making the kernel build with up to date compilers again, see https://bbs.archlinux...
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / kernel / relay.c
blob7a3fd313c4c0155b2a8e71127f83fd411d089295
1 /*
2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.txt for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
40 * fault() vm_op implementation for relay file mapping.
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
48 if (!buf)
49 return VM_FAULT_OOM;
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
57 return 0;
61 * vm_ops for relay file mappings.
63 static struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
69 * allocate an array of pointers of struct page
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
73 struct page **array;
74 size_t pa_size = n_pages * sizeof(struct page *);
76 if (pa_size > PAGE_SIZE) {
77 array = vmalloc(pa_size);
78 if (array)
79 memset(array, 0, pa_size);
80 } else {
81 array = kzalloc(pa_size, GFP_KERNEL);
83 return array;
87 * free an array of pointers of struct page
89 static void relay_free_page_array(struct page **array)
91 if (is_vmalloc_addr(array))
92 vfree(array);
93 else
94 kfree(array);
97 /**
98 * relay_mmap_buf: - mmap channel buffer to process address space
99 * @buf: relay channel buffer
100 * @vma: vm_area_struct describing memory to be mapped
102 * Returns 0 if ok, negative on error
104 * Caller should already have grabbed mmap_sem.
106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
108 unsigned long length = vma->vm_end - vma->vm_start;
109 struct file *filp = vma->vm_file;
111 if (!buf)
112 return -EBADF;
114 if (length != (unsigned long)buf->chan->alloc_size)
115 return -EINVAL;
117 vma->vm_ops = &relay_file_mmap_ops;
118 vma->vm_flags |= VM_DONTEXPAND;
119 vma->vm_private_data = buf;
120 buf->chan->cb->buf_mapped(buf, filp);
122 return 0;
126 * relay_alloc_buf - allocate a channel buffer
127 * @buf: the buffer struct
128 * @size: total size of the buffer
130 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131 * passed in size will get page aligned, if it isn't already.
133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
135 void *mem;
136 unsigned int i, j, n_pages;
138 *size = PAGE_ALIGN(*size);
139 n_pages = *size >> PAGE_SHIFT;
141 buf->page_array = relay_alloc_page_array(n_pages);
142 if (!buf->page_array)
143 return NULL;
145 for (i = 0; i < n_pages; i++) {
146 buf->page_array[i] = alloc_page(GFP_KERNEL);
147 if (unlikely(!buf->page_array[i]))
148 goto depopulate;
149 set_page_private(buf->page_array[i], (unsigned long)buf);
151 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152 if (!mem)
153 goto depopulate;
155 memset(mem, 0, *size);
156 buf->page_count = n_pages;
157 return mem;
159 depopulate:
160 for (j = 0; j < i; j++)
161 __free_page(buf->page_array[j]);
162 relay_free_page_array(buf->page_array);
163 return NULL;
167 * relay_create_buf - allocate and initialize a channel buffer
168 * @chan: the relay channel
170 * Returns channel buffer if successful, %NULL otherwise.
172 static struct rchan_buf *relay_create_buf(struct rchan *chan)
174 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175 if (!buf)
176 return NULL;
178 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179 if (!buf->padding)
180 goto free_buf;
182 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183 if (!buf->start)
184 goto free_buf;
186 buf->chan = chan;
187 kref_get(&buf->chan->kref);
188 return buf;
190 free_buf:
191 kfree(buf->padding);
192 kfree(buf);
193 return NULL;
197 * relay_destroy_channel - free the channel struct
198 * @kref: target kernel reference that contains the relay channel
200 * Should only be called from kref_put().
202 static void relay_destroy_channel(struct kref *kref)
204 struct rchan *chan = container_of(kref, struct rchan, kref);
205 kfree(chan);
209 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210 * @buf: the buffer struct
212 static void relay_destroy_buf(struct rchan_buf *buf)
214 struct rchan *chan = buf->chan;
215 unsigned int i;
217 if (likely(buf->start)) {
218 vunmap(buf->start);
219 for (i = 0; i < buf->page_count; i++)
220 __free_page(buf->page_array[i]);
221 relay_free_page_array(buf->page_array);
223 chan->buf[buf->cpu] = NULL;
224 kfree(buf->padding);
225 kfree(buf);
226 kref_put(&chan->kref, relay_destroy_channel);
230 * relay_remove_buf - remove a channel buffer
231 * @kref: target kernel reference that contains the relay buffer
233 * Removes the file from the fileystem, which also frees the
234 * rchan_buf_struct and the channel buffer. Should only be called from
235 * kref_put().
237 static void relay_remove_buf(struct kref *kref)
239 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240 buf->chan->cb->remove_buf_file(buf->dentry);
241 relay_destroy_buf(buf);
245 * relay_buf_empty - boolean, is the channel buffer empty?
246 * @buf: channel buffer
248 * Returns 1 if the buffer is empty, 0 otherwise.
250 static int relay_buf_empty(struct rchan_buf *buf)
252 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
256 * relay_buf_full - boolean, is the channel buffer full?
257 * @buf: channel buffer
259 * Returns 1 if the buffer is full, 0 otherwise.
261 int relay_buf_full(struct rchan_buf *buf)
263 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
266 EXPORT_SYMBOL_GPL(relay_buf_full);
269 * High-level relay kernel API and associated functions.
273 * rchan_callback implementations defining default channel behavior. Used
274 * in place of corresponding NULL values in client callback struct.
278 * subbuf_start() default callback. Does nothing.
280 static int subbuf_start_default_callback (struct rchan_buf *buf,
281 void *subbuf,
282 void *prev_subbuf,
283 size_t prev_padding)
285 if (relay_buf_full(buf))
286 return 0;
288 return 1;
292 * buf_mapped() default callback. Does nothing.
294 static void buf_mapped_default_callback(struct rchan_buf *buf,
295 struct file *filp)
300 * buf_unmapped() default callback. Does nothing.
302 static void buf_unmapped_default_callback(struct rchan_buf *buf,
303 struct file *filp)
308 * create_buf_file_create() default callback. Does nothing.
310 static struct dentry *create_buf_file_default_callback(const char *filename,
311 struct dentry *parent,
312 int mode,
313 struct rchan_buf *buf,
314 int *is_global)
316 return NULL;
320 * remove_buf_file() default callback. Does nothing.
322 static int remove_buf_file_default_callback(struct dentry *dentry)
324 return -EINVAL;
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks = {
329 .subbuf_start = subbuf_start_default_callback,
330 .buf_mapped = buf_mapped_default_callback,
331 .buf_unmapped = buf_unmapped_default_callback,
332 .create_buf_file = create_buf_file_default_callback,
333 .remove_buf_file = remove_buf_file_default_callback,
337 * wakeup_readers - wake up readers waiting on a channel
338 * @data: contains the channel buffer
340 * This is the timer function used to defer reader waking.
342 static void wakeup_readers(unsigned long data)
344 struct rchan_buf *buf = (struct rchan_buf *)data;
345 wake_up_interruptible(&buf->read_wait);
347 * Stupid polling for now:
349 mod_timer(&buf->timer, jiffies + 1);
353 * __relay_reset - reset a channel buffer
354 * @buf: the channel buffer
355 * @init: 1 if this is a first-time initialization
357 * See relay_reset() for description of effect.
359 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
361 size_t i;
363 if (init) {
364 init_waitqueue_head(&buf->read_wait);
365 kref_init(&buf->kref);
366 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
367 mod_timer(&buf->timer, jiffies + 1);
368 } else
369 del_timer_sync(&buf->timer);
371 buf->subbufs_produced = 0;
372 buf->subbufs_consumed = 0;
373 buf->bytes_consumed = 0;
374 buf->finalized = 0;
375 buf->data = buf->start;
376 buf->offset = 0;
378 for (i = 0; i < buf->chan->n_subbufs; i++)
379 buf->padding[i] = 0;
381 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
385 * relay_reset - reset the channel
386 * @chan: the channel
388 * This has the effect of erasing all data from all channel buffers
389 * and restarting the channel in its initial state. The buffers
390 * are not freed, so any mappings are still in effect.
392 * NOTE. Care should be taken that the channel isn't actually
393 * being used by anything when this call is made.
395 void relay_reset(struct rchan *chan)
397 unsigned int i;
399 if (!chan)
400 return;
402 if (chan->is_global && chan->buf[0]) {
403 __relay_reset(chan->buf[0], 0);
404 return;
407 mutex_lock(&relay_channels_mutex);
408 for_each_possible_cpu(i)
409 if (chan->buf[i])
410 __relay_reset(chan->buf[i], 0);
411 mutex_unlock(&relay_channels_mutex);
413 EXPORT_SYMBOL_GPL(relay_reset);
415 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
416 struct dentry *dentry)
418 buf->dentry = dentry;
419 buf->dentry->d_inode->i_size = buf->early_bytes;
422 static struct dentry *relay_create_buf_file(struct rchan *chan,
423 struct rchan_buf *buf,
424 unsigned int cpu)
426 struct dentry *dentry;
427 char *tmpname;
429 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
430 if (!tmpname)
431 return NULL;
432 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
434 /* Create file in fs */
435 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
436 S_IRUSR, buf,
437 &chan->is_global);
439 kfree(tmpname);
441 return dentry;
445 * relay_open_buf - create a new relay channel buffer
447 * used by relay_open() and CPU hotplug.
449 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
451 struct rchan_buf *buf = NULL;
452 struct dentry *dentry;
454 if (chan->is_global)
455 return chan->buf[0];
457 buf = relay_create_buf(chan);
458 if (!buf)
459 return NULL;
461 if (chan->has_base_filename) {
462 dentry = relay_create_buf_file(chan, buf, cpu);
463 if (!dentry)
464 goto free_buf;
465 relay_set_buf_dentry(buf, dentry);
468 buf->cpu = cpu;
469 __relay_reset(buf, 1);
471 if(chan->is_global) {
472 chan->buf[0] = buf;
473 buf->cpu = 0;
476 return buf;
478 free_buf:
479 relay_destroy_buf(buf);
480 return NULL;
484 * relay_close_buf - close a channel buffer
485 * @buf: channel buffer
487 * Marks the buffer finalized and restores the default callbacks.
488 * The channel buffer and channel buffer data structure are then freed
489 * automatically when the last reference is given up.
491 static void relay_close_buf(struct rchan_buf *buf)
493 buf->finalized = 1;
494 del_timer_sync(&buf->timer);
495 kref_put(&buf->kref, relay_remove_buf);
498 static void setup_callbacks(struct rchan *chan,
499 struct rchan_callbacks *cb)
501 if (!cb) {
502 chan->cb = &default_channel_callbacks;
503 return;
506 if (!cb->subbuf_start)
507 cb->subbuf_start = subbuf_start_default_callback;
508 if (!cb->buf_mapped)
509 cb->buf_mapped = buf_mapped_default_callback;
510 if (!cb->buf_unmapped)
511 cb->buf_unmapped = buf_unmapped_default_callback;
512 if (!cb->create_buf_file)
513 cb->create_buf_file = create_buf_file_default_callback;
514 if (!cb->remove_buf_file)
515 cb->remove_buf_file = remove_buf_file_default_callback;
516 chan->cb = cb;
520 * relay_hotcpu_callback - CPU hotplug callback
521 * @nb: notifier block
522 * @action: hotplug action to take
523 * @hcpu: CPU number
525 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
527 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
528 unsigned long action,
529 void *hcpu)
531 unsigned int hotcpu = (unsigned long)hcpu;
532 struct rchan *chan;
534 switch(action) {
535 case CPU_UP_PREPARE:
536 case CPU_UP_PREPARE_FROZEN:
537 mutex_lock(&relay_channels_mutex);
538 list_for_each_entry(chan, &relay_channels, list) {
539 if (chan->buf[hotcpu])
540 continue;
541 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
542 if(!chan->buf[hotcpu]) {
543 printk(KERN_ERR
544 "relay_hotcpu_callback: cpu %d buffer "
545 "creation failed\n", hotcpu);
546 mutex_unlock(&relay_channels_mutex);
547 return NOTIFY_BAD;
550 mutex_unlock(&relay_channels_mutex);
551 break;
552 case CPU_DEAD:
553 case CPU_DEAD_FROZEN:
554 /* No need to flush the cpu : will be flushed upon
555 * final relay_flush() call. */
556 break;
558 return NOTIFY_OK;
562 * relay_open - create a new relay channel
563 * @base_filename: base name of files to create, %NULL for buffering only
564 * @parent: dentry of parent directory, %NULL for root directory or buffer
565 * @subbuf_size: size of sub-buffers
566 * @n_subbufs: number of sub-buffers
567 * @cb: client callback functions
568 * @private_data: user-defined data
570 * Returns channel pointer if successful, %NULL otherwise.
572 * Creates a channel buffer for each cpu using the sizes and
573 * attributes specified. The created channel buffer files
574 * will be named base_filename0...base_filenameN-1. File
575 * permissions will be %S_IRUSR.
577 struct rchan *relay_open(const char *base_filename,
578 struct dentry *parent,
579 size_t subbuf_size,
580 size_t n_subbufs,
581 struct rchan_callbacks *cb,
582 void *private_data)
584 unsigned int i;
585 struct rchan *chan;
587 if (!(subbuf_size && n_subbufs))
588 return NULL;
590 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
591 if (!chan)
592 return NULL;
594 chan->version = RELAYFS_CHANNEL_VERSION;
595 chan->n_subbufs = n_subbufs;
596 chan->subbuf_size = subbuf_size;
597 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
598 chan->parent = parent;
599 chan->private_data = private_data;
600 if (base_filename) {
601 chan->has_base_filename = 1;
602 strlcpy(chan->base_filename, base_filename, NAME_MAX);
604 setup_callbacks(chan, cb);
605 kref_init(&chan->kref);
607 mutex_lock(&relay_channels_mutex);
608 for_each_online_cpu(i) {
609 chan->buf[i] = relay_open_buf(chan, i);
610 if (!chan->buf[i])
611 goto free_bufs;
613 list_add(&chan->list, &relay_channels);
614 mutex_unlock(&relay_channels_mutex);
616 return chan;
618 free_bufs:
619 for_each_possible_cpu(i) {
620 if (chan->buf[i])
621 relay_close_buf(chan->buf[i]);
624 kref_put(&chan->kref, relay_destroy_channel);
625 mutex_unlock(&relay_channels_mutex);
626 return NULL;
628 EXPORT_SYMBOL_GPL(relay_open);
630 struct rchan_percpu_buf_dispatcher {
631 struct rchan_buf *buf;
632 struct dentry *dentry;
635 /* Called in atomic context. */
636 static void __relay_set_buf_dentry(void *info)
638 struct rchan_percpu_buf_dispatcher *p = info;
640 relay_set_buf_dentry(p->buf, p->dentry);
644 * relay_late_setup_files - triggers file creation
645 * @chan: channel to operate on
646 * @base_filename: base name of files to create
647 * @parent: dentry of parent directory, %NULL for root directory
649 * Returns 0 if successful, non-zero otherwise.
651 * Use to setup files for a previously buffer-only channel.
652 * Useful to do early tracing in kernel, before VFS is up, for example.
654 int relay_late_setup_files(struct rchan *chan,
655 const char *base_filename,
656 struct dentry *parent)
658 int err = 0;
659 unsigned int i, curr_cpu;
660 unsigned long flags;
661 struct dentry *dentry;
662 struct rchan_percpu_buf_dispatcher disp;
664 if (!chan || !base_filename)
665 return -EINVAL;
667 strlcpy(chan->base_filename, base_filename, NAME_MAX);
669 mutex_lock(&relay_channels_mutex);
670 /* Is chan already set up? */
671 if (unlikely(chan->has_base_filename)) {
672 mutex_unlock(&relay_channels_mutex);
673 return -EEXIST;
675 chan->has_base_filename = 1;
676 chan->parent = parent;
677 curr_cpu = get_cpu();
679 * The CPU hotplug notifier ran before us and created buffers with
680 * no files associated. So it's safe to call relay_setup_buf_file()
681 * on all currently online CPUs.
683 for_each_online_cpu(i) {
684 if (unlikely(!chan->buf[i])) {
685 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
686 err = -EINVAL;
687 break;
690 dentry = relay_create_buf_file(chan, chan->buf[i], i);
691 if (unlikely(!dentry)) {
692 err = -EINVAL;
693 break;
696 if (curr_cpu == i) {
697 local_irq_save(flags);
698 relay_set_buf_dentry(chan->buf[i], dentry);
699 local_irq_restore(flags);
700 } else {
701 disp.buf = chan->buf[i];
702 disp.dentry = dentry;
703 smp_mb();
704 /* relay_channels_mutex must be held, so wait. */
705 err = smp_call_function_single(i,
706 __relay_set_buf_dentry,
707 &disp, 1);
709 if (unlikely(err))
710 break;
712 put_cpu();
713 mutex_unlock(&relay_channels_mutex);
715 return err;
719 * relay_switch_subbuf - switch to a new sub-buffer
720 * @buf: channel buffer
721 * @length: size of current event
723 * Returns either the length passed in or 0 if full.
725 * Performs sub-buffer-switch tasks such as invoking callbacks,
726 * updating padding counts, waking up readers, etc.
728 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
730 void *old, *new;
731 size_t old_subbuf, new_subbuf;
733 if (unlikely(length > buf->chan->subbuf_size))
734 goto toobig;
736 if (buf->offset != buf->chan->subbuf_size + 1) {
737 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
738 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
739 buf->padding[old_subbuf] = buf->prev_padding;
740 buf->subbufs_produced++;
741 if (buf->dentry)
742 buf->dentry->d_inode->i_size +=
743 buf->chan->subbuf_size -
744 buf->padding[old_subbuf];
745 else
746 buf->early_bytes += buf->chan->subbuf_size -
747 buf->padding[old_subbuf];
750 old = buf->data;
751 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
752 new = buf->start + new_subbuf * buf->chan->subbuf_size;
753 buf->offset = 0;
754 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
755 buf->offset = buf->chan->subbuf_size + 1;
756 return 0;
758 buf->data = new;
759 buf->padding[new_subbuf] = 0;
761 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
762 goto toobig;
764 return length;
766 toobig:
767 buf->chan->last_toobig = length;
768 return 0;
770 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
773 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
774 * @chan: the channel
775 * @cpu: the cpu associated with the channel buffer to update
776 * @subbufs_consumed: number of sub-buffers to add to current buf's count
778 * Adds to the channel buffer's consumed sub-buffer count.
779 * subbufs_consumed should be the number of sub-buffers newly consumed,
780 * not the total consumed.
782 * NOTE. Kernel clients don't need to call this function if the channel
783 * mode is 'overwrite'.
785 void relay_subbufs_consumed(struct rchan *chan,
786 unsigned int cpu,
787 size_t subbufs_consumed)
789 struct rchan_buf *buf;
791 if (!chan)
792 return;
794 if (cpu >= NR_CPUS || !chan->buf[cpu])
795 return;
797 buf = chan->buf[cpu];
798 buf->subbufs_consumed += subbufs_consumed;
799 if (buf->subbufs_consumed > buf->subbufs_produced)
800 buf->subbufs_consumed = buf->subbufs_produced;
802 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
805 * relay_close - close the channel
806 * @chan: the channel
808 * Closes all channel buffers and frees the channel.
810 void relay_close(struct rchan *chan)
812 unsigned int i;
814 if (!chan)
815 return;
817 mutex_lock(&relay_channels_mutex);
818 if (chan->is_global && chan->buf[0])
819 relay_close_buf(chan->buf[0]);
820 else
821 for_each_possible_cpu(i)
822 if (chan->buf[i])
823 relay_close_buf(chan->buf[i]);
825 if (chan->last_toobig)
826 printk(KERN_WARNING "relay: one or more items not logged "
827 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
828 chan->last_toobig, chan->subbuf_size);
830 list_del(&chan->list);
831 kref_put(&chan->kref, relay_destroy_channel);
832 mutex_unlock(&relay_channels_mutex);
834 EXPORT_SYMBOL_GPL(relay_close);
837 * relay_flush - close the channel
838 * @chan: the channel
840 * Flushes all channel buffers, i.e. forces buffer switch.
842 void relay_flush(struct rchan *chan)
844 unsigned int i;
846 if (!chan)
847 return;
849 if (chan->is_global && chan->buf[0]) {
850 relay_switch_subbuf(chan->buf[0], 0);
851 return;
854 mutex_lock(&relay_channels_mutex);
855 for_each_possible_cpu(i)
856 if (chan->buf[i])
857 relay_switch_subbuf(chan->buf[i], 0);
858 mutex_unlock(&relay_channels_mutex);
860 EXPORT_SYMBOL_GPL(relay_flush);
863 * relay_file_open - open file op for relay files
864 * @inode: the inode
865 * @filp: the file
867 * Increments the channel buffer refcount.
869 static int relay_file_open(struct inode *inode, struct file *filp)
871 struct rchan_buf *buf = inode->i_private;
872 kref_get(&buf->kref);
873 filp->private_data = buf;
875 return nonseekable_open(inode, filp);
879 * relay_file_mmap - mmap file op for relay files
880 * @filp: the file
881 * @vma: the vma describing what to map
883 * Calls upon relay_mmap_buf() to map the file into user space.
885 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
887 struct rchan_buf *buf = filp->private_data;
888 return relay_mmap_buf(buf, vma);
892 * relay_file_poll - poll file op for relay files
893 * @filp: the file
894 * @wait: poll table
896 * Poll implemention.
898 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
900 unsigned int mask = 0;
901 struct rchan_buf *buf = filp->private_data;
903 if (buf->finalized)
904 return POLLERR;
906 if (filp->f_mode & FMODE_READ) {
907 poll_wait(filp, &buf->read_wait, wait);
908 if (!relay_buf_empty(buf))
909 mask |= POLLIN | POLLRDNORM;
912 return mask;
916 * relay_file_release - release file op for relay files
917 * @inode: the inode
918 * @filp: the file
920 * Decrements the channel refcount, as the filesystem is
921 * no longer using it.
923 static int relay_file_release(struct inode *inode, struct file *filp)
925 struct rchan_buf *buf = filp->private_data;
926 kref_put(&buf->kref, relay_remove_buf);
928 return 0;
932 * relay_file_read_consume - update the consumed count for the buffer
934 static void relay_file_read_consume(struct rchan_buf *buf,
935 size_t read_pos,
936 size_t bytes_consumed)
938 size_t subbuf_size = buf->chan->subbuf_size;
939 size_t n_subbufs = buf->chan->n_subbufs;
940 size_t read_subbuf;
942 if (buf->subbufs_produced == buf->subbufs_consumed &&
943 buf->offset == buf->bytes_consumed)
944 return;
946 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
947 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
948 buf->bytes_consumed = 0;
951 buf->bytes_consumed += bytes_consumed;
952 if (!read_pos)
953 read_subbuf = buf->subbufs_consumed % n_subbufs;
954 else
955 read_subbuf = read_pos / buf->chan->subbuf_size;
956 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
957 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
958 (buf->offset == subbuf_size))
959 return;
960 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
961 buf->bytes_consumed = 0;
966 * relay_file_read_avail - boolean, are there unconsumed bytes available?
968 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
970 size_t subbuf_size = buf->chan->subbuf_size;
971 size_t n_subbufs = buf->chan->n_subbufs;
972 size_t produced = buf->subbufs_produced;
973 size_t consumed = buf->subbufs_consumed;
975 relay_file_read_consume(buf, read_pos, 0);
977 consumed = buf->subbufs_consumed;
979 if (unlikely(buf->offset > subbuf_size)) {
980 if (produced == consumed)
981 return 0;
982 return 1;
985 if (unlikely(produced - consumed >= n_subbufs)) {
986 consumed = produced - n_subbufs + 1;
987 buf->subbufs_consumed = consumed;
988 buf->bytes_consumed = 0;
991 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
992 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
994 if (consumed > produced)
995 produced += n_subbufs * subbuf_size;
997 if (consumed == produced) {
998 if (buf->offset == subbuf_size &&
999 buf->subbufs_produced > buf->subbufs_consumed)
1000 return 1;
1001 return 0;
1004 return 1;
1008 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1009 * @read_pos: file read position
1010 * @buf: relay channel buffer
1012 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1013 struct rchan_buf *buf)
1015 size_t padding, avail = 0;
1016 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1017 size_t subbuf_size = buf->chan->subbuf_size;
1019 write_subbuf = (buf->data - buf->start) / subbuf_size;
1020 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1021 read_subbuf = read_pos / subbuf_size;
1022 read_offset = read_pos % subbuf_size;
1023 padding = buf->padding[read_subbuf];
1025 if (read_subbuf == write_subbuf) {
1026 if (read_offset + padding < write_offset)
1027 avail = write_offset - (read_offset + padding);
1028 } else
1029 avail = (subbuf_size - padding) - read_offset;
1031 return avail;
1035 * relay_file_read_start_pos - find the first available byte to read
1036 * @read_pos: file read position
1037 * @buf: relay channel buffer
1039 * If the @read_pos is in the middle of padding, return the
1040 * position of the first actually available byte, otherwise
1041 * return the original value.
1043 static size_t relay_file_read_start_pos(size_t read_pos,
1044 struct rchan_buf *buf)
1046 size_t read_subbuf, padding, padding_start, padding_end;
1047 size_t subbuf_size = buf->chan->subbuf_size;
1048 size_t n_subbufs = buf->chan->n_subbufs;
1049 size_t consumed = buf->subbufs_consumed % n_subbufs;
1051 if (!read_pos)
1052 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1053 read_subbuf = read_pos / subbuf_size;
1054 padding = buf->padding[read_subbuf];
1055 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1056 padding_end = (read_subbuf + 1) * subbuf_size;
1057 if (read_pos >= padding_start && read_pos < padding_end) {
1058 read_subbuf = (read_subbuf + 1) % n_subbufs;
1059 read_pos = read_subbuf * subbuf_size;
1062 return read_pos;
1066 * relay_file_read_end_pos - return the new read position
1067 * @read_pos: file read position
1068 * @buf: relay channel buffer
1069 * @count: number of bytes to be read
1071 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1072 size_t read_pos,
1073 size_t count)
1075 size_t read_subbuf, padding, end_pos;
1076 size_t subbuf_size = buf->chan->subbuf_size;
1077 size_t n_subbufs = buf->chan->n_subbufs;
1079 read_subbuf = read_pos / subbuf_size;
1080 padding = buf->padding[read_subbuf];
1081 if (read_pos % subbuf_size + count + padding == subbuf_size)
1082 end_pos = (read_subbuf + 1) * subbuf_size;
1083 else
1084 end_pos = read_pos + count;
1085 if (end_pos >= subbuf_size * n_subbufs)
1086 end_pos = 0;
1088 return end_pos;
1092 * subbuf_read_actor - read up to one subbuf's worth of data
1094 static int subbuf_read_actor(size_t read_start,
1095 struct rchan_buf *buf,
1096 size_t avail,
1097 read_descriptor_t *desc,
1098 read_actor_t actor)
1100 void *from;
1101 int ret = 0;
1103 from = buf->start + read_start;
1104 ret = avail;
1105 if (copy_to_user(desc->arg.buf, from, avail)) {
1106 desc->error = -EFAULT;
1107 ret = 0;
1109 desc->arg.data += ret;
1110 desc->written += ret;
1111 desc->count -= ret;
1113 return ret;
1116 typedef int (*subbuf_actor_t) (size_t read_start,
1117 struct rchan_buf *buf,
1118 size_t avail,
1119 read_descriptor_t *desc,
1120 read_actor_t actor);
1123 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1125 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1126 subbuf_actor_t subbuf_actor,
1127 read_actor_t actor,
1128 read_descriptor_t *desc)
1130 struct rchan_buf *buf = filp->private_data;
1131 size_t read_start, avail;
1132 int ret;
1134 if (!desc->count)
1135 return 0;
1137 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1138 do {
1139 if (!relay_file_read_avail(buf, *ppos))
1140 break;
1142 read_start = relay_file_read_start_pos(*ppos, buf);
1143 avail = relay_file_read_subbuf_avail(read_start, buf);
1144 if (!avail)
1145 break;
1147 avail = min(desc->count, avail);
1148 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1149 if (desc->error < 0)
1150 break;
1152 if (ret) {
1153 relay_file_read_consume(buf, read_start, ret);
1154 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1156 } while (desc->count && ret);
1157 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1159 return desc->written;
1162 static ssize_t relay_file_read(struct file *filp,
1163 char __user *buffer,
1164 size_t count,
1165 loff_t *ppos)
1167 read_descriptor_t desc;
1168 desc.written = 0;
1169 desc.count = count;
1170 desc.arg.buf = buffer;
1171 desc.error = 0;
1172 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1173 NULL, &desc);
1176 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1178 rbuf->bytes_consumed += bytes_consumed;
1180 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1181 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1182 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1186 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1187 struct pipe_buffer *buf)
1189 struct rchan_buf *rbuf;
1191 rbuf = (struct rchan_buf *)page_private(buf->page);
1192 relay_consume_bytes(rbuf, buf->private);
1195 static struct pipe_buf_operations relay_pipe_buf_ops = {
1196 .can_merge = 0,
1197 .map = generic_pipe_buf_map,
1198 .unmap = generic_pipe_buf_unmap,
1199 .confirm = generic_pipe_buf_confirm,
1200 .release = relay_pipe_buf_release,
1201 .steal = generic_pipe_buf_steal,
1202 .get = generic_pipe_buf_get,
1205 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1210 * subbuf_splice_actor - splice up to one subbuf's worth of data
1212 static int subbuf_splice_actor(struct file *in,
1213 loff_t *ppos,
1214 struct pipe_inode_info *pipe,
1215 size_t len,
1216 unsigned int flags,
1217 int *nonpad_ret)
1219 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
1220 struct rchan_buf *rbuf = in->private_data;
1221 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1222 uint64_t pos = (uint64_t) *ppos;
1223 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1224 size_t read_start = (size_t) do_div(pos, alloc_size);
1225 size_t read_subbuf = read_start / subbuf_size;
1226 size_t padding = rbuf->padding[read_subbuf];
1227 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1228 struct page *pages[PIPE_BUFFERS];
1229 struct partial_page partial[PIPE_BUFFERS];
1230 struct splice_pipe_desc spd = {
1231 .pages = pages,
1232 .nr_pages = 0,
1233 .partial = partial,
1234 .flags = flags,
1235 .ops = &relay_pipe_buf_ops,
1236 .spd_release = relay_page_release,
1239 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1240 return 0;
1243 * Adjust read len, if longer than what is available
1245 if (len > (subbuf_size - read_start % subbuf_size))
1246 len = subbuf_size - read_start % subbuf_size;
1248 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1249 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1250 poff = read_start & ~PAGE_MASK;
1251 nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1253 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1254 unsigned int this_len, this_end, private;
1255 unsigned int cur_pos = read_start + total_len;
1257 if (!len)
1258 break;
1260 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1261 private = this_len;
1263 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1264 spd.partial[spd.nr_pages].offset = poff;
1266 this_end = cur_pos + this_len;
1267 if (this_end >= nonpad_end) {
1268 this_len = nonpad_end - cur_pos;
1269 private = this_len + padding;
1271 spd.partial[spd.nr_pages].len = this_len;
1272 spd.partial[spd.nr_pages].private = private;
1274 len -= this_len;
1275 total_len += this_len;
1276 poff = 0;
1277 pidx = (pidx + 1) % subbuf_pages;
1279 if (this_end >= nonpad_end) {
1280 spd.nr_pages++;
1281 break;
1285 if (!spd.nr_pages)
1286 return 0;
1288 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1289 if (ret < 0 || ret < total_len)
1290 return ret;
1292 if (read_start + ret == nonpad_end)
1293 ret += padding;
1295 return ret;
1298 static ssize_t relay_file_splice_read(struct file *in,
1299 loff_t *ppos,
1300 struct pipe_inode_info *pipe,
1301 size_t len,
1302 unsigned int flags)
1304 ssize_t spliced;
1305 int ret;
1306 int nonpad_ret = 0;
1308 ret = 0;
1309 spliced = 0;
1311 while (len && !spliced) {
1312 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1313 if (ret < 0)
1314 break;
1315 else if (!ret) {
1316 if (flags & SPLICE_F_NONBLOCK)
1317 ret = -EAGAIN;
1318 break;
1321 *ppos += ret;
1322 if (ret > len)
1323 len = 0;
1324 else
1325 len -= ret;
1326 spliced += nonpad_ret;
1327 nonpad_ret = 0;
1330 if (spliced)
1331 return spliced;
1333 return ret;
1336 const struct file_operations relay_file_operations = {
1337 .open = relay_file_open,
1338 .poll = relay_file_poll,
1339 .mmap = relay_file_mmap,
1340 .read = relay_file_read,
1341 .llseek = no_llseek,
1342 .release = relay_file_release,
1343 .splice_read = relay_file_splice_read,
1345 EXPORT_SYMBOL_GPL(relay_file_operations);
1347 static __init int relay_init(void)
1350 hotcpu_notifier(relay_hotcpu_callback, 0);
1351 return 0;
1354 early_initcall(relay_init);