1 /***********************license start***************
2 * Author: Cavium Networks
4 * Contact: support@caviumnetworks.com
5 * This file is part of the OCTEON SDK
7 * Copyright (c) 2003-2008 Cavium Networks
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
19 * You should have received a copy of the GNU General Public License
20 * along with this file; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 * or visit http://www.gnu.org/licenses/.
24 * This file may also be available under a different license from Cavium.
25 * Contact Cavium Networks for more information
26 ***********************license end**************************************/
30 * Interface to the Level 2 Cache (L2C) control, measurement, and debugging
34 #ifndef __CVMX_L2C_H__
35 #define __CVMX_L2C_H__
37 /* Deprecated macro, use function */
38 #define CVMX_L2_ASSOC cvmx_l2c_get_num_assoc()
40 /* Deprecated macro, use function */
41 #define CVMX_L2_SET_BITS cvmx_l2c_get_set_bits()
43 /* Deprecated macro, use function */
44 #define CVMX_L2_SETS cvmx_l2c_get_num_sets()
46 #define CVMX_L2C_IDX_ADDR_SHIFT 7 /* based on 128 byte cache line size */
47 #define CVMX_L2C_IDX_MASK (cvmx_l2c_get_num_sets() - 1)
49 /* Defines for index aliasing computations */
50 #define CVMX_L2C_TAG_ADDR_ALIAS_SHIFT \
51 (CVMX_L2C_IDX_ADDR_SHIFT + cvmx_l2c_get_set_bits())
53 #define CVMX_L2C_ALIAS_MASK \
54 (CVMX_L2C_IDX_MASK << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT)
60 uint64_t V
:1; /* Line valid */
61 uint64_t D
:1; /* Line dirty */
62 uint64_t L
:1; /* Line locked */
63 uint64_t U
:1; /* Use, LRU eviction */
64 uint64_t addr
:32; /* Phys mem (not all bits valid) */
68 /* L2C Performance Counter events. */
70 CVMX_L2C_EVENT_CYCLES
= 0,
71 CVMX_L2C_EVENT_INSTRUCTION_MISS
= 1,
72 CVMX_L2C_EVENT_INSTRUCTION_HIT
= 2,
73 CVMX_L2C_EVENT_DATA_MISS
= 3,
74 CVMX_L2C_EVENT_DATA_HIT
= 4,
75 CVMX_L2C_EVENT_MISS
= 5,
76 CVMX_L2C_EVENT_HIT
= 6,
77 CVMX_L2C_EVENT_VICTIM_HIT
= 7,
78 CVMX_L2C_EVENT_INDEX_CONFLICT
= 8,
79 CVMX_L2C_EVENT_TAG_PROBE
= 9,
80 CVMX_L2C_EVENT_TAG_UPDATE
= 10,
81 CVMX_L2C_EVENT_TAG_COMPLETE
= 11,
82 CVMX_L2C_EVENT_TAG_DIRTY
= 12,
83 CVMX_L2C_EVENT_DATA_STORE_NOP
= 13,
84 CVMX_L2C_EVENT_DATA_STORE_READ
= 14,
85 CVMX_L2C_EVENT_DATA_STORE_WRITE
= 15,
86 CVMX_L2C_EVENT_FILL_DATA_VALID
= 16,
87 CVMX_L2C_EVENT_WRITE_REQUEST
= 17,
88 CVMX_L2C_EVENT_READ_REQUEST
= 18,
89 CVMX_L2C_EVENT_WRITE_DATA_VALID
= 19,
90 CVMX_L2C_EVENT_XMC_NOP
= 20,
91 CVMX_L2C_EVENT_XMC_LDT
= 21,
92 CVMX_L2C_EVENT_XMC_LDI
= 22,
93 CVMX_L2C_EVENT_XMC_LDD
= 23,
94 CVMX_L2C_EVENT_XMC_STF
= 24,
95 CVMX_L2C_EVENT_XMC_STT
= 25,
96 CVMX_L2C_EVENT_XMC_STP
= 26,
97 CVMX_L2C_EVENT_XMC_STC
= 27,
98 CVMX_L2C_EVENT_XMC_DWB
= 28,
99 CVMX_L2C_EVENT_XMC_PL2
= 29,
100 CVMX_L2C_EVENT_XMC_PSL1
= 30,
101 CVMX_L2C_EVENT_XMC_IOBLD
= 31,
102 CVMX_L2C_EVENT_XMC_IOBST
= 32,
103 CVMX_L2C_EVENT_XMC_IOBDMA
= 33,
104 CVMX_L2C_EVENT_XMC_IOBRSP
= 34,
105 CVMX_L2C_EVENT_XMC_BUS_VALID
= 35,
106 CVMX_L2C_EVENT_XMC_MEM_DATA
= 36,
107 CVMX_L2C_EVENT_XMC_REFL_DATA
= 37,
108 CVMX_L2C_EVENT_XMC_IOBRSP_DATA
= 38,
109 CVMX_L2C_EVENT_RSC_NOP
= 39,
110 CVMX_L2C_EVENT_RSC_STDN
= 40,
111 CVMX_L2C_EVENT_RSC_FILL
= 41,
112 CVMX_L2C_EVENT_RSC_REFL
= 42,
113 CVMX_L2C_EVENT_RSC_STIN
= 43,
114 CVMX_L2C_EVENT_RSC_SCIN
= 44,
115 CVMX_L2C_EVENT_RSC_SCFL
= 45,
116 CVMX_L2C_EVENT_RSC_SCDN
= 46,
117 CVMX_L2C_EVENT_RSC_DATA_VALID
= 47,
118 CVMX_L2C_EVENT_RSC_VALID_FILL
= 48,
119 CVMX_L2C_EVENT_RSC_VALID_STRSP
= 49,
120 CVMX_L2C_EVENT_RSC_VALID_REFL
= 50,
121 CVMX_L2C_EVENT_LRF_REQ
= 51,
122 CVMX_L2C_EVENT_DT_RD_ALLOC
= 52,
123 CVMX_L2C_EVENT_DT_WR_INVAL
= 53
127 * Configure one of the four L2 Cache performance counters to capture event
130 * @counter: The counter to configure. Range 0..3.
131 * @event: The type of L2 Cache event occurrence to count.
132 * @clear_on_read: When asserted, any read of the performance counter
133 * clears the counter.
135 * The routine does not clear the counter.
137 void cvmx_l2c_config_perf(uint32_t counter
,
138 enum cvmx_l2c_event event
, uint32_t clear_on_read
);
140 * Read the given L2 Cache performance counter. The counter must be configured
141 * before reading, but this routine does not enforce this requirement.
143 * @counter: The counter to configure. Range 0..3.
145 * Returns The current counter value.
147 uint64_t cvmx_l2c_read_perf(uint32_t counter
);
150 * Return the L2 Cache way partitioning for a given core.
152 * @core: The core processor of interest.
154 * Returns The mask specifying the partitioning. 0 bits in mask indicates
155 * the cache 'ways' that a core can evict from.
158 int cvmx_l2c_get_core_way_partition(uint32_t core
);
161 * Partitions the L2 cache for a core
163 * @core: The core that the partitioning applies to.
165 * @mask: The partitioning of the ways expressed as a binary mask. A 0
166 * bit allows the core to evict cache lines from a way, while a
167 * 1 bit blocks the core from evicting any lines from that
168 * way. There must be at least one allowed way (0 bit) in the
171 * If any ways are blocked for all cores and the HW blocks, then those
172 * ways will never have any cache lines evicted from them. All cores
173 * and the hardware blocks are free to read from all ways regardless
174 * of the partitioning.
176 int cvmx_l2c_set_core_way_partition(uint32_t core
, uint32_t mask
);
179 * Return the L2 Cache way partitioning for the hw blocks.
181 * Returns The mask specifying the reserved way. 0 bits in mask indicates
182 * the cache 'ways' that a core can evict from.
185 int cvmx_l2c_get_hw_way_partition(void);
188 * Partitions the L2 cache for the hardware blocks.
190 * @mask: The partitioning of the ways expressed as a binary mask. A 0
191 * bit allows the core to evict cache lines from a way, while a
192 * 1 bit blocks the core from evicting any lines from that
193 * way. There must be at least one allowed way (0 bit) in the
196 * If any ways are blocked for all cores and the HW blocks, then those
197 * ways will never have any cache lines evicted from them. All cores
198 * and the hardware blocks are free to read from all ways regardless
199 * of the partitioning.
201 int cvmx_l2c_set_hw_way_partition(uint32_t mask
);
204 * Locks a line in the L2 cache at the specified physical address
206 * @addr: physical address of line to lock
208 * Returns 0 on success,
209 * 1 if line not locked.
211 int cvmx_l2c_lock_line(uint64_t addr
);
214 * Locks a specified memory region in the L2 cache.
216 * Note that if not all lines can be locked, that means that all
217 * but one of the ways (associations) available to the locking
218 * core are locked. Having only 1 association available for
219 * normal caching may have a significant adverse affect on performance.
220 * Care should be taken to ensure that enough of the L2 cache is left
221 * unlocked to allow for normal caching of DRAM.
223 * @start: Physical address of the start of the region to lock
224 * @len: Length (in bytes) of region to lock
226 * Returns Number of requested lines that where not locked.
227 * 0 on success (all locked)
229 int cvmx_l2c_lock_mem_region(uint64_t start
, uint64_t len
);
232 * Unlock and flush a cache line from the L2 cache.
233 * IMPORTANT: Must only be run by one core at a time due to use
234 * of L2C debug features.
235 * Note that this function will flush a matching but unlocked cache line.
236 * (If address is not in L2, no lines are flushed.)
238 * @address: Physical address to unlock
240 * Returns 0: line not unlocked
243 int cvmx_l2c_unlock_line(uint64_t address
);
246 * Unlocks a region of memory that is locked in the L2 cache
248 * @start: start physical address
249 * @len: length (in bytes) to unlock
251 * Returns Number of locked lines that the call unlocked
253 int cvmx_l2c_unlock_mem_region(uint64_t start
, uint64_t len
);
256 * Read the L2 controller tag for a given location in L2
259 * Which association to read line from
260 * @index: Which way to read from.
262 * Returns l2c tag structure for line requested.
264 union cvmx_l2c_tag
cvmx_l2c_get_tag(uint32_t association
, uint32_t index
);
266 /* Wrapper around deprecated old function name */
267 static inline union cvmx_l2c_tag
cvmx_get_l2c_tag(uint32_t association
,
270 return cvmx_l2c_get_tag(association
, index
);
274 * Returns the cache index for a given physical address
276 * @addr: physical address
278 * Returns L2 cache index
280 uint32_t cvmx_l2c_address_to_index(uint64_t addr
);
283 * Flushes (and unlocks) the entire L2 cache.
284 * IMPORTANT: Must only be run by one core at a time due to use
285 * of L2C debug features.
287 void cvmx_l2c_flush(void);
291 * Returns Returns the size of the L2 cache in bytes,
292 * -1 on error (unrecognized model)
294 int cvmx_l2c_get_cache_size_bytes(void);
297 * Return the number of sets in the L2 Cache
301 int cvmx_l2c_get_num_sets(void);
304 * Return log base 2 of the number of sets in the L2 cache
307 int cvmx_l2c_get_set_bits(void);
309 * Return the number of associations in the L2 Cache
313 int cvmx_l2c_get_num_assoc(void);
316 * Flush a line from the L2 cache
317 * This should only be called from one core at a time, as this routine
318 * sets the core to the 'debug' core in order to flush the line.
320 * @assoc: Association (or way) to flush
321 * @index: Index to flush
323 void cvmx_l2c_flush_line(uint32_t assoc
, uint32_t index
);
325 #endif /* __CVMX_L2C_H__ */