1 /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
12 /* double log1p(double x)
13 * Return the natural logarithm of 1+x.
16 * 1. Argument Reduction: find k and f such that
18 * where sqrt(2)/2 < 1+f < sqrt(2) .
20 * Note. If k=0, then f=x is exact. However, if k!=0, then f
21 * may not be representable exactly. In that case, a correction
22 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24 * and add back the correction term c/u.
25 * (Note: when x > 2**53, one can simply return log(x))
27 * 2. Approximation of log(1+f): See log.c
29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
32 * log1p(x) is NaN with signal if x < -1 (including -INF) ;
33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
34 * log1p(NaN) is that NaN with no signal.
37 * according to an error analysis, the error is always less than
38 * 1 ulp (unit in the last place).
41 * The hexadecimal values are the intended ones for the following
42 * constants. The decimal values may be used, provided that the
43 * compiler will convert from decimal to binary accurately enough
44 * to produce the hexadecimal values shown.
46 * Note: Assuming log() return accurate answer, the following
47 * algorithm can be used to compute log1p(x) to within a few ULP:
50 * if(u==1.0) return x ; else
51 * return log(u)*(x/(u-1.0));
53 * See HP-15C Advanced Functions Handbook, p.193.
59 ln2_hi
= 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
60 ln2_lo
= 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
61 Lg1
= 6.666666666666735130e-01, /* 3FE55555 55555593 */
62 Lg2
= 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
63 Lg3
= 2.857142874366239149e-01, /* 3FD24924 94229359 */
64 Lg4
= 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
65 Lg5
= 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
66 Lg6
= 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
67 Lg7
= 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
69 double log1p(double x
)
71 union {double f
; uint64_t i
;} u
= {x
};
72 double_t hfsq
,f
,c
,s
,z
,R
,w
,t1
,t2
,dk
;
78 if (hx
< 0x3fda827a || hx
>>31) { /* 1+x < sqrt(2)+ */
79 if (hx
>= 0xbff00000) { /* x <= -1.0 */
81 return x
/0.0; /* log1p(-1) = -inf */
82 return (x
-x
)/0.0; /* log1p(x<-1) = NaN */
84 if (hx
<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */
85 /* underflow if subnormal */
86 if ((hx
&0x7ff00000) == 0)
90 if (hx
<= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
95 } else if (hx
>= 0x7ff00000)
100 hu
+= 0x3ff00000 - 0x3fe6a09e;
101 k
= (int)(hu
>>20) - 0x3ff;
102 /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
104 c
= k
>= 2 ? 1-(u
.f
-x
) : x
-(u
.f
-1);
108 /* reduce u into [sqrt(2)/2, sqrt(2)] */
109 hu
= (hu
&0x000fffff) + 0x3fe6a09e;
110 u
.i
= (uint64_t)hu
<<32 | (u
.i
&0xffffffff);
117 t1
= w
*(Lg2
+w
*(Lg4
+w
*Lg6
));
118 t2
= z
*(Lg1
+w
*(Lg3
+w
*(Lg5
+w
*Lg7
)));
121 return s
*(hfsq
+R
) + (dk
*ln2_lo
+c
) - hfsq
+ f
+ dk
*ln2_hi
;