5 the return types are only correct with gcc (__GNUC__)
6 otherwise they are long double or long double complex
8 the long double version of a function is never chosen when
9 sizeof(double) == sizeof(long double)
10 (but the return type is set correctly with gcc)
16 #define __IS_FP(x) (sizeof((x)+1ULL) == sizeof((x)+1.0f))
17 #define __IS_CX(x) (__IS_FP(x) && sizeof(x) == sizeof((x)+I))
18 #define __IS_REAL(x) (__IS_FP(x) && 2*sizeof(x) == sizeof((x)+I))
20 #define __FLT(x) (__IS_REAL(x) && sizeof(x) == sizeof(float))
21 #define __LDBL(x) (__IS_REAL(x) && sizeof(x) == sizeof(long double) && sizeof(long double) != sizeof(double))
23 #define __FLTCX(x) (__IS_CX(x) && sizeof(x) == sizeof(float complex))
24 #define __DBLCX(x) (__IS_CX(x) && sizeof(x) == sizeof(double complex))
25 #define __LDBLCX(x) (__IS_CX(x) && sizeof(x) == sizeof(long double complex) && sizeof(long double) != sizeof(double))
31 the result must be casted to the right type
32 (otherwise the result type is determined by the conversion
33 rules applied to all the function return types so it is long
34 double or long double complex except for integral functions)
36 this cannot be done in c99, so the typeof gcc extension is
37 used and that the type of ?: depends on wether an operand is
38 a null pointer constant or not
39 (in c11 _Generic can be used)
41 the c arguments below must be integer constant expressions
42 so they can be in null pointer constants
43 (__IS_FP above was carefully chosen this way)
45 /* if c then t else void */
46 #define __type1(c,t) __typeof__(*(0?(t*)0:(void*)!(c)))
47 /* if c then t1 else t2 */
48 #define __type2(c,t1,t2) __typeof__(*(0?(__type1(c,t1)*)0:(__type1(!(c),t2)*)0))
49 /* cast to double when x is integral, otherwise use typeof(x) */
50 #define __RETCAST(x) ( \
51 __type2(__IS_FP(x), __typeof__(x), double))
52 /* 2 args case, should work for complex types (cpow) */
53 #define __RETCAST_2(x, y) ( \
54 __type2(__IS_FP(x) && __IS_FP(y), \
55 __typeof__((x)+(y)), \
56 __typeof__((x)+(y)+1.0)))
57 /* 3 args case (fma only) */
58 #define __RETCAST_3(x, y, z) ( \
59 __type2(__IS_FP(x) && __IS_FP(y) && __IS_FP(z), \
60 __typeof__((x)+(y)+(z)), \
61 __typeof__((x)+(y)+(z)+1.0)))
62 /* drop complex from the type of x */
63 /* TODO: wrong when sizeof(long double)==sizeof(double) */
64 #define __RETCAST_REAL(x) ( \
65 __type2(__IS_FP(x) && sizeof((x)+I) == sizeof(float complex), float, \
66 __type2(sizeof((x)+1.0+I) == sizeof(double complex), double, \
68 /* add complex to the type of x */
69 #define __RETCAST_CX(x) (__typeof__(__RETCAST(x)0+I))
72 #define __RETCAST_2(x, y)
73 #define __RETCAST_3(x, y, z)
74 #define __RETCAST_REAL(x)
75 #define __RETCAST_CX(x)
78 /* function selection */
80 #define __tg_real_nocast(fun, x) ( \
81 __FLT(x) ? fun ## f (x) : \
82 __LDBL(x) ? fun ## l (x) : \
85 #define __tg_real(fun, x) (__RETCAST(x)__tg_real_nocast(fun, x))
87 #define __tg_real_2_1(fun, x, y) (__RETCAST(x)( \
88 __FLT(x) ? fun ## f (x, y) : \
89 __LDBL(x) ? fun ## l (x, y) : \
92 #define __tg_real_2(fun, x, y) (__RETCAST_2(x, y)( \
93 __FLT(x) && __FLT(y) ? fun ## f (x, y) : \
94 __LDBL((x)+(y)) ? fun ## l (x, y) : \
97 #define __tg_complex(fun, x) (__RETCAST_CX(x)( \
98 __FLTCX((x)+I) && __IS_FP(x) ? fun ## f (x) : \
99 __LDBLCX((x)+I) ? fun ## l (x) : \
102 #define __tg_complex_retreal(fun, x) (__RETCAST_REAL(x)( \
103 __FLTCX((x)+I) && __IS_FP(x) ? fun ## f (x) : \
104 __LDBLCX((x)+I) ? fun ## l (x) : \
107 #define __tg_real_complex(fun, x) (__RETCAST(x)( \
108 __FLTCX(x) ? c ## fun ## f (x) : \
109 __DBLCX(x) ? c ## fun (x) : \
110 __LDBLCX(x) ? c ## fun ## l (x) : \
111 __FLT(x) ? fun ## f (x) : \
112 __LDBL(x) ? fun ## l (x) : \
117 #define __tg_real_remquo(x, y, z) (__RETCAST_2(x, y)( \
118 __FLT(x) && __FLT(y) ? remquof(x, y, z) : \
119 __LDBL((x)+(y)) ? remquol(x, y, z) : \
122 #define __tg_real_fma(x, y, z) (__RETCAST_3(x, y, z)( \
123 __FLT(x) && __FLT(y) && __FLT(z) ? fmaf(x, y, z) : \
124 __LDBL((x)+(y)+(z)) ? fmal(x, y, z) : \
127 #define __tg_real_complex_pow(x, y) (__RETCAST_2(x, y)( \
128 __FLTCX((x)+(y)) && __IS_FP(x) && __IS_FP(y) ? cpowf(x, y) : \
129 __FLTCX((x)+(y)) ? cpow(x, y) : \
130 __DBLCX((x)+(y)) ? cpow(x, y) : \
131 __LDBLCX((x)+(y)) ? cpowl(x, y) : \
132 __FLT(x) && __FLT(y) ? powf(x, y) : \
133 __LDBL((x)+(y)) ? powl(x, y) : \
136 #define __tg_real_complex_fabs(x) (__RETCAST_REAL(x)( \
137 __FLTCX(x) ? cabsf(x) : \
138 __DBLCX(x) ? cabs(x) : \
139 __LDBLCX(x) ? cabsl(x) : \
140 __FLT(x) ? fabsf(x) : \
141 __LDBL(x) ? fabsl(x) : \
144 /* suppress any macros in math.h or complex.h */
209 #define acos(x) __tg_real_complex(acos, (x))
210 #define acosh(x) __tg_real_complex(acosh, (x))
211 #define asin(x) __tg_real_complex(asin, (x))
212 #define asinh(x) __tg_real_complex(asinh, (x))
213 #define atan(x) __tg_real_complex(atan, (x))
214 #define atan2(x,y) __tg_real_2(atan2, (x), (y))
215 #define atanh(x) __tg_real_complex(atanh, (x))
216 #define carg(x) __tg_complex_retreal(carg, (x))
217 #define cbrt(x) __tg_real(cbrt, (x))
218 #define ceil(x) __tg_real(ceil, (x))
219 #define cimag(x) __tg_complex_retreal(cimag, (x))
220 #define conj(x) __tg_complex(conj, (x))
221 #define copysign(x,y) __tg_real_2(copysign, (x), (y))
222 #define cos(x) __tg_real_complex(cos, (x))
223 #define cosh(x) __tg_real_complex(cosh, (x))
224 #define cproj(x) __tg_complex(cproj, (x))
225 #define creal(x) __tg_complex_retreal(creal, (x))
226 #define erf(x) __tg_real(erf, (x))
227 #define erfc(x) __tg_real(erfc, (x))
228 #define exp(x) __tg_real_complex(exp, (x))
229 #define exp2(x) __tg_real(exp2, (x))
230 #define expm1(x) __tg_real(expm1, (x))
231 #define fabs(x) __tg_real_complex_fabs(x)
232 #define fdim(x,y) __tg_real_2(fdim, (x), (y))
233 #define floor(x) __tg_real(floor, (x))
234 #define fma(x,y,z) __tg_real_fma((x), (y), (z))
235 #define fmax(x,y) __tg_real_2(fmax, (x), (y))
236 #define fmin(x,y) __tg_real_2(fmin, (x), (y))
237 #define fmod(x,y) __tg_real_2(fmod, (x), (y))
238 #define frexp(x,y) __tg_real_2_1(frexp, (x), (y))
239 #define hypot(x,y) __tg_real_2(hypot, (x), (y))
240 #define ilogb(x) __tg_real_nocast(ilogb, (x))
241 #define ldexp(x,y) __tg_real_2_1(ldexp, (x), (y))
242 #define lgamma(x) __tg_real(lgamma, (x))
243 #define llrint(x) __tg_real_nocast(llrint, (x))
244 #define llround(x) __tg_real_nocast(llround, (x))
245 #define log(x) __tg_real_complex(log, (x))
246 #define log10(x) __tg_real(log10, (x))
247 #define log1p(x) __tg_real(log1p, (x))
248 #define log2(x) __tg_real(log2, (x))
249 #define logb(x) __tg_real(logb, (x))
250 #define lrint(x) __tg_real_nocast(lrint, (x))
251 #define lround(x) __tg_real_nocast(lround, (x))
252 #define nearbyint(x) __tg_real(nearbyint, (x))
253 #define nextafter(x,y) __tg_real_2(nextafter, (x), (y))
254 #define nexttoward(x,y) __tg_real_2(nexttoward, (x), (y))
255 #define pow(x,y) __tg_real_complex_pow((x), (y))
256 #define remainder(x,y) __tg_real_2(remainder, (x), (y))
257 #define remquo(x,y,z) __tg_real_remquo((x), (y), (z))
258 #define rint(x) __tg_real(rint, (x))
259 #define round(x) __tg_real(round, (x))
260 #define scalbln(x,y) __tg_real_2_1(scalbln, (x), (y))
261 #define scalbn(x,y) __tg_real_2_1(scalbn, (x), (y))
262 #define sin(x) __tg_real_complex(sin, (x))
263 #define sinh(x) __tg_real_complex(sinh, (x))
264 #define sqrt(x) __tg_real_complex(sqrt, (x))
265 #define tan(x) __tg_real_complex(tan, (x))
266 #define tanh(x) __tg_real_complex(tanh, (x))
267 #define tgamma(x) __tg_real(tgamma, (x))
268 #define trunc(x) __tg_real(trunc, (x))