added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / char / rtc.c
blob2ba436a911716867e63fa05dc5a5931794bf1a63
1 /*
2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
51 * 1.12b David John: Remove calls to the BKL.
54 #define RTC_VERSION "1.12b"
57 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 * design of the RTC, we don't want two different things trying to
60 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 * this driver.)
64 #include <linux/interrupt.h>
65 #include <linux/module.h>
66 #include <linux/kernel.h>
67 #include <linux/types.h>
68 #include <linux/miscdevice.h>
69 #include <linux/ioport.h>
70 #include <linux/fcntl.h>
71 #include <linux/mc146818rtc.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/proc_fs.h>
75 #include <linux/seq_file.h>
76 #include <linux/spinlock.h>
77 #include <linux/sysctl.h>
78 #include <linux/wait.h>
79 #include <linux/bcd.h>
80 #include <linux/delay.h>
81 #include <linux/uaccess.h>
83 #include <asm/current.h>
84 #include <asm/system.h>
86 #ifdef CONFIG_X86
87 #include <asm/hpet.h>
88 #endif
90 #ifdef CONFIG_SPARC32
91 #include <linux/of.h>
92 #include <linux/of_device.h>
93 #include <asm/io.h>
95 static unsigned long rtc_port;
96 static int rtc_irq;
97 #endif
99 #ifdef CONFIG_HPET_EMULATE_RTC
100 #undef RTC_IRQ
101 #endif
103 #ifdef RTC_IRQ
104 static int rtc_has_irq = 1;
105 #endif
107 #ifndef CONFIG_HPET_EMULATE_RTC
108 #define is_hpet_enabled() 0
109 #define hpet_set_alarm_time(hrs, min, sec) 0
110 #define hpet_set_periodic_freq(arg) 0
111 #define hpet_mask_rtc_irq_bit(arg) 0
112 #define hpet_set_rtc_irq_bit(arg) 0
113 #define hpet_rtc_timer_init() do { } while (0)
114 #define hpet_rtc_dropped_irq() 0
115 #define hpet_register_irq_handler(h) ({ 0; })
116 #define hpet_unregister_irq_handler(h) ({ 0; })
117 #ifdef RTC_IRQ
118 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
120 return 0;
122 #endif
123 #endif
126 * We sponge a minor off of the misc major. No need slurping
127 * up another valuable major dev number for this. If you add
128 * an ioctl, make sure you don't conflict with SPARC's RTC
129 * ioctls.
132 static struct fasync_struct *rtc_async_queue;
134 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136 #ifdef RTC_IRQ
137 static void rtc_dropped_irq(unsigned long data);
139 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
140 #endif
142 static ssize_t rtc_read(struct file *file, char __user *buf,
143 size_t count, loff_t *ppos);
145 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
148 #ifdef RTC_IRQ
149 static unsigned int rtc_poll(struct file *file, poll_table *wait);
150 #endif
152 static void get_rtc_alm_time(struct rtc_time *alm_tm);
153 #ifdef RTC_IRQ
154 static void set_rtc_irq_bit_locked(unsigned char bit);
155 static void mask_rtc_irq_bit_locked(unsigned char bit);
157 static inline void set_rtc_irq_bit(unsigned char bit)
159 spin_lock_irq(&rtc_lock);
160 set_rtc_irq_bit_locked(bit);
161 spin_unlock_irq(&rtc_lock);
164 static void mask_rtc_irq_bit(unsigned char bit)
166 spin_lock_irq(&rtc_lock);
167 mask_rtc_irq_bit_locked(bit);
168 spin_unlock_irq(&rtc_lock);
170 #endif
172 #ifdef CONFIG_PROC_FS
173 static int rtc_proc_open(struct inode *inode, struct file *file);
174 #endif
177 * Bits in rtc_status. (6 bits of room for future expansion)
180 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
181 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
184 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
185 * protected by the spin lock rtc_lock. However, ioctl can still disable the
186 * timer in rtc_status and then with del_timer after the interrupt has read
187 * rtc_status but before mod_timer is called, which would then reenable the
188 * timer (but you would need to have an awful timing before you'd trip on it)
190 static unsigned long rtc_status; /* bitmapped status byte. */
191 #if defined(RTC_IRQ) || defined(CONFIG_PROC_FS)
192 static unsigned long rtc_freq; /* Current periodic IRQ rate */
193 #endif
194 static unsigned long rtc_irq_data; /* our output to the world */
195 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
197 #ifdef RTC_IRQ
199 * rtc_task_lock nests inside rtc_lock.
201 static DEFINE_SPINLOCK(rtc_task_lock);
202 static rtc_task_t *rtc_callback;
203 #endif
206 * If this driver ever becomes modularised, it will be really nice
207 * to make the epoch retain its value across module reload...
210 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
212 static const unsigned char days_in_mo[] =
213 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
216 * Returns true if a clock update is in progress
218 static inline unsigned char rtc_is_updating(void)
220 unsigned long flags;
221 unsigned char uip;
223 spin_lock_irqsave(&rtc_lock, flags);
224 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
225 spin_unlock_irqrestore(&rtc_lock, flags);
226 return uip;
229 #ifdef RTC_IRQ
231 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
232 * but there is possibility of conflicting with the set_rtc_mmss()
233 * call (the rtc irq and the timer irq can easily run at the same
234 * time in two different CPUs). So we need to serialize
235 * accesses to the chip with the rtc_lock spinlock that each
236 * architecture should implement in the timer code.
237 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
240 static irqreturn_t rtc_interrupt(int irq, void *dev_id)
243 * Can be an alarm interrupt, update complete interrupt,
244 * or a periodic interrupt. We store the status in the
245 * low byte and the number of interrupts received since
246 * the last read in the remainder of rtc_irq_data.
249 spin_lock(&rtc_lock);
250 rtc_irq_data += 0x100;
251 rtc_irq_data &= ~0xff;
252 if (is_hpet_enabled()) {
254 * In this case it is HPET RTC interrupt handler
255 * calling us, with the interrupt information
256 * passed as arg1, instead of irq.
258 rtc_irq_data |= (unsigned long)irq & 0xF0;
259 } else {
260 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
263 if (rtc_status & RTC_TIMER_ON)
264 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
266 spin_unlock(&rtc_lock);
268 /* Now do the rest of the actions */
269 spin_lock(&rtc_task_lock);
270 if (rtc_callback)
271 rtc_callback->func(rtc_callback->private_data);
272 spin_unlock(&rtc_task_lock);
273 wake_up_interruptible(&rtc_wait);
275 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
277 return IRQ_HANDLED;
279 #endif
282 * sysctl-tuning infrastructure.
284 static ctl_table rtc_table[] = {
286 .ctl_name = CTL_UNNUMBERED,
287 .procname = "max-user-freq",
288 .data = &rtc_max_user_freq,
289 .maxlen = sizeof(int),
290 .mode = 0644,
291 .proc_handler = &proc_dointvec,
293 { .ctl_name = 0 }
296 static ctl_table rtc_root[] = {
298 .ctl_name = CTL_UNNUMBERED,
299 .procname = "rtc",
300 .mode = 0555,
301 .child = rtc_table,
303 { .ctl_name = 0 }
306 static ctl_table dev_root[] = {
308 .ctl_name = CTL_DEV,
309 .procname = "dev",
310 .mode = 0555,
311 .child = rtc_root,
313 { .ctl_name = 0 }
316 static struct ctl_table_header *sysctl_header;
318 static int __init init_sysctl(void)
320 sysctl_header = register_sysctl_table(dev_root);
321 return 0;
324 static void __exit cleanup_sysctl(void)
326 unregister_sysctl_table(sysctl_header);
330 * Now all the various file operations that we export.
333 static ssize_t rtc_read(struct file *file, char __user *buf,
334 size_t count, loff_t *ppos)
336 #ifndef RTC_IRQ
337 return -EIO;
338 #else
339 DECLARE_WAITQUEUE(wait, current);
340 unsigned long data;
341 ssize_t retval;
343 if (rtc_has_irq == 0)
344 return -EIO;
347 * Historically this function used to assume that sizeof(unsigned long)
348 * is the same in userspace and kernelspace. This lead to problems
349 * for configurations with multiple ABIs such a the MIPS o32 and 64
350 * ABIs supported on the same kernel. So now we support read of both
351 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
352 * userspace ABI.
354 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
355 return -EINVAL;
357 add_wait_queue(&rtc_wait, &wait);
359 do {
360 /* First make it right. Then make it fast. Putting this whole
361 * block within the parentheses of a while would be too
362 * confusing. And no, xchg() is not the answer. */
364 __set_current_state(TASK_INTERRUPTIBLE);
366 spin_lock_irq(&rtc_lock);
367 data = rtc_irq_data;
368 rtc_irq_data = 0;
369 spin_unlock_irq(&rtc_lock);
371 if (data != 0)
372 break;
374 if (file->f_flags & O_NONBLOCK) {
375 retval = -EAGAIN;
376 goto out;
378 if (signal_pending(current)) {
379 retval = -ERESTARTSYS;
380 goto out;
382 schedule();
383 } while (1);
385 if (count == sizeof(unsigned int)) {
386 retval = put_user(data,
387 (unsigned int __user *)buf) ?: sizeof(int);
388 } else {
389 retval = put_user(data,
390 (unsigned long __user *)buf) ?: sizeof(long);
392 if (!retval)
393 retval = count;
394 out:
395 __set_current_state(TASK_RUNNING);
396 remove_wait_queue(&rtc_wait, &wait);
398 return retval;
399 #endif
402 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
404 struct rtc_time wtime;
406 #ifdef RTC_IRQ
407 if (rtc_has_irq == 0) {
408 switch (cmd) {
409 case RTC_AIE_OFF:
410 case RTC_AIE_ON:
411 case RTC_PIE_OFF:
412 case RTC_PIE_ON:
413 case RTC_UIE_OFF:
414 case RTC_UIE_ON:
415 case RTC_IRQP_READ:
416 case RTC_IRQP_SET:
417 return -EINVAL;
420 #endif
422 switch (cmd) {
423 #ifdef RTC_IRQ
424 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
426 mask_rtc_irq_bit(RTC_AIE);
427 return 0;
429 case RTC_AIE_ON: /* Allow alarm interrupts. */
431 set_rtc_irq_bit(RTC_AIE);
432 return 0;
434 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
436 /* can be called from isr via rtc_control() */
437 unsigned long flags;
439 spin_lock_irqsave(&rtc_lock, flags);
440 mask_rtc_irq_bit_locked(RTC_PIE);
441 if (rtc_status & RTC_TIMER_ON) {
442 rtc_status &= ~RTC_TIMER_ON;
443 del_timer(&rtc_irq_timer);
445 spin_unlock_irqrestore(&rtc_lock, flags);
447 return 0;
449 case RTC_PIE_ON: /* Allow periodic ints */
451 /* can be called from isr via rtc_control() */
452 unsigned long flags;
455 * We don't really want Joe User enabling more
456 * than 64Hz of interrupts on a multi-user machine.
458 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
459 (!capable(CAP_SYS_RESOURCE)))
460 return -EACCES;
462 spin_lock_irqsave(&rtc_lock, flags);
463 if (!(rtc_status & RTC_TIMER_ON)) {
464 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
465 2*HZ/100);
466 rtc_status |= RTC_TIMER_ON;
468 set_rtc_irq_bit_locked(RTC_PIE);
469 spin_unlock_irqrestore(&rtc_lock, flags);
471 return 0;
473 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
475 mask_rtc_irq_bit(RTC_UIE);
476 return 0;
478 case RTC_UIE_ON: /* Allow ints for RTC updates. */
480 set_rtc_irq_bit(RTC_UIE);
481 return 0;
483 #endif
484 case RTC_ALM_READ: /* Read the present alarm time */
487 * This returns a struct rtc_time. Reading >= 0xc0
488 * means "don't care" or "match all". Only the tm_hour,
489 * tm_min, and tm_sec values are filled in.
491 memset(&wtime, 0, sizeof(struct rtc_time));
492 get_rtc_alm_time(&wtime);
493 break;
495 case RTC_ALM_SET: /* Store a time into the alarm */
498 * This expects a struct rtc_time. Writing 0xff means
499 * "don't care" or "match all". Only the tm_hour,
500 * tm_min and tm_sec are used.
502 unsigned char hrs, min, sec;
503 struct rtc_time alm_tm;
505 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
506 sizeof(struct rtc_time)))
507 return -EFAULT;
509 hrs = alm_tm.tm_hour;
510 min = alm_tm.tm_min;
511 sec = alm_tm.tm_sec;
513 spin_lock_irq(&rtc_lock);
514 if (hpet_set_alarm_time(hrs, min, sec)) {
516 * Fallthru and set alarm time in CMOS too,
517 * so that we will get proper value in RTC_ALM_READ
520 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
521 RTC_ALWAYS_BCD) {
522 if (sec < 60)
523 sec = bin2bcd(sec);
524 else
525 sec = 0xff;
527 if (min < 60)
528 min = bin2bcd(min);
529 else
530 min = 0xff;
532 if (hrs < 24)
533 hrs = bin2bcd(hrs);
534 else
535 hrs = 0xff;
537 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
538 CMOS_WRITE(min, RTC_MINUTES_ALARM);
539 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
540 spin_unlock_irq(&rtc_lock);
542 return 0;
544 case RTC_RD_TIME: /* Read the time/date from RTC */
546 memset(&wtime, 0, sizeof(struct rtc_time));
547 rtc_get_rtc_time(&wtime);
548 break;
550 case RTC_SET_TIME: /* Set the RTC */
552 struct rtc_time rtc_tm;
553 unsigned char mon, day, hrs, min, sec, leap_yr;
554 unsigned char save_control, save_freq_select;
555 unsigned int yrs;
556 #ifdef CONFIG_MACH_DECSTATION
557 unsigned int real_yrs;
558 #endif
560 if (!capable(CAP_SYS_TIME))
561 return -EACCES;
563 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
564 sizeof(struct rtc_time)))
565 return -EFAULT;
567 yrs = rtc_tm.tm_year + 1900;
568 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
569 day = rtc_tm.tm_mday;
570 hrs = rtc_tm.tm_hour;
571 min = rtc_tm.tm_min;
572 sec = rtc_tm.tm_sec;
574 if (yrs < 1970)
575 return -EINVAL;
577 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
579 if ((mon > 12) || (day == 0))
580 return -EINVAL;
582 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
583 return -EINVAL;
585 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
586 return -EINVAL;
588 yrs -= epoch;
589 if (yrs > 255) /* They are unsigned */
590 return -EINVAL;
592 spin_lock_irq(&rtc_lock);
593 #ifdef CONFIG_MACH_DECSTATION
594 real_yrs = yrs;
595 yrs = 72;
598 * We want to keep the year set to 73 until March
599 * for non-leap years, so that Feb, 29th is handled
600 * correctly.
602 if (!leap_yr && mon < 3) {
603 real_yrs--;
604 yrs = 73;
606 #endif
607 /* These limits and adjustments are independent of
608 * whether the chip is in binary mode or not.
610 if (yrs > 169) {
611 spin_unlock_irq(&rtc_lock);
612 return -EINVAL;
614 if (yrs >= 100)
615 yrs -= 100;
617 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
618 || RTC_ALWAYS_BCD) {
619 sec = bin2bcd(sec);
620 min = bin2bcd(min);
621 hrs = bin2bcd(hrs);
622 day = bin2bcd(day);
623 mon = bin2bcd(mon);
624 yrs = bin2bcd(yrs);
627 save_control = CMOS_READ(RTC_CONTROL);
628 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
629 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
630 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
632 #ifdef CONFIG_MACH_DECSTATION
633 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
634 #endif
635 CMOS_WRITE(yrs, RTC_YEAR);
636 CMOS_WRITE(mon, RTC_MONTH);
637 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
638 CMOS_WRITE(hrs, RTC_HOURS);
639 CMOS_WRITE(min, RTC_MINUTES);
640 CMOS_WRITE(sec, RTC_SECONDS);
642 CMOS_WRITE(save_control, RTC_CONTROL);
643 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
645 spin_unlock_irq(&rtc_lock);
646 return 0;
648 #ifdef RTC_IRQ
649 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
651 return put_user(rtc_freq, (unsigned long __user *)arg);
653 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
655 int tmp = 0;
656 unsigned char val;
657 /* can be called from isr via rtc_control() */
658 unsigned long flags;
661 * The max we can do is 8192Hz.
663 if ((arg < 2) || (arg > 8192))
664 return -EINVAL;
666 * We don't really want Joe User generating more
667 * than 64Hz of interrupts on a multi-user machine.
669 if (!kernel && (arg > rtc_max_user_freq) &&
670 !capable(CAP_SYS_RESOURCE))
671 return -EACCES;
673 while (arg > (1<<tmp))
674 tmp++;
677 * Check that the input was really a power of 2.
679 if (arg != (1<<tmp))
680 return -EINVAL;
682 rtc_freq = arg;
684 spin_lock_irqsave(&rtc_lock, flags);
685 if (hpet_set_periodic_freq(arg)) {
686 spin_unlock_irqrestore(&rtc_lock, flags);
687 return 0;
690 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
691 val |= (16 - tmp);
692 CMOS_WRITE(val, RTC_FREQ_SELECT);
693 spin_unlock_irqrestore(&rtc_lock, flags);
694 return 0;
696 #endif
697 case RTC_EPOCH_READ: /* Read the epoch. */
699 return put_user(epoch, (unsigned long __user *)arg);
701 case RTC_EPOCH_SET: /* Set the epoch. */
704 * There were no RTC clocks before 1900.
706 if (arg < 1900)
707 return -EINVAL;
709 if (!capable(CAP_SYS_TIME))
710 return -EACCES;
712 epoch = arg;
713 return 0;
715 default:
716 return -ENOTTY;
718 return copy_to_user((void __user *)arg,
719 &wtime, sizeof wtime) ? -EFAULT : 0;
722 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
724 long ret;
725 ret = rtc_do_ioctl(cmd, arg, 0);
726 return ret;
730 * We enforce only one user at a time here with the open/close.
731 * Also clear the previous interrupt data on an open, and clean
732 * up things on a close.
734 static int rtc_open(struct inode *inode, struct file *file)
736 spin_lock_irq(&rtc_lock);
738 if (rtc_status & RTC_IS_OPEN)
739 goto out_busy;
741 rtc_status |= RTC_IS_OPEN;
743 rtc_irq_data = 0;
744 spin_unlock_irq(&rtc_lock);
745 return 0;
747 out_busy:
748 spin_unlock_irq(&rtc_lock);
749 return -EBUSY;
752 static int rtc_fasync(int fd, struct file *filp, int on)
754 return fasync_helper(fd, filp, on, &rtc_async_queue);
757 static int rtc_release(struct inode *inode, struct file *file)
759 #ifdef RTC_IRQ
760 unsigned char tmp;
762 if (rtc_has_irq == 0)
763 goto no_irq;
766 * Turn off all interrupts once the device is no longer
767 * in use, and clear the data.
770 spin_lock_irq(&rtc_lock);
771 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
772 tmp = CMOS_READ(RTC_CONTROL);
773 tmp &= ~RTC_PIE;
774 tmp &= ~RTC_AIE;
775 tmp &= ~RTC_UIE;
776 CMOS_WRITE(tmp, RTC_CONTROL);
777 CMOS_READ(RTC_INTR_FLAGS);
779 if (rtc_status & RTC_TIMER_ON) {
780 rtc_status &= ~RTC_TIMER_ON;
781 del_timer(&rtc_irq_timer);
783 spin_unlock_irq(&rtc_lock);
785 no_irq:
786 #endif
788 spin_lock_irq(&rtc_lock);
789 rtc_irq_data = 0;
790 rtc_status &= ~RTC_IS_OPEN;
791 spin_unlock_irq(&rtc_lock);
793 return 0;
796 #ifdef RTC_IRQ
797 static unsigned int rtc_poll(struct file *file, poll_table *wait)
799 unsigned long l;
801 if (rtc_has_irq == 0)
802 return 0;
804 poll_wait(file, &rtc_wait, wait);
806 spin_lock_irq(&rtc_lock);
807 l = rtc_irq_data;
808 spin_unlock_irq(&rtc_lock);
810 if (l != 0)
811 return POLLIN | POLLRDNORM;
812 return 0;
814 #endif
816 int rtc_register(rtc_task_t *task)
818 #ifndef RTC_IRQ
819 return -EIO;
820 #else
821 if (task == NULL || task->func == NULL)
822 return -EINVAL;
823 spin_lock_irq(&rtc_lock);
824 if (rtc_status & RTC_IS_OPEN) {
825 spin_unlock_irq(&rtc_lock);
826 return -EBUSY;
828 spin_lock(&rtc_task_lock);
829 if (rtc_callback) {
830 spin_unlock(&rtc_task_lock);
831 spin_unlock_irq(&rtc_lock);
832 return -EBUSY;
834 rtc_status |= RTC_IS_OPEN;
835 rtc_callback = task;
836 spin_unlock(&rtc_task_lock);
837 spin_unlock_irq(&rtc_lock);
838 return 0;
839 #endif
841 EXPORT_SYMBOL(rtc_register);
843 int rtc_unregister(rtc_task_t *task)
845 #ifndef RTC_IRQ
846 return -EIO;
847 #else
848 unsigned char tmp;
850 spin_lock_irq(&rtc_lock);
851 spin_lock(&rtc_task_lock);
852 if (rtc_callback != task) {
853 spin_unlock(&rtc_task_lock);
854 spin_unlock_irq(&rtc_lock);
855 return -ENXIO;
857 rtc_callback = NULL;
859 /* disable controls */
860 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
861 tmp = CMOS_READ(RTC_CONTROL);
862 tmp &= ~RTC_PIE;
863 tmp &= ~RTC_AIE;
864 tmp &= ~RTC_UIE;
865 CMOS_WRITE(tmp, RTC_CONTROL);
866 CMOS_READ(RTC_INTR_FLAGS);
868 if (rtc_status & RTC_TIMER_ON) {
869 rtc_status &= ~RTC_TIMER_ON;
870 del_timer(&rtc_irq_timer);
872 rtc_status &= ~RTC_IS_OPEN;
873 spin_unlock(&rtc_task_lock);
874 spin_unlock_irq(&rtc_lock);
875 return 0;
876 #endif
878 EXPORT_SYMBOL(rtc_unregister);
880 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
882 #ifndef RTC_IRQ
883 return -EIO;
884 #else
885 unsigned long flags;
886 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
887 return -EINVAL;
888 spin_lock_irqsave(&rtc_task_lock, flags);
889 if (rtc_callback != task) {
890 spin_unlock_irqrestore(&rtc_task_lock, flags);
891 return -ENXIO;
893 spin_unlock_irqrestore(&rtc_task_lock, flags);
894 return rtc_do_ioctl(cmd, arg, 1);
895 #endif
897 EXPORT_SYMBOL(rtc_control);
900 * The various file operations we support.
903 static const struct file_operations rtc_fops = {
904 .owner = THIS_MODULE,
905 .llseek = no_llseek,
906 .read = rtc_read,
907 #ifdef RTC_IRQ
908 .poll = rtc_poll,
909 #endif
910 .unlocked_ioctl = rtc_ioctl,
911 .open = rtc_open,
912 .release = rtc_release,
913 .fasync = rtc_fasync,
916 static struct miscdevice rtc_dev = {
917 .minor = RTC_MINOR,
918 .name = "rtc",
919 .fops = &rtc_fops,
922 #ifdef CONFIG_PROC_FS
923 static const struct file_operations rtc_proc_fops = {
924 .owner = THIS_MODULE,
925 .open = rtc_proc_open,
926 .read = seq_read,
927 .llseek = seq_lseek,
928 .release = single_release,
930 #endif
932 static resource_size_t rtc_size;
934 static struct resource * __init rtc_request_region(resource_size_t size)
936 struct resource *r;
938 if (RTC_IOMAPPED)
939 r = request_region(RTC_PORT(0), size, "rtc");
940 else
941 r = request_mem_region(RTC_PORT(0), size, "rtc");
943 if (r)
944 rtc_size = size;
946 return r;
949 static void rtc_release_region(void)
951 if (RTC_IOMAPPED)
952 release_region(RTC_PORT(0), rtc_size);
953 else
954 release_mem_region(RTC_PORT(0), rtc_size);
957 static int __init rtc_init(void)
959 #ifdef CONFIG_PROC_FS
960 struct proc_dir_entry *ent;
961 #endif
962 #if defined(__alpha__) || defined(__mips__)
963 unsigned int year, ctrl;
964 char *guess = NULL;
965 #endif
966 #ifdef CONFIG_SPARC32
967 struct device_node *ebus_dp;
968 struct of_device *op;
969 #else
970 void *r;
971 #ifdef RTC_IRQ
972 irq_handler_t rtc_int_handler_ptr;
973 #endif
974 #endif
976 #ifdef CONFIG_SPARC32
977 for_each_node_by_name(ebus_dp, "ebus") {
978 struct device_node *dp;
979 for (dp = ebus_dp; dp; dp = dp->sibling) {
980 if (!strcmp(dp->name, "rtc")) {
981 op = of_find_device_by_node(dp);
982 if (op) {
983 rtc_port = op->resource[0].start;
984 rtc_irq = op->irqs[0];
985 goto found;
990 rtc_has_irq = 0;
991 printk(KERN_ERR "rtc_init: no PC rtc found\n");
992 return -EIO;
994 found:
995 if (!rtc_irq) {
996 rtc_has_irq = 0;
997 goto no_irq;
1001 * XXX Interrupt pin #7 in Espresso is shared between RTC and
1002 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1004 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1005 (void *)&rtc_port)) {
1006 rtc_has_irq = 0;
1007 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1008 return -EIO;
1010 no_irq:
1011 #else
1012 r = rtc_request_region(RTC_IO_EXTENT);
1015 * If we've already requested a smaller range (for example, because
1016 * PNPBIOS or ACPI told us how the device is configured), the request
1017 * above might fail because it's too big.
1019 * If so, request just the range we actually use.
1021 if (!r)
1022 r = rtc_request_region(RTC_IO_EXTENT_USED);
1023 if (!r) {
1024 #ifdef RTC_IRQ
1025 rtc_has_irq = 0;
1026 #endif
1027 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1028 (long)(RTC_PORT(0)));
1029 return -EIO;
1032 #ifdef RTC_IRQ
1033 if (is_hpet_enabled()) {
1034 int err;
1036 rtc_int_handler_ptr = hpet_rtc_interrupt;
1037 err = hpet_register_irq_handler(rtc_interrupt);
1038 if (err != 0) {
1039 printk(KERN_WARNING "hpet_register_irq_handler failed "
1040 "in rtc_init().");
1041 return err;
1043 } else {
1044 rtc_int_handler_ptr = rtc_interrupt;
1047 if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1048 "rtc", NULL)) {
1049 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1050 rtc_has_irq = 0;
1051 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1052 rtc_release_region();
1054 return -EIO;
1056 hpet_rtc_timer_init();
1058 #endif
1060 #endif /* CONFIG_SPARC32 vs. others */
1062 if (misc_register(&rtc_dev)) {
1063 #ifdef RTC_IRQ
1064 free_irq(RTC_IRQ, NULL);
1065 hpet_unregister_irq_handler(rtc_interrupt);
1066 rtc_has_irq = 0;
1067 #endif
1068 rtc_release_region();
1069 return -ENODEV;
1072 #ifdef CONFIG_PROC_FS
1073 ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1074 if (!ent)
1075 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1076 #endif
1078 #if defined(__alpha__) || defined(__mips__)
1079 #ifdef CONFIG_PROC_FS
1080 rtc_freq = HZ;
1081 #endif
1083 /* Each operating system on an Alpha uses its own epoch.
1084 Let's try to guess which one we are using now. */
1086 if (rtc_is_updating() != 0)
1087 msleep(20);
1089 spin_lock_irq(&rtc_lock);
1090 year = CMOS_READ(RTC_YEAR);
1091 ctrl = CMOS_READ(RTC_CONTROL);
1092 spin_unlock_irq(&rtc_lock);
1094 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1095 year = bcd2bin(year); /* This should never happen... */
1097 if (year < 20) {
1098 epoch = 2000;
1099 guess = "SRM (post-2000)";
1100 } else if (year >= 20 && year < 48) {
1101 epoch = 1980;
1102 guess = "ARC console";
1103 } else if (year >= 48 && year < 72) {
1104 epoch = 1952;
1105 guess = "Digital UNIX";
1106 #if defined(__mips__)
1107 } else if (year >= 72 && year < 74) {
1108 epoch = 2000;
1109 guess = "Digital DECstation";
1110 #else
1111 } else if (year >= 70) {
1112 epoch = 1900;
1113 guess = "Standard PC (1900)";
1114 #endif
1116 if (guess)
1117 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1118 guess, epoch);
1119 #endif
1120 #ifdef RTC_IRQ
1121 if (rtc_has_irq == 0)
1122 goto no_irq2;
1124 spin_lock_irq(&rtc_lock);
1125 rtc_freq = 1024;
1126 if (!hpet_set_periodic_freq(rtc_freq)) {
1128 * Initialize periodic frequency to CMOS reset default,
1129 * which is 1024Hz
1131 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1132 RTC_FREQ_SELECT);
1134 spin_unlock_irq(&rtc_lock);
1135 no_irq2:
1136 #endif
1138 (void) init_sysctl();
1140 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1142 return 0;
1145 static void __exit rtc_exit(void)
1147 cleanup_sysctl();
1148 remove_proc_entry("driver/rtc", NULL);
1149 misc_deregister(&rtc_dev);
1151 #ifdef CONFIG_SPARC32
1152 if (rtc_has_irq)
1153 free_irq(rtc_irq, &rtc_port);
1154 #else
1155 rtc_release_region();
1156 #ifdef RTC_IRQ
1157 if (rtc_has_irq) {
1158 free_irq(RTC_IRQ, NULL);
1159 hpet_unregister_irq_handler(hpet_rtc_interrupt);
1161 #endif
1162 #endif /* CONFIG_SPARC32 */
1165 module_init(rtc_init);
1166 module_exit(rtc_exit);
1168 #ifdef RTC_IRQ
1170 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1171 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1172 * Since the interrupt handler doesn't get called, the IRQ status
1173 * byte doesn't get read, and the RTC stops generating interrupts.
1174 * A timer is set, and will call this function if/when that happens.
1175 * To get it out of this stalled state, we just read the status.
1176 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1177 * (You *really* shouldn't be trying to use a non-realtime system
1178 * for something that requires a steady > 1KHz signal anyways.)
1181 static void rtc_dropped_irq(unsigned long data)
1183 unsigned long freq;
1185 spin_lock_irq(&rtc_lock);
1187 if (hpet_rtc_dropped_irq()) {
1188 spin_unlock_irq(&rtc_lock);
1189 return;
1192 /* Just in case someone disabled the timer from behind our back... */
1193 if (rtc_status & RTC_TIMER_ON)
1194 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1196 rtc_irq_data += ((rtc_freq/HZ)<<8);
1197 rtc_irq_data &= ~0xff;
1198 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1200 freq = rtc_freq;
1202 spin_unlock_irq(&rtc_lock);
1204 #ifndef CONFIG_PREEMPT_RT
1205 if (printk_ratelimit()) {
1206 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1207 freq);
1209 #endif
1211 /* Now we have new data */
1212 wake_up_interruptible(&rtc_wait);
1214 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1216 #endif
1218 #ifdef CONFIG_PROC_FS
1220 * Info exported via "/proc/driver/rtc".
1223 static int rtc_proc_show(struct seq_file *seq, void *v)
1225 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1226 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1227 struct rtc_time tm;
1228 unsigned char batt, ctrl;
1229 unsigned long freq;
1231 spin_lock_irq(&rtc_lock);
1232 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1233 ctrl = CMOS_READ(RTC_CONTROL);
1234 freq = rtc_freq;
1235 spin_unlock_irq(&rtc_lock);
1238 rtc_get_rtc_time(&tm);
1241 * There is no way to tell if the luser has the RTC set for local
1242 * time or for Universal Standard Time (GMT). Probably local though.
1244 seq_printf(seq,
1245 "rtc_time\t: %02d:%02d:%02d\n"
1246 "rtc_date\t: %04d-%02d-%02d\n"
1247 "rtc_epoch\t: %04lu\n",
1248 tm.tm_hour, tm.tm_min, tm.tm_sec,
1249 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1251 get_rtc_alm_time(&tm);
1254 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1255 * match any value for that particular field. Values that are
1256 * greater than a valid time, but less than 0xc0 shouldn't appear.
1258 seq_puts(seq, "alarm\t\t: ");
1259 if (tm.tm_hour <= 24)
1260 seq_printf(seq, "%02d:", tm.tm_hour);
1261 else
1262 seq_puts(seq, "**:");
1264 if (tm.tm_min <= 59)
1265 seq_printf(seq, "%02d:", tm.tm_min);
1266 else
1267 seq_puts(seq, "**:");
1269 if (tm.tm_sec <= 59)
1270 seq_printf(seq, "%02d\n", tm.tm_sec);
1271 else
1272 seq_puts(seq, "**\n");
1274 seq_printf(seq,
1275 "DST_enable\t: %s\n"
1276 "BCD\t\t: %s\n"
1277 "24hr\t\t: %s\n"
1278 "square_wave\t: %s\n"
1279 "alarm_IRQ\t: %s\n"
1280 "update_IRQ\t: %s\n"
1281 "periodic_IRQ\t: %s\n"
1282 "periodic_freq\t: %ld\n"
1283 "batt_status\t: %s\n",
1284 YN(RTC_DST_EN),
1285 NY(RTC_DM_BINARY),
1286 YN(RTC_24H),
1287 YN(RTC_SQWE),
1288 YN(RTC_AIE),
1289 YN(RTC_UIE),
1290 YN(RTC_PIE),
1291 freq,
1292 batt ? "okay" : "dead");
1294 return 0;
1295 #undef YN
1296 #undef NY
1299 static int rtc_proc_open(struct inode *inode, struct file *file)
1301 return single_open(file, rtc_proc_show, NULL);
1303 #endif
1305 static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1307 unsigned long uip_watchdog = jiffies, flags;
1308 unsigned char ctrl;
1309 #ifdef CONFIG_MACH_DECSTATION
1310 unsigned int real_year;
1311 #endif
1314 * read RTC once any update in progress is done. The update
1315 * can take just over 2ms. We wait 20ms. There is no need to
1316 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1317 * If you need to know *exactly* when a second has started, enable
1318 * periodic update complete interrupts, (via ioctl) and then
1319 * immediately read /dev/rtc which will block until you get the IRQ.
1320 * Once the read clears, read the RTC time (again via ioctl). Easy.
1323 while (rtc_is_updating() != 0 &&
1324 time_before(jiffies, uip_watchdog + 2*HZ/100))
1325 cpu_relax();
1328 * Only the values that we read from the RTC are set. We leave
1329 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1330 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1331 * only updated by the RTC when initially set to a non-zero value.
1333 spin_lock_irqsave(&rtc_lock, flags);
1334 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1335 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1336 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1337 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1338 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1339 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1340 /* Only set from 2.6.16 onwards */
1341 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1343 #ifdef CONFIG_MACH_DECSTATION
1344 real_year = CMOS_READ(RTC_DEC_YEAR);
1345 #endif
1346 ctrl = CMOS_READ(RTC_CONTROL);
1347 spin_unlock_irqrestore(&rtc_lock, flags);
1349 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1350 rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1351 rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1352 rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1353 rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1354 rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1355 rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1356 rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1359 #ifdef CONFIG_MACH_DECSTATION
1360 rtc_tm->tm_year += real_year - 72;
1361 #endif
1364 * Account for differences between how the RTC uses the values
1365 * and how they are defined in a struct rtc_time;
1367 rtc_tm->tm_year += epoch - 1900;
1368 if (rtc_tm->tm_year <= 69)
1369 rtc_tm->tm_year += 100;
1371 rtc_tm->tm_mon--;
1374 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1376 unsigned char ctrl;
1379 * Only the values that we read from the RTC are set. That
1380 * means only tm_hour, tm_min, and tm_sec.
1382 spin_lock_irq(&rtc_lock);
1383 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1384 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1385 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1386 ctrl = CMOS_READ(RTC_CONTROL);
1387 spin_unlock_irq(&rtc_lock);
1389 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1390 alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1391 alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1392 alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1396 #ifdef RTC_IRQ
1398 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1399 * Rumour has it that if you frob the interrupt enable/disable
1400 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1401 * ensure you actually start getting interrupts. Probably for
1402 * compatibility with older/broken chipset RTC implementations.
1403 * We also clear out any old irq data after an ioctl() that
1404 * meddles with the interrupt enable/disable bits.
1407 static void mask_rtc_irq_bit_locked(unsigned char bit)
1409 unsigned char val;
1411 if (hpet_mask_rtc_irq_bit(bit))
1412 return;
1413 val = CMOS_READ(RTC_CONTROL);
1414 val &= ~bit;
1415 CMOS_WRITE(val, RTC_CONTROL);
1416 CMOS_READ(RTC_INTR_FLAGS);
1418 rtc_irq_data = 0;
1421 static void set_rtc_irq_bit_locked(unsigned char bit)
1423 unsigned char val;
1425 if (hpet_set_rtc_irq_bit(bit))
1426 return;
1427 val = CMOS_READ(RTC_CONTROL);
1428 val |= bit;
1429 CMOS_WRITE(val, RTC_CONTROL);
1430 CMOS_READ(RTC_INTR_FLAGS);
1432 rtc_irq_data = 0;
1434 #endif
1436 MODULE_AUTHOR("Paul Gortmaker");
1437 MODULE_LICENSE("GPL");
1438 MODULE_ALIAS_MISCDEV(RTC_MINOR);