1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expm1l.c */
3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 * Exponential function, minus 1
19 * Long double precision
24 * long double x, y, expm1l();
31 * Returns e (2.71828...) raised to the x power, minus 1.
33 * Range reduction is accomplished by separating the argument
34 * into an integer k and fraction f such that
39 * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
40 * in the basic range [-0.5 ln 2, 0.5 ln 2].
46 * arithmetic domain # trials peak rms
47 * IEEE -45,+maxarg 200,000 1.2e-19 2.5e-20
52 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
53 long double expm1l(long double x
)
57 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
59 /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
60 -.5 ln 2 < x < .5 ln 2
61 Theoretical peak relative error = 3.4e-22 */
62 static const long double
63 P0
= -1.586135578666346600772998894928250240826E4L
,
64 P1
= 2.642771505685952966904660652518429479531E3L
,
65 P2
= -3.423199068835684263987132888286791620673E2L
,
66 P3
= 1.800826371455042224581246202420972737840E1L
,
67 P4
= -5.238523121205561042771939008061958820811E-1L,
68 Q0
= -9.516813471998079611319047060563358064497E4L
,
69 Q1
= 3.964866271411091674556850458227710004570E4L
,
70 Q2
= -7.207678383830091850230366618190187434796E3L
,
71 Q3
= 7.206038318724600171970199625081491823079E2L
,
72 Q4
= -4.002027679107076077238836622982900945173E1L
,
73 /* Q5 = 1.000000000000000000000000000000000000000E0 */
75 C1
= 6.93145751953125E-1L,
76 C2
= 1.428606820309417232121458176568075500134E-6L,
78 minarg
= -4.5054566736396445112120088E1L
,
80 maxarg
= 1.1356523406294143949492E4L
;
82 long double expm1l(long double x
)
84 long double px
, qx
, xx
;
90 return x
*0x1p
16383L; /* overflow, unless x==inf */
97 /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
98 px
= floorl(0.5 + x
/ xx
);
100 /* remainder times ln 2 */
104 /* Approximate exp(remainder ln 2).*/
105 px
= (((( P4
* x
+ P3
) * x
+ P2
) * x
+ P1
) * x
+ P0
) * x
;
106 qx
= (((( x
+ Q4
) * x
+ Q3
) * x
+ Q2
) * x
+ Q1
) * x
+ Q0
;
108 qx
= x
+ (0.5 * xx
+ xx
* px
/ qx
);
110 /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
111 We have qx = exp(remainder ln 2) - 1, so
112 exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */
113 px
= scalbnl(1.0, k
);
114 x
= px
* qx
+ (px
- 1.0);
117 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
118 // TODO: broken implementation to make things compile
119 long double expm1l(long double x
)