL(ide_execute_command);
888 void ide_execute_pkt_cmd(ide_drive_t *drive)
890 ide_hwif_t *hwif = drive->hwif;
891 unsigned long flags;
893 spin_lock_irqsave(&hwif->lock, flags);
894 hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
895 ndelay(400);
896 spin_unlock_irqrestore(&hwif->lock, flags);
898 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
900 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
902 struct request *rq = drive->hwif->rq;
904 if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
905 ide_end_request(drive, err ? err : 1, 0);
908 /* needed below */
909 static ide_startstop_t do_reset1 (ide_drive_t *, int);
912 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
913 * during an atapi drive reset operation. If the drive has not yet responded,
914 * and we have not yet hit our maximum waiting time, then the timer is restarted
915 * for another 50ms.
917 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
919 ide_hwif_t *hwif = drive->hwif;
920 u8 stat;
922 SELECT_DRIVE(drive);
923 udelay (10);
924 stat = hwif->tp_ops->read_status(hwif);
926 if (OK_STAT(stat, 0, ATA_BUSY))
927 printk("%s: ATAPI reset complete\n", drive->name);
928 else {
929 if (time_before(jiffies, hwif->poll_timeout)) {
930 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
931 /* continue polling */
932 return ide_started;
934 /* end of polling */
935 hwif->polling = 0;
936 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
937 drive->name, stat);
938 /* do it the old fashioned way */
939 return do_reset1(drive, 1);
941 /* done polling */
942 hwif->polling = 0;
943 ide_complete_drive_reset(drive, 0);
944 return ide_stopped;
947 static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
949 static const char *err_master_vals[] =
950 { NULL, "passed", "formatter device error",
951 "sector buffer error", "ECC circuitry error",
952 "controlling MPU error" };
954 u8 err_master = err & 0x7f;
956 printk(KERN_ERR "%s: reset: master: ", hwif->name);
957 if (err_master && err_master < 6)
958 printk(KERN_CONT "%s", err_master_vals[err_master]);
959 else
960 printk(KERN_CONT "error (0x%02x?)", err);
961 if (err & 0x80)
962 printk(KERN_CONT "; slave: failed");
963 printk(KERN_CONT "\n");
967 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
968 * during an ide reset operation. If the drives have not yet responded,
969 * and we have not yet hit our maximum waiting time, then the timer is restarted
970 * for another 50ms.
972 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
974 ide_hwif_t *hwif = drive->hwif;
975 const struct ide_port_ops *port_ops = hwif->port_ops;
976 u8 tmp;
977 int err = 0;
979 if (port_ops && port_ops->reset_poll) {
980 err = port_ops->reset_poll(drive);
981 if (err) {
982 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
983 hwif->name, drive->name);
984 goto out;
988 tmp = hwif->tp_ops->read_status(hwif);
990 if (!OK_STAT(tmp, 0, ATA_BUSY)) {
991 if (time_before(jiffies, hwif->poll_timeout)) {
992 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
993 /* continue polling */
994 return ide_started;
996 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
997 drive->failures++;
998 err = -EIO;
999 } else {
1000 tmp = ide_read_error(drive);
1002 if (tmp == 1) {
1003 printk(KERN_INFO "%s: reset: success\n", hwif->name);
1004 drive->failures = 0;
1005 } else {
1006 ide_reset_report_error(hwif, tmp);
1007 drive->failures++;
1008 err = -EIO;
1011 out:
1012 hwif->polling = 0; /* done polling */
1013 ide_complete_drive_reset(drive, err);
1014 return ide_stopped;
1017 static void ide_disk_pre_reset(ide_drive_t *drive)
1019 int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1021 drive->special.all = 0;
1022 drive->special.b.set_geometry = legacy;
1023 drive->special.b.recalibrate = legacy;
1025 drive->mult_count = 0;
1026 drive->dev_flags &= ~IDE_DFLAG_PARKED;
1028 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1029 (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1030 drive->mult_req = 0;
1032 if (drive->mult_req != drive->mult_count)
1033 drive->special.b.set_multmode = 1;
1036 static void pre_reset(ide_drive_t *drive)
1038 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1040 if (drive->media == ide_disk)
1041 ide_disk_pre_reset(drive);
1042 else
1043 drive->dev_flags |= IDE_DFLAG_POST_RESET;
1045 if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1046 if (drive->crc_count)
1047 ide_check_dma_crc(drive);
1048 else
1049 ide_dma_off(drive);
1052 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1053 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1054 drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1055 drive->io_32bit = 0;
1057 return;
1060 if (port_ops && port_ops->pre_reset)
1061 port_ops->pre_reset(drive);
1063 if (drive->current_speed != 0xff)
1064 drive->desired_speed = drive->current_speed;
1065 drive->current_speed = 0xff;
1069 * do_reset1() attempts to recover a confused drive by resetting it.
1070 * Unfortunately, resetting a disk drive actually resets all devices on
1071 * the same interface, so it can really be thought of as resetting the
1072 * interface rather than resetting the drive.
1074 * ATAPI devices have their own reset mechanism which allows them to be
1075 * individually reset without clobbering other devices on the same interface.
1077 * Unfortunately, the IDE interface does not generate an interrupt to let
1078 * us know when the reset operation has finished, so we must poll for this.
1079 * Equally poor, though, is the fact that this may a very long time to complete,
1080 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1081 * we set a timer to poll at 50ms intervals.
1083 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1085 ide_hwif_t *hwif = drive->hwif;
1086 struct ide_io_ports *io_ports = &hwif->io_ports;
1087 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
1088 const struct ide_port_ops *port_ops;
1089 ide_drive_t *tdrive;
1090 unsigned long flags, timeout;
1091 int i;
1092 DEFINE_WAIT(wait);
1094 spin_lock_irqsave(&hwif->lock, flags);
1096 /* We must not reset with running handlers */
1097 BUG_ON(hwif->handler != NULL);
1099 /* For an ATAPI device, first try an ATAPI SRST. */
1100 if (drive->media != ide_disk && !do_not_try_atapi) {
1101 pre_reset(drive);
1102 SELECT_DRIVE(drive);
1103 udelay (20);
1104 tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1105 ndelay(400);
1106 hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1107 hwif->polling = 1;
1108 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1109 spin_unlock_irqrestore(&hwif->lock, flags);
1110 return ide_started;
1113 /* We must not disturb devices in the IDE_DFLAG_PARKED state. */
1114 do {
1115 unsigned long now;
1117 prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
1118 timeout = jiffies;
1119 ide_port_for_each_dev(i, tdrive, hwif) {
1120 if (tdrive->dev_flags & IDE_DFLAG_PRESENT &&
1121 tdrive->dev_flags & IDE_DFLAG_PARKED &&
1122 time_after(tdrive->sleep, timeout))
1123 timeout = tdrive->sleep;
1126 now = jiffies;
1127 if (time_before_eq(timeout, now))
1128 break;
1130 spin_unlock_irqrestore(&hwif->lock, flags);
1131 timeout = schedule_timeout_uninterruptible(timeout - now);
1132 spin_lock_irqsave(&hwif->lock, flags);
1133 } while (timeout);
1134 finish_wait(&ide_park_wq, &wait);
1137 * First, reset any device state data we were maintaining
1138 * for any of the drives on this interface.
1140 ide_port_for_each_dev(i, tdrive, hwif)
1141 pre_reset(tdrive);
1143 if (io_ports->ctl_addr == 0) {
1144 spin_unlock_irqrestore(&hwif->lock, flags);
1145 ide_complete_drive_reset(drive, -ENXIO);
1146 return ide_stopped;
1150 * Note that we also set nIEN while resetting the device,
1151 * to mask unwanted interrupts from the interface during the reset.
1152 * However, due to the design of PC hardware, this will cause an
1153 * immediate interrupt due to the edge transition it produces.
1154 * This single interrupt gives us a "fast poll" for drives that
1155 * recover from reset very quickly, saving us the first 50ms wait time.
1157 * TODO: add ->softreset method and stop abusing ->set_irq
1159 /* set SRST and nIEN */
1160 tp_ops->set_irq(hwif, 4);
1161 /* more than enough time */
1162 udelay(10);
1163 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1164 tp_ops->set_irq(hwif, drive->quirk_list == 2);
1165 /* more than enough time */
1166 udelay(10);
1167 hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1168 hwif->polling = 1;
1169 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1172 * Some weird controller like resetting themselves to a strange
1173 * state when the disks are reset this way. At least, the Winbond
1174 * 553 documentation says that
1176 port_ops = hwif->port_ops;
1177 if (port_ops && port_ops->resetproc)
1178 port_ops->resetproc(drive);
1180 spin_unlock_irqrestore(&hwif->lock, flags);
1181 return ide_started;
1185 * ide_do_reset() is the entry point to the drive/interface reset code.
1188 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1190 return do_reset1(drive, 0);
1193 EXPORT_SYMBOL(ide_do_reset);
1196 * ide_wait_not_busy() waits for the currently selected device on the hwif
1197 * to report a non-busy status, see comments in ide_probe_port().
1199 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1201 u8 stat = 0;
1203 while(timeout--) {
1205 * Turn this into a schedule() sleep once I'm sure
1206 * about locking issues (2.5 work ?).
1208 mdelay(1);
1209 stat = hwif->tp_ops->read_status(hwif);
1210 if ((stat & ATA_BUSY) == 0)
1211 return 0;
1213 * Assume a value of 0xff means nothing is connected to
1214 * the interface and it doesn't implement the pull-down
1215 * resistor on D7.
1217 if (stat == 0xff)
1218 return -ENODEV;
1219 touch_softlockup_watchdog();
1220 touch_nmi_watchdog();
1222 return -EBUSY;