added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / arch / arm / mm / mmu.c
blob2a74762d414312ac637e4a92570ebc2ffda6cb05
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
23 #include <asm/tlb.h>
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
28 #include "mm.h"
31 * empty_zero_page is a special page that is used for
32 * zero-initialized data and COW.
34 struct page *empty_zero_page;
35 EXPORT_SYMBOL(empty_zero_page);
38 * The pmd table for the upper-most set of pages.
40 pmd_t *top_pmd;
42 #define CPOLICY_UNCACHED 0
43 #define CPOLICY_BUFFERED 1
44 #define CPOLICY_WRITETHROUGH 2
45 #define CPOLICY_WRITEBACK 3
46 #define CPOLICY_WRITEALLOC 4
48 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
49 static unsigned int ecc_mask __initdata = 0;
50 pgprot_t pgprot_user;
51 pgprot_t pgprot_kernel;
53 EXPORT_SYMBOL(pgprot_user);
54 EXPORT_SYMBOL(pgprot_kernel);
56 struct cachepolicy {
57 const char policy[16];
58 unsigned int cr_mask;
59 unsigned int pmd;
60 unsigned int pte;
63 static struct cachepolicy cache_policies[] __initdata = {
65 .policy = "uncached",
66 .cr_mask = CR_W|CR_C,
67 .pmd = PMD_SECT_UNCACHED,
68 .pte = L_PTE_MT_UNCACHED,
69 }, {
70 .policy = "buffered",
71 .cr_mask = CR_C,
72 .pmd = PMD_SECT_BUFFERED,
73 .pte = L_PTE_MT_BUFFERABLE,
74 }, {
75 .policy = "writethrough",
76 .cr_mask = 0,
77 .pmd = PMD_SECT_WT,
78 .pte = L_PTE_MT_WRITETHROUGH,
79 }, {
80 .policy = "writeback",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WB,
83 .pte = L_PTE_MT_WRITEBACK,
84 }, {
85 .policy = "writealloc",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WBWA,
88 .pte = L_PTE_MT_WRITEALLOC,
93 * These are useful for identifying cache coherency
94 * problems by allowing the cache or the cache and
95 * writebuffer to be turned off. (Note: the write
96 * buffer should not be on and the cache off).
98 static void __init early_cachepolicy(char **p)
100 int i;
102 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
103 int len = strlen(cache_policies[i].policy);
105 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
106 cachepolicy = i;
107 cr_alignment &= ~cache_policies[i].cr_mask;
108 cr_no_alignment &= ~cache_policies[i].cr_mask;
109 *p += len;
110 break;
113 if (i == ARRAY_SIZE(cache_policies))
114 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
115 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
116 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
117 cachepolicy = CPOLICY_WRITEBACK;
119 flush_cache_all();
120 set_cr(cr_alignment);
122 __early_param("cachepolicy=", early_cachepolicy);
124 static void __init early_nocache(char **__unused)
126 char *p = "buffered";
127 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
128 early_cachepolicy(&p);
130 __early_param("nocache", early_nocache);
132 static void __init early_nowrite(char **__unused)
134 char *p = "uncached";
135 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
136 early_cachepolicy(&p);
138 __early_param("nowb", early_nowrite);
140 static void __init early_ecc(char **p)
142 if (memcmp(*p, "on", 2) == 0) {
143 ecc_mask = PMD_PROTECTION;
144 *p += 2;
145 } else if (memcmp(*p, "off", 3) == 0) {
146 ecc_mask = 0;
147 *p += 3;
150 __early_param("ecc=", early_ecc);
152 static int __init noalign_setup(char *__unused)
154 cr_alignment &= ~CR_A;
155 cr_no_alignment &= ~CR_A;
156 set_cr(cr_alignment);
157 return 1;
159 __setup("noalign", noalign_setup);
161 #ifndef CONFIG_SMP
162 void adjust_cr(unsigned long mask, unsigned long set)
164 unsigned long flags;
166 mask &= ~CR_A;
168 set &= mask;
170 local_irq_save(flags);
172 cr_no_alignment = (cr_no_alignment & ~mask) | set;
173 cr_alignment = (cr_alignment & ~mask) | set;
175 set_cr((get_cr() & ~mask) | set);
177 local_irq_restore(flags);
179 #endif
181 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
182 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
184 static struct mem_type mem_types[] = {
185 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
186 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
187 L_PTE_SHARED,
188 .prot_l1 = PMD_TYPE_TABLE,
189 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
190 .domain = DOMAIN_IO,
192 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
193 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
194 .prot_l1 = PMD_TYPE_TABLE,
195 .prot_sect = PROT_SECT_DEVICE,
196 .domain = DOMAIN_IO,
198 [MT_DEVICE_CACHED] = { /* ioremap_cached */
199 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
200 .prot_l1 = PMD_TYPE_TABLE,
201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
202 .domain = DOMAIN_IO,
204 [MT_DEVICE_WC] = { /* ioremap_wc */
205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
206 .prot_l1 = PMD_TYPE_TABLE,
207 .prot_sect = PROT_SECT_DEVICE,
208 .domain = DOMAIN_IO,
210 [MT_UNCACHED] = {
211 .prot_pte = PROT_PTE_DEVICE,
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
214 .domain = DOMAIN_IO,
216 [MT_CACHECLEAN] = {
217 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
218 .domain = DOMAIN_KERNEL,
220 [MT_MINICLEAN] = {
221 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
222 .domain = DOMAIN_KERNEL,
224 [MT_LOW_VECTORS] = {
225 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
226 L_PTE_EXEC,
227 .prot_l1 = PMD_TYPE_TABLE,
228 .domain = DOMAIN_USER,
230 [MT_HIGH_VECTORS] = {
231 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
232 L_PTE_USER | L_PTE_EXEC,
233 .prot_l1 = PMD_TYPE_TABLE,
234 .domain = DOMAIN_USER,
236 [MT_MEMORY] = {
237 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
238 .domain = DOMAIN_KERNEL,
240 [MT_ROM] = {
241 .prot_sect = PMD_TYPE_SECT,
242 .domain = DOMAIN_KERNEL,
246 const struct mem_type *get_mem_type(unsigned int type)
248 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
252 * Adjust the PMD section entries according to the CPU in use.
254 static void __init build_mem_type_table(void)
256 struct cachepolicy *cp;
257 unsigned int cr = get_cr();
258 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
259 int cpu_arch = cpu_architecture();
260 int i;
262 if (cpu_arch < CPU_ARCH_ARMv6) {
263 #if defined(CONFIG_CPU_DCACHE_DISABLE)
264 if (cachepolicy > CPOLICY_BUFFERED)
265 cachepolicy = CPOLICY_BUFFERED;
266 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
267 if (cachepolicy > CPOLICY_WRITETHROUGH)
268 cachepolicy = CPOLICY_WRITETHROUGH;
269 #endif
271 if (cpu_arch < CPU_ARCH_ARMv5) {
272 if (cachepolicy >= CPOLICY_WRITEALLOC)
273 cachepolicy = CPOLICY_WRITEBACK;
274 ecc_mask = 0;
276 #ifdef CONFIG_SMP
277 cachepolicy = CPOLICY_WRITEALLOC;
278 #endif
281 * Strip out features not present on earlier architectures.
282 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
283 * without extended page tables don't have the 'Shared' bit.
285 if (cpu_arch < CPU_ARCH_ARMv5)
286 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
287 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
288 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
289 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
290 mem_types[i].prot_sect &= ~PMD_SECT_S;
293 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
294 * "update-able on write" bit on ARM610). However, Xscale and
295 * Xscale3 require this bit to be cleared.
297 if (cpu_is_xscale() || cpu_is_xsc3()) {
298 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
299 mem_types[i].prot_sect &= ~PMD_BIT4;
300 mem_types[i].prot_l1 &= ~PMD_BIT4;
302 } else if (cpu_arch < CPU_ARCH_ARMv6) {
303 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
304 if (mem_types[i].prot_l1)
305 mem_types[i].prot_l1 |= PMD_BIT4;
306 if (mem_types[i].prot_sect)
307 mem_types[i].prot_sect |= PMD_BIT4;
312 * Mark the device areas according to the CPU/architecture.
314 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
315 if (!cpu_is_xsc3()) {
317 * Mark device regions on ARMv6+ as execute-never
318 * to prevent speculative instruction fetches.
320 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
321 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
322 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
323 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
325 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
327 * For ARMv7 with TEX remapping,
328 * - shared device is SXCB=1100
329 * - nonshared device is SXCB=0100
330 * - write combine device mem is SXCB=0001
331 * (Uncached Normal memory)
333 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
334 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
335 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
336 } else if (cpu_is_xsc3()) {
338 * For Xscale3,
339 * - shared device is TEXCB=00101
340 * - nonshared device is TEXCB=01000
341 * - write combine device mem is TEXCB=00100
342 * (Inner/Outer Uncacheable in xsc3 parlance)
344 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
345 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
346 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
347 } else {
349 * For ARMv6 and ARMv7 without TEX remapping,
350 * - shared device is TEXCB=00001
351 * - nonshared device is TEXCB=01000
352 * - write combine device mem is TEXCB=00100
353 * (Uncached Normal in ARMv6 parlance).
355 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
356 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
357 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
359 } else {
361 * On others, write combining is "Uncached/Buffered"
363 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
367 * Now deal with the memory-type mappings
369 cp = &cache_policies[cachepolicy];
370 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
372 #ifndef CONFIG_SMP
374 * Only use write-through for non-SMP systems
376 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
377 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
378 #endif
381 * Enable CPU-specific coherency if supported.
382 * (Only available on XSC3 at the moment.)
384 if (arch_is_coherent() && cpu_is_xsc3())
385 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
388 * ARMv6 and above have extended page tables.
390 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
392 * Mark cache clean areas and XIP ROM read only
393 * from SVC mode and no access from userspace.
395 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
396 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
397 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
399 #ifdef CONFIG_SMP
401 * Mark memory with the "shared" attribute for SMP systems
403 user_pgprot |= L_PTE_SHARED;
404 kern_pgprot |= L_PTE_SHARED;
405 vecs_pgprot |= L_PTE_SHARED;
406 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
407 #endif
410 for (i = 0; i < 16; i++) {
411 unsigned long v = pgprot_val(protection_map[i]);
412 protection_map[i] = __pgprot(v | user_pgprot);
415 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
416 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
418 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
419 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
420 L_PTE_DIRTY | L_PTE_WRITE |
421 L_PTE_EXEC | kern_pgprot);
423 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
424 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
425 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
426 mem_types[MT_ROM].prot_sect |= cp->pmd;
428 switch (cp->pmd) {
429 case PMD_SECT_WT:
430 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
431 break;
432 case PMD_SECT_WB:
433 case PMD_SECT_WBWA:
434 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
435 break;
437 printk("Memory policy: ECC %sabled, Data cache %s\n",
438 ecc_mask ? "en" : "dis", cp->policy);
440 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
441 struct mem_type *t = &mem_types[i];
442 if (t->prot_l1)
443 t->prot_l1 |= PMD_DOMAIN(t->domain);
444 if (t->prot_sect)
445 t->prot_sect |= PMD_DOMAIN(t->domain);
449 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
451 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
452 unsigned long end, unsigned long pfn,
453 const struct mem_type *type)
455 pte_t *pte;
457 if (pmd_none(*pmd)) {
458 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
459 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
462 pte = pte_offset_kernel(pmd, addr);
463 do {
464 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
465 pfn++;
466 } while (pte++, addr += PAGE_SIZE, addr != end);
469 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
470 unsigned long end, unsigned long phys,
471 const struct mem_type *type)
473 pmd_t *pmd = pmd_offset(pgd, addr);
476 * Try a section mapping - end, addr and phys must all be aligned
477 * to a section boundary. Note that PMDs refer to the individual
478 * L1 entries, whereas PGDs refer to a group of L1 entries making
479 * up one logical pointer to an L2 table.
481 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
482 pmd_t *p = pmd;
484 if (addr & SECTION_SIZE)
485 pmd++;
487 do {
488 *pmd = __pmd(phys | type->prot_sect);
489 phys += SECTION_SIZE;
490 } while (pmd++, addr += SECTION_SIZE, addr != end);
492 flush_pmd_entry(p);
493 } else {
495 * No need to loop; pte's aren't interested in the
496 * individual L1 entries.
498 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
502 static void __init create_36bit_mapping(struct map_desc *md,
503 const struct mem_type *type)
505 unsigned long phys, addr, length, end;
506 pgd_t *pgd;
508 addr = md->virtual;
509 phys = (unsigned long)__pfn_to_phys(md->pfn);
510 length = PAGE_ALIGN(md->length);
512 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
513 printk(KERN_ERR "MM: CPU does not support supersection "
514 "mapping for 0x%08llx at 0x%08lx\n",
515 __pfn_to_phys((u64)md->pfn), addr);
516 return;
519 /* N.B. ARMv6 supersections are only defined to work with domain 0.
520 * Since domain assignments can in fact be arbitrary, the
521 * 'domain == 0' check below is required to insure that ARMv6
522 * supersections are only allocated for domain 0 regardless
523 * of the actual domain assignments in use.
525 if (type->domain) {
526 printk(KERN_ERR "MM: invalid domain in supersection "
527 "mapping for 0x%08llx at 0x%08lx\n",
528 __pfn_to_phys((u64)md->pfn), addr);
529 return;
532 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
533 printk(KERN_ERR "MM: cannot create mapping for "
534 "0x%08llx at 0x%08lx invalid alignment\n",
535 __pfn_to_phys((u64)md->pfn), addr);
536 return;
540 * Shift bits [35:32] of address into bits [23:20] of PMD
541 * (See ARMv6 spec).
543 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
545 pgd = pgd_offset_k(addr);
546 end = addr + length;
547 do {
548 pmd_t *pmd = pmd_offset(pgd, addr);
549 int i;
551 for (i = 0; i < 16; i++)
552 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
554 addr += SUPERSECTION_SIZE;
555 phys += SUPERSECTION_SIZE;
556 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
557 } while (addr != end);
561 * Create the page directory entries and any necessary
562 * page tables for the mapping specified by `md'. We
563 * are able to cope here with varying sizes and address
564 * offsets, and we take full advantage of sections and
565 * supersections.
567 void __init create_mapping(struct map_desc *md)
569 unsigned long phys, addr, length, end;
570 const struct mem_type *type;
571 pgd_t *pgd;
573 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
574 printk(KERN_WARNING "BUG: not creating mapping for "
575 "0x%08llx at 0x%08lx in user region\n",
576 __pfn_to_phys((u64)md->pfn), md->virtual);
577 return;
580 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
581 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
582 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
583 "overlaps vmalloc space\n",
584 __pfn_to_phys((u64)md->pfn), md->virtual);
587 type = &mem_types[md->type];
590 * Catch 36-bit addresses
592 if (md->pfn >= 0x100000) {
593 create_36bit_mapping(md, type);
594 return;
597 addr = md->virtual & PAGE_MASK;
598 phys = (unsigned long)__pfn_to_phys(md->pfn);
599 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
601 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
602 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
603 "be mapped using pages, ignoring.\n",
604 __pfn_to_phys(md->pfn), addr);
605 return;
608 pgd = pgd_offset_k(addr);
609 end = addr + length;
610 do {
611 unsigned long next = pgd_addr_end(addr, end);
613 alloc_init_section(pgd, addr, next, phys, type);
615 phys += next - addr;
616 addr = next;
617 } while (pgd++, addr != end);
621 * Create the architecture specific mappings
623 void __init iotable_init(struct map_desc *io_desc, int nr)
625 int i;
627 for (i = 0; i < nr; i++)
628 create_mapping(io_desc + i);
631 static unsigned long __initdata vmalloc_reserve = SZ_128M;
634 * vmalloc=size forces the vmalloc area to be exactly 'size'
635 * bytes. This can be used to increase (or decrease) the vmalloc
636 * area - the default is 128m.
638 static void __init early_vmalloc(char **arg)
640 vmalloc_reserve = memparse(*arg, arg);
642 if (vmalloc_reserve < SZ_16M) {
643 vmalloc_reserve = SZ_16M;
644 printk(KERN_WARNING
645 "vmalloc area too small, limiting to %luMB\n",
646 vmalloc_reserve >> 20);
649 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
650 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
651 printk(KERN_WARNING
652 "vmalloc area is too big, limiting to %luMB\n",
653 vmalloc_reserve >> 20);
656 __early_param("vmalloc=", early_vmalloc);
658 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
660 static void __init sanity_check_meminfo(void)
662 int i, j;
664 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
665 struct membank *bank = &meminfo.bank[j];
666 *bank = meminfo.bank[i];
668 #ifdef CONFIG_HIGHMEM
670 * Split those memory banks which are partially overlapping
671 * the vmalloc area greatly simplifying things later.
673 if (__va(bank->start) < VMALLOC_MIN &&
674 bank->size > VMALLOC_MIN - __va(bank->start)) {
675 if (meminfo.nr_banks >= NR_BANKS) {
676 printk(KERN_CRIT "NR_BANKS too low, "
677 "ignoring high memory\n");
678 } else {
679 memmove(bank + 1, bank,
680 (meminfo.nr_banks - i) * sizeof(*bank));
681 meminfo.nr_banks++;
682 i++;
683 bank[1].size -= VMALLOC_MIN - __va(bank->start);
684 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
685 j++;
687 bank->size = VMALLOC_MIN - __va(bank->start);
689 #else
691 * Check whether this memory bank would entirely overlap
692 * the vmalloc area.
694 if (__va(bank->start) >= VMALLOC_MIN ||
695 __va(bank->start) < (void *)PAGE_OFFSET) {
696 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
697 "(vmalloc region overlap).\n",
698 bank->start, bank->start + bank->size - 1);
699 continue;
703 * Check whether this memory bank would partially overlap
704 * the vmalloc area.
706 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
707 __va(bank->start + bank->size) < __va(bank->start)) {
708 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
709 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
710 "to -%.8lx (vmalloc region overlap).\n",
711 bank->start, bank->start + bank->size - 1,
712 bank->start + newsize - 1);
713 bank->size = newsize;
715 #endif
716 j++;
718 meminfo.nr_banks = j;
721 static inline void prepare_page_table(void)
723 unsigned long addr;
726 * Clear out all the mappings below the kernel image.
728 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
729 pmd_clear(pmd_off_k(addr));
731 #ifdef CONFIG_XIP_KERNEL
732 /* The XIP kernel is mapped in the module area -- skip over it */
733 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
734 #endif
735 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
736 pmd_clear(pmd_off_k(addr));
739 * Clear out all the kernel space mappings, except for the first
740 * memory bank, up to the end of the vmalloc region.
742 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
743 addr < VMALLOC_END; addr += PGDIR_SIZE)
744 pmd_clear(pmd_off_k(addr));
748 * Reserve the various regions of node 0
750 void __init reserve_node_zero(pg_data_t *pgdat)
752 unsigned long res_size = 0;
755 * Register the kernel text and data with bootmem.
756 * Note that this can only be in node 0.
758 #ifdef CONFIG_XIP_KERNEL
759 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
760 BOOTMEM_DEFAULT);
761 #else
762 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
763 BOOTMEM_DEFAULT);
764 #endif
767 * Reserve the page tables. These are already in use,
768 * and can only be in node 0.
770 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
771 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
774 * Hmm... This should go elsewhere, but we really really need to
775 * stop things allocating the low memory; ideally we need a better
776 * implementation of GFP_DMA which does not assume that DMA-able
777 * memory starts at zero.
779 if (machine_is_integrator() || machine_is_cintegrator())
780 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
783 * These should likewise go elsewhere. They pre-reserve the
784 * screen memory region at the start of main system memory.
786 if (machine_is_edb7211())
787 res_size = 0x00020000;
788 if (machine_is_p720t())
789 res_size = 0x00014000;
791 /* H1940 and RX3715 need to reserve this for suspend */
793 if (machine_is_h1940() || machine_is_rx3715()) {
794 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
795 BOOTMEM_DEFAULT);
796 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
797 BOOTMEM_DEFAULT);
800 #ifdef CONFIG_SA1111
802 * Because of the SA1111 DMA bug, we want to preserve our
803 * precious DMA-able memory...
805 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
806 #endif
807 if (res_size)
808 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
809 BOOTMEM_DEFAULT);
813 * Set up device the mappings. Since we clear out the page tables for all
814 * mappings above VMALLOC_END, we will remove any debug device mappings.
815 * This means you have to be careful how you debug this function, or any
816 * called function. This means you can't use any function or debugging
817 * method which may touch any device, otherwise the kernel _will_ crash.
819 static void __init devicemaps_init(struct machine_desc *mdesc)
821 struct map_desc map;
822 unsigned long addr;
823 void *vectors;
826 * Allocate the vector page early.
828 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
830 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
831 pmd_clear(pmd_off_k(addr));
834 * Map the kernel if it is XIP.
835 * It is always first in the modulearea.
837 #ifdef CONFIG_XIP_KERNEL
838 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
839 map.virtual = MODULES_VADDR;
840 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
841 map.type = MT_ROM;
842 create_mapping(&map);
843 #endif
846 * Map the cache flushing regions.
848 #ifdef FLUSH_BASE
849 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
850 map.virtual = FLUSH_BASE;
851 map.length = SZ_1M;
852 map.type = MT_CACHECLEAN;
853 create_mapping(&map);
854 #endif
855 #ifdef FLUSH_BASE_MINICACHE
856 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
857 map.virtual = FLUSH_BASE_MINICACHE;
858 map.length = SZ_1M;
859 map.type = MT_MINICLEAN;
860 create_mapping(&map);
861 #endif
864 * Create a mapping for the machine vectors at the high-vectors
865 * location (0xffff0000). If we aren't using high-vectors, also
866 * create a mapping at the low-vectors virtual address.
868 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
869 map.virtual = 0xffff0000;
870 map.length = PAGE_SIZE;
871 map.type = MT_HIGH_VECTORS;
872 create_mapping(&map);
874 if (!vectors_high()) {
875 map.virtual = 0;
876 map.type = MT_LOW_VECTORS;
877 create_mapping(&map);
881 * Ask the machine support to map in the statically mapped devices.
883 if (mdesc->map_io)
884 mdesc->map_io();
887 * Finally flush the caches and tlb to ensure that we're in a
888 * consistent state wrt the writebuffer. This also ensures that
889 * any write-allocated cache lines in the vector page are written
890 * back. After this point, we can start to touch devices again.
892 local_flush_tlb_all();
893 flush_cache_all();
897 * paging_init() sets up the page tables, initialises the zone memory
898 * maps, and sets up the zero page, bad page and bad page tables.
900 void __init paging_init(struct machine_desc *mdesc)
902 void *zero_page;
904 build_mem_type_table();
905 sanity_check_meminfo();
906 prepare_page_table();
907 bootmem_init();
908 devicemaps_init(mdesc);
910 top_pmd = pmd_off_k(0xffff0000);
913 * allocate the zero page. Note that this always succeeds and
914 * returns a zeroed result.
916 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
917 empty_zero_page = virt_to_page(zero_page);
918 flush_dcache_page(empty_zero_page);
922 * In order to soft-boot, we need to insert a 1:1 mapping in place of
923 * the user-mode pages. This will then ensure that we have predictable
924 * results when turning the mmu off
926 void setup_mm_for_reboot(char mode)
928 unsigned long base_pmdval;
929 pgd_t *pgd;
930 int i;
932 if (current->mm && current->mm->pgd)
933 pgd = current->mm->pgd;
934 else
935 pgd = init_mm.pgd;
937 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
938 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
939 base_pmdval |= PMD_BIT4;
941 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
942 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
943 pmd_t *pmd;
945 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
946 pmd[0] = __pmd(pmdval);
947 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
948 flush_pmd_entry(pmd);