Track /etc/gitconfig
[msysgit/mtrensch.git] / lib / perl5 / 5.8.8 / Math / Complex.pm
blobe4b980bd658c89150cd11e55a7ac55e22e478981
2 # Complex numbers and associated mathematical functions
3 # -- Raphael Manfredi Since Sep 1996
4 # -- Jarkko Hietaniemi Since Mar 1997
5 # -- Daniel S. Lewart Since Sep 1997
8 package Math::Complex;
10 use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $Inf);
12 $VERSION = 1.35;
14 BEGIN {
15 unless ($^O eq 'unicosmk') {
16 my $e = $!;
17 # We do want an arithmetic overflow, Inf INF inf Infinity:.
18 undef $Inf unless eval <<'EOE' and $Inf =~ /^inf(?:inity)?$/i;
19 local $SIG{FPE} = sub {die};
20 my $t = CORE::exp 30;
21 $Inf = CORE::exp $t;
22 EOE
23 if (!defined $Inf) { # Try a different method
24 undef $Inf unless eval <<'EOE' and $Inf =~ /^inf(?:inity)?$/i;
25 local $SIG{FPE} = sub {die};
26 my $t = 1;
27 $Inf = $t + "1e99999999999999999999999999999999";
28 EOE
30 $! = $e; # Clear ERANGE.
32 $Inf = "Inf" if !defined $Inf || !($Inf > 0); # Desperation.
35 use strict;
37 my $i;
38 my %LOGN;
40 # Regular expression for floating point numbers.
41 # These days we could use Scalar::Util::lln(), I guess.
42 my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i;
44 require Exporter;
46 @ISA = qw(Exporter);
48 my @trig = qw(
50 tan
51 csc cosec sec cot cotan
52 asin acos atan
53 acsc acosec asec acot acotan
54 sinh cosh tanh
55 csch cosech sech coth cotanh
56 asinh acosh atanh
57 acsch acosech asech acoth acotanh
60 @EXPORT = (qw(
61 i Re Im rho theta arg
62 sqrt log ln
63 log10 logn cbrt root
64 cplx cplxe
65 atan2
67 @trig);
69 @EXPORT_OK = qw(decplx);
71 %EXPORT_TAGS = (
72 'trig' => [@trig],
75 use overload
76 '+' => \&plus,
77 '-' => \&minus,
78 '*' => \&multiply,
79 '/' => \&divide,
80 '**' => \&power,
81 '==' => \&numeq,
82 '<=>' => \&spaceship,
83 'neg' => \&negate,
84 '~' => \&conjugate,
85 'abs' => \&abs,
86 'sqrt' => \&sqrt,
87 'exp' => \&exp,
88 'log' => \&log,
89 'sin' => \&sin,
90 'cos' => \&cos,
91 'tan' => \&tan,
92 'atan2' => \&atan2,
93 qw("" stringify);
96 # Package "privates"
99 my %DISPLAY_FORMAT = ('style' => 'cartesian',
100 'polar_pretty_print' => 1);
101 my $eps = 1e-14; # Epsilon
104 # Object attributes (internal):
105 # cartesian [real, imaginary] -- cartesian form
106 # polar [rho, theta] -- polar form
107 # c_dirty cartesian form not up-to-date
108 # p_dirty polar form not up-to-date
109 # display display format (package's global when not set)
112 # Die on bad *make() arguments.
114 sub _cannot_make {
115 die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n";
118 sub _make {
119 my $arg = shift;
120 my ($p, $q);
122 if ($arg =~ /^$gre$/) {
123 ($p, $q) = ($1, 0);
124 } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) {
125 ($p, $q) = ($1 || 0, $2);
126 } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) {
127 ($p, $q) = ($1, $2 || 0);
130 if (defined $p) {
131 $p =~ s/^\+//;
132 $p =~ s/^(-?)inf$/"${1}9**9**9"/e;
133 $q =~ s/^\+//;
134 $q =~ s/^(-?)inf$/"${1}9**9**9"/e;
137 return ($p, $q);
140 sub _emake {
141 my $arg = shift;
142 my ($p, $q);
144 if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) {
145 ($p, $q) = ($1, $2 || 0);
146 } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) {
147 ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1));
148 } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) {
149 ($p, $q) = ($1, 0);
150 } elsif ($arg =~ /^\s*$gre\s*$/) {
151 ($p, $q) = ($1, 0);
154 if (defined $p) {
155 $p =~ s/^\+//;
156 $q =~ s/^\+//;
157 $p =~ s/^(-?)inf$/"${1}9**9**9"/e;
158 $q =~ s/^(-?)inf$/"${1}9**9**9"/e;
161 return ($p, $q);
165 # ->make
167 # Create a new complex number (cartesian form)
169 sub make {
170 my $self = bless {}, shift;
171 my ($re, $im);
172 if (@_ == 0) {
173 ($re, $im) = (0, 0);
174 } elsif (@_ == 1) {
175 return (ref $self)->emake($_[0])
176 if ($_[0] =~ /^\s*\[/);
177 ($re, $im) = _make($_[0]);
178 } elsif (@_ == 2) {
179 ($re, $im) = @_;
181 if (defined $re) {
182 _cannot_make("real part", $re) unless $re =~ /^$gre$/;
184 $im ||= 0;
185 _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/;
186 $self->set_cartesian([$re, $im ]);
187 $self->display_format('cartesian');
189 return $self;
193 # ->emake
195 # Create a new complex number (exponential form)
197 sub emake {
198 my $self = bless {}, shift;
199 my ($rho, $theta);
200 if (@_ == 0) {
201 ($rho, $theta) = (0, 0);
202 } elsif (@_ == 1) {
203 return (ref $self)->make($_[0])
204 if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/);
205 ($rho, $theta) = _emake($_[0]);
206 } elsif (@_ == 2) {
207 ($rho, $theta) = @_;
209 if (defined $rho && defined $theta) {
210 if ($rho < 0) {
211 $rho = -$rho;
212 $theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
215 if (defined $rho) {
216 _cannot_make("rho", $rho) unless $rho =~ /^$gre$/;
218 $theta ||= 0;
219 _cannot_make("theta", $theta) unless $theta =~ /^$gre$/;
220 $self->set_polar([$rho, $theta]);
221 $self->display_format('polar');
223 return $self;
226 sub new { &make } # For backward compatibility only.
229 # cplx
231 # Creates a complex number from a (re, im) tuple.
232 # This avoids the burden of writing Math::Complex->make(re, im).
234 sub cplx {
235 return __PACKAGE__->make(@_);
239 # cplxe
241 # Creates a complex number from a (rho, theta) tuple.
242 # This avoids the burden of writing Math::Complex->emake(rho, theta).
244 sub cplxe {
245 return __PACKAGE__->emake(@_);
249 # pi
251 # The number defined as pi = 180 degrees
253 sub pi () { 4 * CORE::atan2(1, 1) }
256 # pit2
258 # The full circle
260 sub pit2 () { 2 * pi }
263 # pip2
265 # The quarter circle
267 sub pip2 () { pi / 2 }
270 # deg1
272 # One degree in radians, used in stringify_polar.
275 sub deg1 () { pi / 180 }
278 # uplog10
280 # Used in log10().
282 sub uplog10 () { 1 / CORE::log(10) }
287 # The number defined as i*i = -1;
289 sub i () {
290 return $i if ($i);
291 $i = bless {};
292 $i->{'cartesian'} = [0, 1];
293 $i->{'polar'} = [1, pip2];
294 $i->{c_dirty} = 0;
295 $i->{p_dirty} = 0;
296 return $i;
300 # ip2
302 # Half of i.
304 sub ip2 () { i / 2 }
307 # Attribute access/set routines
310 sub cartesian {$_[0]->{c_dirty} ?
311 $_[0]->update_cartesian : $_[0]->{'cartesian'}}
312 sub polar {$_[0]->{p_dirty} ?
313 $_[0]->update_polar : $_[0]->{'polar'}}
315 sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0;
316 $_[0]->{'cartesian'} = $_[1] }
317 sub set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0;
318 $_[0]->{'polar'} = $_[1] }
321 # ->update_cartesian
323 # Recompute and return the cartesian form, given accurate polar form.
325 sub update_cartesian {
326 my $self = shift;
327 my ($r, $t) = @{$self->{'polar'}};
328 $self->{c_dirty} = 0;
329 return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)];
334 # ->update_polar
336 # Recompute and return the polar form, given accurate cartesian form.
338 sub update_polar {
339 my $self = shift;
340 my ($x, $y) = @{$self->{'cartesian'}};
341 $self->{p_dirty} = 0;
342 return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
343 return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y),
344 CORE::atan2($y, $x)];
348 # (plus)
350 # Computes z1+z2.
352 sub plus {
353 my ($z1, $z2, $regular) = @_;
354 my ($re1, $im1) = @{$z1->cartesian};
355 $z2 = cplx($z2) unless ref $z2;
356 my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
357 unless (defined $regular) {
358 $z1->set_cartesian([$re1 + $re2, $im1 + $im2]);
359 return $z1;
361 return (ref $z1)->make($re1 + $re2, $im1 + $im2);
365 # (minus)
367 # Computes z1-z2.
369 sub minus {
370 my ($z1, $z2, $inverted) = @_;
371 my ($re1, $im1) = @{$z1->cartesian};
372 $z2 = cplx($z2) unless ref $z2;
373 my ($re2, $im2) = @{$z2->cartesian};
374 unless (defined $inverted) {
375 $z1->set_cartesian([$re1 - $re2, $im1 - $im2]);
376 return $z1;
378 return $inverted ?
379 (ref $z1)->make($re2 - $re1, $im2 - $im1) :
380 (ref $z1)->make($re1 - $re2, $im1 - $im2);
385 # (multiply)
387 # Computes z1*z2.
389 sub multiply {
390 my ($z1, $z2, $regular) = @_;
391 if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
392 # if both polar better use polar to avoid rounding errors
393 my ($r1, $t1) = @{$z1->polar};
394 my ($r2, $t2) = @{$z2->polar};
395 my $t = $t1 + $t2;
396 if ($t > pi()) { $t -= pit2 }
397 elsif ($t <= -pi()) { $t += pit2 }
398 unless (defined $regular) {
399 $z1->set_polar([$r1 * $r2, $t]);
400 return $z1;
402 return (ref $z1)->emake($r1 * $r2, $t);
403 } else {
404 my ($x1, $y1) = @{$z1->cartesian};
405 if (ref $z2) {
406 my ($x2, $y2) = @{$z2->cartesian};
407 return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
408 } else {
409 return (ref $z1)->make($x1*$z2, $y1*$z2);
415 # _divbyzero
417 # Die on division by zero.
419 sub _divbyzero {
420 my $mess = "$_[0]: Division by zero.\n";
422 if (defined $_[1]) {
423 $mess .= "(Because in the definition of $_[0], the divisor ";
424 $mess .= "$_[1] " unless ("$_[1]" eq '0');
425 $mess .= "is 0)\n";
428 my @up = caller(1);
430 $mess .= "Died at $up[1] line $up[2].\n";
432 die $mess;
436 # (divide)
438 # Computes z1/z2.
440 sub divide {
441 my ($z1, $z2, $inverted) = @_;
442 if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
443 # if both polar better use polar to avoid rounding errors
444 my ($r1, $t1) = @{$z1->polar};
445 my ($r2, $t2) = @{$z2->polar};
446 my $t;
447 if ($inverted) {
448 _divbyzero "$z2/0" if ($r1 == 0);
449 $t = $t2 - $t1;
450 if ($t > pi()) { $t -= pit2 }
451 elsif ($t <= -pi()) { $t += pit2 }
452 return (ref $z1)->emake($r2 / $r1, $t);
453 } else {
454 _divbyzero "$z1/0" if ($r2 == 0);
455 $t = $t1 - $t2;
456 if ($t > pi()) { $t -= pit2 }
457 elsif ($t <= -pi()) { $t += pit2 }
458 return (ref $z1)->emake($r1 / $r2, $t);
460 } else {
461 my ($d, $x2, $y2);
462 if ($inverted) {
463 ($x2, $y2) = @{$z1->cartesian};
464 $d = $x2*$x2 + $y2*$y2;
465 _divbyzero "$z2/0" if $d == 0;
466 return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
467 } else {
468 my ($x1, $y1) = @{$z1->cartesian};
469 if (ref $z2) {
470 ($x2, $y2) = @{$z2->cartesian};
471 $d = $x2*$x2 + $y2*$y2;
472 _divbyzero "$z1/0" if $d == 0;
473 my $u = ($x1*$x2 + $y1*$y2)/$d;
474 my $v = ($y1*$x2 - $x1*$y2)/$d;
475 return (ref $z1)->make($u, $v);
476 } else {
477 _divbyzero "$z1/0" if $z2 == 0;
478 return (ref $z1)->make($x1/$z2, $y1/$z2);
485 # (power)
487 # Computes z1**z2 = exp(z2 * log z1)).
489 sub power {
490 my ($z1, $z2, $inverted) = @_;
491 if ($inverted) {
492 return 1 if $z1 == 0 || $z2 == 1;
493 return 0 if $z2 == 0 && Re($z1) > 0;
494 } else {
495 return 1 if $z2 == 0 || $z1 == 1;
496 return 0 if $z1 == 0 && Re($z2) > 0;
498 my $w = $inverted ? &exp($z1 * &log($z2))
499 : &exp($z2 * &log($z1));
500 # If both arguments cartesian, return cartesian, else polar.
501 return $z1->{c_dirty} == 0 &&
502 (not ref $z2 or $z2->{c_dirty} == 0) ?
503 cplx(@{$w->cartesian}) : $w;
507 # (spaceship)
509 # Computes z1 <=> z2.
510 # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
512 sub spaceship {
513 my ($z1, $z2, $inverted) = @_;
514 my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0);
515 my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
516 my $sgn = $inverted ? -1 : 1;
517 return $sgn * ($re1 <=> $re2) if $re1 != $re2;
518 return $sgn * ($im1 <=> $im2);
522 # (numeq)
524 # Computes z1 == z2.
526 # (Required in addition to spaceship() because of NaNs.)
527 sub numeq {
528 my ($z1, $z2, $inverted) = @_;
529 my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0);
530 my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
531 return $re1 == $re2 && $im1 == $im2 ? 1 : 0;
535 # (negate)
537 # Computes -z.
539 sub negate {
540 my ($z) = @_;
541 if ($z->{c_dirty}) {
542 my ($r, $t) = @{$z->polar};
543 $t = ($t <= 0) ? $t + pi : $t - pi;
544 return (ref $z)->emake($r, $t);
546 my ($re, $im) = @{$z->cartesian};
547 return (ref $z)->make(-$re, -$im);
551 # (conjugate)
553 # Compute complex's conjugate.
555 sub conjugate {
556 my ($z) = @_;
557 if ($z->{c_dirty}) {
558 my ($r, $t) = @{$z->polar};
559 return (ref $z)->emake($r, -$t);
561 my ($re, $im) = @{$z->cartesian};
562 return (ref $z)->make($re, -$im);
566 # (abs)
568 # Compute or set complex's norm (rho).
570 sub abs {
571 my ($z, $rho) = @_;
572 unless (ref $z) {
573 if (@_ == 2) {
574 $_[0] = $_[1];
575 } else {
576 return CORE::abs($z);
579 if (defined $rho) {
580 $z->{'polar'} = [ $rho, ${$z->polar}[1] ];
581 $z->{p_dirty} = 0;
582 $z->{c_dirty} = 1;
583 return $rho;
584 } else {
585 return ${$z->polar}[0];
589 sub _theta {
590 my $theta = $_[0];
592 if ($$theta > pi()) { $$theta -= pit2 }
593 elsif ($$theta <= -pi()) { $$theta += pit2 }
597 # arg
599 # Compute or set complex's argument (theta).
601 sub arg {
602 my ($z, $theta) = @_;
603 return $z unless ref $z;
604 if (defined $theta) {
605 _theta(\$theta);
606 $z->{'polar'} = [ ${$z->polar}[0], $theta ];
607 $z->{p_dirty} = 0;
608 $z->{c_dirty} = 1;
609 } else {
610 $theta = ${$z->polar}[1];
611 _theta(\$theta);
613 return $theta;
617 # (sqrt)
619 # Compute sqrt(z).
621 # It is quite tempting to use wantarray here so that in list context
622 # sqrt() would return the two solutions. This, however, would
623 # break things like
625 # print "sqrt(z) = ", sqrt($z), "\n";
627 # The two values would be printed side by side without no intervening
628 # whitespace, quite confusing.
629 # Therefore if you want the two solutions use the root().
631 sub sqrt {
632 my ($z) = @_;
633 my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0);
634 return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re)
635 if $im == 0;
636 my ($r, $t) = @{$z->polar};
637 return (ref $z)->emake(CORE::sqrt($r), $t/2);
641 # cbrt
643 # Compute cbrt(z) (cubic root).
645 # Why are we not returning three values? The same answer as for sqrt().
647 sub cbrt {
648 my ($z) = @_;
649 return $z < 0 ?
650 -CORE::exp(CORE::log(-$z)/3) :
651 ($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
652 unless ref $z;
653 my ($r, $t) = @{$z->polar};
654 return 0 if $r == 0;
655 return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
659 # _rootbad
661 # Die on bad root.
663 sub _rootbad {
664 my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n";
666 my @up = caller(1);
668 $mess .= "Died at $up[1] line $up[2].\n";
670 die $mess;
674 # root
676 # Computes all nth root for z, returning an array whose size is n.
677 # `n' must be a positive integer.
679 # The roots are given by (for k = 0..n-1):
681 # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
683 sub root {
684 my ($z, $n, $k) = @_;
685 _rootbad($n) if ($n < 1 or int($n) != $n);
686 my ($r, $t) = ref $z ?
687 @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
688 my $theta_inc = pit2 / $n;
689 my $rho = $r ** (1/$n);
690 my $cartesian = ref $z && $z->{c_dirty} == 0;
691 if (@_ == 2) {
692 my @root;
693 for (my $i = 0, my $theta = $t / $n;
694 $i < $n;
695 $i++, $theta += $theta_inc) {
696 my $w = cplxe($rho, $theta);
697 # Yes, $cartesian is loop invariant.
698 push @root, $cartesian ? cplx(@{$w->cartesian}) : $w;
700 return @root;
701 } elsif (@_ == 3) {
702 my $w = cplxe($rho, $t / $n + $k * $theta_inc);
703 return $cartesian ? cplx(@{$w->cartesian}) : $w;
708 # Re
710 # Return or set Re(z).
712 sub Re {
713 my ($z, $Re) = @_;
714 return $z unless ref $z;
715 if (defined $Re) {
716 $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ];
717 $z->{c_dirty} = 0;
718 $z->{p_dirty} = 1;
719 } else {
720 return ${$z->cartesian}[0];
725 # Im
727 # Return or set Im(z).
729 sub Im {
730 my ($z, $Im) = @_;
731 return 0 unless ref $z;
732 if (defined $Im) {
733 $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ];
734 $z->{c_dirty} = 0;
735 $z->{p_dirty} = 1;
736 } else {
737 return ${$z->cartesian}[1];
742 # rho
744 # Return or set rho(w).
746 sub rho {
747 Math::Complex::abs(@_);
751 # theta
753 # Return or set theta(w).
755 sub theta {
756 Math::Complex::arg(@_);
760 # (exp)
762 # Computes exp(z).
764 sub exp {
765 my ($z) = @_;
766 my ($x, $y) = @{$z->cartesian};
767 return (ref $z)->emake(CORE::exp($x), $y);
771 # _logofzero
773 # Die on logarithm of zero.
775 sub _logofzero {
776 my $mess = "$_[0]: Logarithm of zero.\n";
778 if (defined $_[1]) {
779 $mess .= "(Because in the definition of $_[0], the argument ";
780 $mess .= "$_[1] " unless ($_[1] eq '0');
781 $mess .= "is 0)\n";
784 my @up = caller(1);
786 $mess .= "Died at $up[1] line $up[2].\n";
788 die $mess;
792 # (log)
794 # Compute log(z).
796 sub log {
797 my ($z) = @_;
798 unless (ref $z) {
799 _logofzero("log") if $z == 0;
800 return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
802 my ($r, $t) = @{$z->polar};
803 _logofzero("log") if $r == 0;
804 if ($t > pi()) { $t -= pit2 }
805 elsif ($t <= -pi()) { $t += pit2 }
806 return (ref $z)->make(CORE::log($r), $t);
810 # ln
812 # Alias for log().
814 sub ln { Math::Complex::log(@_) }
817 # log10
819 # Compute log10(z).
822 sub log10 {
823 return Math::Complex::log($_[0]) * uplog10;
827 # logn
829 # Compute logn(z,n) = log(z) / log(n)
831 sub logn {
832 my ($z, $n) = @_;
833 $z = cplx($z, 0) unless ref $z;
834 my $logn = $LOGN{$n};
835 $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n)
836 return &log($z) / $logn;
840 # (cos)
842 # Compute cos(z) = (exp(iz) + exp(-iz))/2.
844 sub cos {
845 my ($z) = @_;
846 return CORE::cos($z) unless ref $z;
847 my ($x, $y) = @{$z->cartesian};
848 my $ey = CORE::exp($y);
849 my $sx = CORE::sin($x);
850 my $cx = CORE::cos($x);
851 my $ey_1 = $ey ? 1 / $ey : $Inf;
852 return (ref $z)->make($cx * ($ey + $ey_1)/2,
853 $sx * ($ey_1 - $ey)/2);
857 # (sin)
859 # Compute sin(z) = (exp(iz) - exp(-iz))/2.
861 sub sin {
862 my ($z) = @_;
863 return CORE::sin($z) unless ref $z;
864 my ($x, $y) = @{$z->cartesian};
865 my $ey = CORE::exp($y);
866 my $sx = CORE::sin($x);
867 my $cx = CORE::cos($x);
868 my $ey_1 = $ey ? 1 / $ey : $Inf;
869 return (ref $z)->make($sx * ($ey + $ey_1)/2,
870 $cx * ($ey - $ey_1)/2);
874 # tan
876 # Compute tan(z) = sin(z) / cos(z).
878 sub tan {
879 my ($z) = @_;
880 my $cz = &cos($z);
881 _divbyzero "tan($z)", "cos($z)" if $cz == 0;
882 return &sin($z) / $cz;
886 # sec
888 # Computes the secant sec(z) = 1 / cos(z).
890 sub sec {
891 my ($z) = @_;
892 my $cz = &cos($z);
893 _divbyzero "sec($z)", "cos($z)" if ($cz == 0);
894 return 1 / $cz;
898 # csc
900 # Computes the cosecant csc(z) = 1 / sin(z).
902 sub csc {
903 my ($z) = @_;
904 my $sz = &sin($z);
905 _divbyzero "csc($z)", "sin($z)" if ($sz == 0);
906 return 1 / $sz;
910 # cosec
912 # Alias for csc().
914 sub cosec { Math::Complex::csc(@_) }
917 # cot
919 # Computes cot(z) = cos(z) / sin(z).
921 sub cot {
922 my ($z) = @_;
923 my $sz = &sin($z);
924 _divbyzero "cot($z)", "sin($z)" if ($sz == 0);
925 return &cos($z) / $sz;
929 # cotan
931 # Alias for cot().
933 sub cotan { Math::Complex::cot(@_) }
936 # acos
938 # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
940 sub acos {
941 my $z = $_[0];
942 return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
943 if (! ref $z) && CORE::abs($z) <= 1;
944 $z = cplx($z, 0) unless ref $z;
945 my ($x, $y) = @{$z->cartesian};
946 return 0 if $x == 1 && $y == 0;
947 my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
948 my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
949 my $alpha = ($t1 + $t2)/2;
950 my $beta = ($t1 - $t2)/2;
951 $alpha = 1 if $alpha < 1;
952 if ($beta > 1) { $beta = 1 }
953 elsif ($beta < -1) { $beta = -1 }
954 my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
955 my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
956 $v = -$v if $y > 0 || ($y == 0 && $x < -1);
957 return (ref $z)->make($u, $v);
961 # asin
963 # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
965 sub asin {
966 my $z = $_[0];
967 return CORE::atan2($z, CORE::sqrt(1-$z*$z))
968 if (! ref $z) && CORE::abs($z) <= 1;
969 $z = cplx($z, 0) unless ref $z;
970 my ($x, $y) = @{$z->cartesian};
971 return 0 if $x == 0 && $y == 0;
972 my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
973 my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
974 my $alpha = ($t1 + $t2)/2;
975 my $beta = ($t1 - $t2)/2;
976 $alpha = 1 if $alpha < 1;
977 if ($beta > 1) { $beta = 1 }
978 elsif ($beta < -1) { $beta = -1 }
979 my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
980 my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
981 $v = -$v if $y > 0 || ($y == 0 && $x < -1);
982 return (ref $z)->make($u, $v);
986 # atan
988 # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
990 sub atan {
991 my ($z) = @_;
992 return CORE::atan2($z, 1) unless ref $z;
993 my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
994 return 0 if $x == 0 && $y == 0;
995 _divbyzero "atan(i)" if ( $z == i);
996 _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...
997 my $log = &log((i + $z) / (i - $z));
998 return ip2 * $log;
1002 # asec
1004 # Computes the arc secant asec(z) = acos(1 / z).
1006 sub asec {
1007 my ($z) = @_;
1008 _divbyzero "asec($z)", $z if ($z == 0);
1009 return acos(1 / $z);
1013 # acsc
1015 # Computes the arc cosecant acsc(z) = asin(1 / z).
1017 sub acsc {
1018 my ($z) = @_;
1019 _divbyzero "acsc($z)", $z if ($z == 0);
1020 return asin(1 / $z);
1024 # acosec
1026 # Alias for acsc().
1028 sub acosec { Math::Complex::acsc(@_) }
1031 # acot
1033 # Computes the arc cotangent acot(z) = atan(1 / z)
1035 sub acot {
1036 my ($z) = @_;
1037 _divbyzero "acot(0)" if $z == 0;
1038 return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)
1039 unless ref $z;
1040 _divbyzero "acot(i)" if ($z - i == 0);
1041 _logofzero "acot(-i)" if ($z + i == 0);
1042 return atan(1 / $z);
1046 # acotan
1048 # Alias for acot().
1050 sub acotan { Math::Complex::acot(@_) }
1053 # cosh
1055 # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
1057 sub cosh {
1058 my ($z) = @_;
1059 my $ex;
1060 unless (ref $z) {
1061 $ex = CORE::exp($z);
1062 return $ex ? ($ex + 1/$ex)/2 : $Inf;
1064 my ($x, $y) = @{$z->cartesian};
1065 $ex = CORE::exp($x);
1066 my $ex_1 = $ex ? 1 / $ex : $Inf;
1067 return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
1068 CORE::sin($y) * ($ex - $ex_1)/2);
1072 # sinh
1074 # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
1076 sub sinh {
1077 my ($z) = @_;
1078 my $ex;
1079 unless (ref $z) {
1080 return 0 if $z == 0;
1081 $ex = CORE::exp($z);
1082 return $ex ? ($ex - 1/$ex)/2 : "-$Inf";
1084 my ($x, $y) = @{$z->cartesian};
1085 my $cy = CORE::cos($y);
1086 my $sy = CORE::sin($y);
1087 $ex = CORE::exp($x);
1088 my $ex_1 = $ex ? 1 / $ex : $Inf;
1089 return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
1090 CORE::sin($y) * ($ex + $ex_1)/2);
1094 # tanh
1096 # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
1098 sub tanh {
1099 my ($z) = @_;
1100 my $cz = cosh($z);
1101 _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);
1102 return sinh($z) / $cz;
1106 # sech
1108 # Computes the hyperbolic secant sech(z) = 1 / cosh(z).
1110 sub sech {
1111 my ($z) = @_;
1112 my $cz = cosh($z);
1113 _divbyzero "sech($z)", "cosh($z)" if ($cz == 0);
1114 return 1 / $cz;
1118 # csch
1120 # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
1122 sub csch {
1123 my ($z) = @_;
1124 my $sz = sinh($z);
1125 _divbyzero "csch($z)", "sinh($z)" if ($sz == 0);
1126 return 1 / $sz;
1130 # cosech
1132 # Alias for csch().
1134 sub cosech { Math::Complex::csch(@_) }
1137 # coth
1139 # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
1141 sub coth {
1142 my ($z) = @_;
1143 my $sz = sinh($z);
1144 _divbyzero "coth($z)", "sinh($z)" if $sz == 0;
1145 return cosh($z) / $sz;
1149 # cotanh
1151 # Alias for coth().
1153 sub cotanh { Math::Complex::coth(@_) }
1156 # acosh
1158 # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
1160 sub acosh {
1161 my ($z) = @_;
1162 unless (ref $z) {
1163 $z = cplx($z, 0);
1165 my ($re, $im) = @{$z->cartesian};
1166 if ($im == 0) {
1167 return CORE::log($re + CORE::sqrt($re*$re - 1))
1168 if $re >= 1;
1169 return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))
1170 if CORE::abs($re) < 1;
1172 my $t = &sqrt($z * $z - 1) + $z;
1173 # Try Taylor if looking bad (this usually means that
1174 # $z was large negative, therefore the sqrt is really
1175 # close to abs(z), summing that with z...)
1176 $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
1177 if $t == 0;
1178 my $u = &log($t);
1179 $u->Im(-$u->Im) if $re < 0 && $im == 0;
1180 return $re < 0 ? -$u : $u;
1184 # asinh
1186 # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))
1188 sub asinh {
1189 my ($z) = @_;
1190 unless (ref $z) {
1191 my $t = $z + CORE::sqrt($z*$z + 1);
1192 return CORE::log($t) if $t;
1194 my $t = &sqrt($z * $z + 1) + $z;
1195 # Try Taylor if looking bad (this usually means that
1196 # $z was large negative, therefore the sqrt is really
1197 # close to abs(z), summing that with z...)
1198 $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
1199 if $t == 0;
1200 return &log($t);
1204 # atanh
1206 # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
1208 sub atanh {
1209 my ($z) = @_;
1210 unless (ref $z) {
1211 return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
1212 $z = cplx($z, 0);
1214 _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0);
1215 _logofzero 'atanh(-1)' if (1 + $z == 0);
1216 return 0.5 * &log((1 + $z) / (1 - $z));
1220 # asech
1222 # Computes the hyperbolic arc secant asech(z) = acosh(1 / z).
1224 sub asech {
1225 my ($z) = @_;
1226 _divbyzero 'asech(0)', "$z" if ($z == 0);
1227 return acosh(1 / $z);
1231 # acsch
1233 # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z).
1235 sub acsch {
1236 my ($z) = @_;
1237 _divbyzero 'acsch(0)', $z if ($z == 0);
1238 return asinh(1 / $z);
1242 # acosech
1244 # Alias for acosh().
1246 sub acosech { Math::Complex::acsch(@_) }
1249 # acoth
1251 # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
1253 sub acoth {
1254 my ($z) = @_;
1255 _divbyzero 'acoth(0)' if ($z == 0);
1256 unless (ref $z) {
1257 return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
1258 $z = cplx($z, 0);
1260 _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0);
1261 _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);
1262 return &log((1 + $z) / ($z - 1)) / 2;
1266 # acotanh
1268 # Alias for acot().
1270 sub acotanh { Math::Complex::acoth(@_) }
1273 # (atan2)
1275 # Compute atan(z1/z2), minding the right quadrant.
1277 sub atan2 {
1278 my ($z1, $z2, $inverted) = @_;
1279 my ($re1, $im1, $re2, $im2);
1280 if ($inverted) {
1281 ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
1282 ($re2, $im2) = ref $z1 ? @{$z1->cartesian} : ($z1, 0);
1283 } else {
1284 ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0);
1285 ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
1287 if ($im1 || $im2) {
1288 # In MATLAB the imaginary parts are ignored.
1289 # warn "atan2: Imaginary parts ignored";
1290 # http://documents.wolfram.com/mathematica/functions/ArcTan
1291 # NOTE: Mathematica ArcTan[x,y] while atan2(y,x)
1292 my $s = $z1 * $z1 + $z2 * $z2;
1293 _divbyzero("atan2") if $s == 0;
1294 my $i = &i;
1295 my $r = $z2 + $z1 * $i;
1296 return -$i * &log($r / &sqrt( $s ));
1298 return CORE::atan2($re1, $re2);
1302 # display_format
1303 # ->display_format
1305 # Set (get if no argument) the display format for all complex numbers that
1306 # don't happen to have overridden it via ->display_format
1308 # When called as an object method, this actually sets the display format for
1309 # the current object.
1311 # Valid object formats are 'c' and 'p' for cartesian and polar. The first
1312 # letter is used actually, so the type can be fully spelled out for clarity.
1314 sub display_format {
1315 my $self = shift;
1316 my %display_format = %DISPLAY_FORMAT;
1318 if (ref $self) { # Called as an object method
1319 if (exists $self->{display_format}) {
1320 my %obj = %{$self->{display_format}};
1321 @display_format{keys %obj} = values %obj;
1324 if (@_ == 1) {
1325 $display_format{style} = shift;
1326 } else {
1327 my %new = @_;
1328 @display_format{keys %new} = values %new;
1331 if (ref $self) { # Called as an object method
1332 $self->{display_format} = { %display_format };
1333 return
1334 wantarray ?
1335 %{$self->{display_format}} :
1336 $self->{display_format}->{style};
1339 # Called as a class method
1340 %DISPLAY_FORMAT = %display_format;
1341 return
1342 wantarray ?
1343 %DISPLAY_FORMAT :
1344 $DISPLAY_FORMAT{style};
1348 # (stringify)
1350 # Show nicely formatted complex number under its cartesian or polar form,
1351 # depending on the current display format:
1353 # . If a specific display format has been recorded for this object, use it.
1354 # . Otherwise, use the generic current default for all complex numbers,
1355 # which is a package global variable.
1357 sub stringify {
1358 my ($z) = shift;
1360 my $style = $z->display_format;
1362 $style = $DISPLAY_FORMAT{style} unless defined $style;
1364 return $z->stringify_polar if $style =~ /^p/i;
1365 return $z->stringify_cartesian;
1369 # ->stringify_cartesian
1371 # Stringify as a cartesian representation 'a+bi'.
1373 sub stringify_cartesian {
1374 my $z = shift;
1375 my ($x, $y) = @{$z->cartesian};
1376 my ($re, $im);
1378 my %format = $z->display_format;
1379 my $format = $format{format};
1381 if ($x) {
1382 if ($x =~ /^NaN[QS]?$/i) {
1383 $re = $x;
1384 } else {
1385 if ($x =~ /^-?$Inf$/oi) {
1386 $re = $x;
1387 } else {
1388 $re = defined $format ? sprintf($format, $x) : $x;
1391 } else {
1392 undef $re;
1395 if ($y) {
1396 if ($y =~ /^(NaN[QS]?)$/i) {
1397 $im = $y;
1398 } else {
1399 if ($y =~ /^-?$Inf$/oi) {
1400 $im = $y;
1401 } else {
1402 $im =
1403 defined $format ?
1404 sprintf($format, $y) :
1405 ($y == 1 ? "" : ($y == -1 ? "-" : $y));
1408 $im .= "i";
1409 } else {
1410 undef $im;
1413 my $str = $re;
1415 if (defined $im) {
1416 if ($y < 0) {
1417 $str .= $im;
1418 } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) {
1419 $str .= "+" if defined $re;
1420 $str .= $im;
1422 } elsif (!defined $re) {
1423 $str = "0";
1426 return $str;
1431 # ->stringify_polar
1433 # Stringify as a polar representation '[r,t]'.
1435 sub stringify_polar {
1436 my $z = shift;
1437 my ($r, $t) = @{$z->polar};
1438 my $theta;
1440 my %format = $z->display_format;
1441 my $format = $format{format};
1443 if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?$Inf$/oi) {
1444 $theta = $t;
1445 } elsif ($t == pi) {
1446 $theta = "pi";
1447 } elsif ($r == 0 || $t == 0) {
1448 $theta = defined $format ? sprintf($format, $t) : $t;
1451 return "[$r,$theta]" if defined $theta;
1454 # Try to identify pi/n and friends.
1457 $t -= int(CORE::abs($t) / pit2) * pit2;
1459 if ($format{polar_pretty_print} && $t) {
1460 my ($a, $b);
1461 for $a (2..9) {
1462 $b = $t * $a / pi;
1463 if ($b =~ /^-?\d+$/) {
1464 $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1;
1465 $theta = "${b}pi/$a";
1466 last;
1471 if (defined $format) {
1472 $r = sprintf($format, $r);
1473 $theta = sprintf($format, $theta) unless defined $theta;
1474 } else {
1475 $theta = $t unless defined $theta;
1478 return "[$r,$theta]";
1482 __END__
1484 =pod
1486 =head1 NAME
1488 Math::Complex - complex numbers and associated mathematical functions
1490 =head1 SYNOPSIS
1492 use Math::Complex;
1494 $z = Math::Complex->make(5, 6);
1495 $t = 4 - 3*i + $z;
1496 $j = cplxe(1, 2*pi/3);
1498 =head1 DESCRIPTION
1500 This package lets you create and manipulate complex numbers. By default,
1501 I<Perl> limits itself to real numbers, but an extra C<use> statement brings
1502 full complex support, along with a full set of mathematical functions
1503 typically associated with and/or extended to complex numbers.
1505 If you wonder what complex numbers are, they were invented to be able to solve
1506 the following equation:
1508 x*x = -1
1510 and by definition, the solution is noted I<i> (engineers use I<j> instead since
1511 I<i> usually denotes an intensity, but the name does not matter). The number
1512 I<i> is a pure I<imaginary> number.
1514 The arithmetics with pure imaginary numbers works just like you would expect
1515 it with real numbers... you just have to remember that
1517 i*i = -1
1519 so you have:
1521 5i + 7i = i * (5 + 7) = 12i
1522 4i - 3i = i * (4 - 3) = i
1523 4i * 2i = -8
1524 6i / 2i = 3
1525 1 / i = -i
1527 Complex numbers are numbers that have both a real part and an imaginary
1528 part, and are usually noted:
1530 a + bi
1532 where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
1533 arithmetic with complex numbers is straightforward. You have to
1534 keep track of the real and the imaginary parts, but otherwise the
1535 rules used for real numbers just apply:
1537 (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
1538 (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
1540 A graphical representation of complex numbers is possible in a plane
1541 (also called the I<complex plane>, but it's really a 2D plane).
1542 The number
1544 z = a + bi
1546 is the point whose coordinates are (a, b). Actually, it would
1547 be the vector originating from (0, 0) to (a, b). It follows that the addition
1548 of two complex numbers is a vectorial addition.
1550 Since there is a bijection between a point in the 2D plane and a complex
1551 number (i.e. the mapping is unique and reciprocal), a complex number
1552 can also be uniquely identified with polar coordinates:
1554 [rho, theta]
1556 where C<rho> is the distance to the origin, and C<theta> the angle between
1557 the vector and the I<x> axis. There is a notation for this using the
1558 exponential form, which is:
1560 rho * exp(i * theta)
1562 where I<i> is the famous imaginary number introduced above. Conversion
1563 between this form and the cartesian form C<a + bi> is immediate:
1565 a = rho * cos(theta)
1566 b = rho * sin(theta)
1568 which is also expressed by this formula:
1570 z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
1572 In other words, it's the projection of the vector onto the I<x> and I<y>
1573 axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
1574 the I<argument> of the complex number. The I<norm> of C<z> will be
1575 noted C<abs(z)>.
1577 The polar notation (also known as the trigonometric
1578 representation) is much more handy for performing multiplications and
1579 divisions of complex numbers, whilst the cartesian notation is better
1580 suited for additions and subtractions. Real numbers are on the I<x>
1581 axis, and therefore I<theta> is zero or I<pi>.
1583 All the common operations that can be performed on a real number have
1584 been defined to work on complex numbers as well, and are merely
1585 I<extensions> of the operations defined on real numbers. This means
1586 they keep their natural meaning when there is no imaginary part, provided
1587 the number is within their definition set.
1589 For instance, the C<sqrt> routine which computes the square root of
1590 its argument is only defined for non-negative real numbers and yields a
1591 non-negative real number (it is an application from B<R+> to B<R+>).
1592 If we allow it to return a complex number, then it can be extended to
1593 negative real numbers to become an application from B<R> to B<C> (the
1594 set of complex numbers):
1596 sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
1598 It can also be extended to be an application from B<C> to B<C>,
1599 whilst its restriction to B<R> behaves as defined above by using
1600 the following definition:
1602 sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
1604 Indeed, a negative real number can be noted C<[x,pi]> (the modulus
1605 I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
1606 number) and the above definition states that
1608 sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
1610 which is exactly what we had defined for negative real numbers above.
1611 The C<sqrt> returns only one of the solutions: if you want the both,
1612 use the C<root> function.
1614 All the common mathematical functions defined on real numbers that
1615 are extended to complex numbers share that same property of working
1616 I<as usual> when the imaginary part is zero (otherwise, it would not
1617 be called an extension, would it?).
1619 A I<new> operation possible on a complex number that is
1620 the identity for real numbers is called the I<conjugate>, and is noted
1621 with a horizontal bar above the number, or C<~z> here.
1623 z = a + bi
1624 ~z = a - bi
1626 Simple... Now look:
1628 z * ~z = (a + bi) * (a - bi) = a*a + b*b
1630 We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
1631 distance to the origin, also known as:
1633 rho = abs(z) = sqrt(a*a + b*b)
1637 z * ~z = abs(z) ** 2
1639 If z is a pure real number (i.e. C<b == 0>), then the above yields:
1641 a * a = abs(a) ** 2
1643 which is true (C<abs> has the regular meaning for real number, i.e. stands
1644 for the absolute value). This example explains why the norm of C<z> is
1645 noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
1646 is the regular C<abs> we know when the complex number actually has no
1647 imaginary part... This justifies I<a posteriori> our use of the C<abs>
1648 notation for the norm.
1650 =head1 OPERATIONS
1652 Given the following notations:
1654 z1 = a + bi = r1 * exp(i * t1)
1655 z2 = c + di = r2 * exp(i * t2)
1656 z = <any complex or real number>
1658 the following (overloaded) operations are supported on complex numbers:
1660 z1 + z2 = (a + c) + i(b + d)
1661 z1 - z2 = (a - c) + i(b - d)
1662 z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
1663 z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
1664 z1 ** z2 = exp(z2 * log z1)
1665 ~z = a - bi
1666 abs(z) = r1 = sqrt(a*a + b*b)
1667 sqrt(z) = sqrt(r1) * exp(i * t/2)
1668 exp(z) = exp(a) * exp(i * b)
1669 log(z) = log(r1) + i*t
1670 sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
1671 cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
1672 atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
1674 The definition used for complex arguments of atan2() is
1676 -i log((x + iy)/sqrt(x*x+y*y))
1678 The following extra operations are supported on both real and complex
1679 numbers:
1681 Re(z) = a
1682 Im(z) = b
1683 arg(z) = t
1684 abs(z) = r
1686 cbrt(z) = z ** (1/3)
1687 log10(z) = log(z) / log(10)
1688 logn(z, n) = log(z) / log(n)
1690 tan(z) = sin(z) / cos(z)
1692 csc(z) = 1 / sin(z)
1693 sec(z) = 1 / cos(z)
1694 cot(z) = 1 / tan(z)
1696 asin(z) = -i * log(i*z + sqrt(1-z*z))
1697 acos(z) = -i * log(z + i*sqrt(1-z*z))
1698 atan(z) = i/2 * log((i+z) / (i-z))
1700 acsc(z) = asin(1 / z)
1701 asec(z) = acos(1 / z)
1702 acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
1704 sinh(z) = 1/2 (exp(z) - exp(-z))
1705 cosh(z) = 1/2 (exp(z) + exp(-z))
1706 tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
1708 csch(z) = 1 / sinh(z)
1709 sech(z) = 1 / cosh(z)
1710 coth(z) = 1 / tanh(z)
1712 asinh(z) = log(z + sqrt(z*z+1))
1713 acosh(z) = log(z + sqrt(z*z-1))
1714 atanh(z) = 1/2 * log((1+z) / (1-z))
1716 acsch(z) = asinh(1 / z)
1717 asech(z) = acosh(1 / z)
1718 acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
1720 I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
1721 I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
1722 I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
1723 I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>,
1724 C<rho>, and C<theta> can be used also as mutators. The C<cbrt>
1725 returns only one of the solutions: if you want all three, use the
1726 C<root> function.
1728 The I<root> function is available to compute all the I<n>
1729 roots of some complex, where I<n> is a strictly positive integer.
1730 There are exactly I<n> such roots, returned as a list. Getting the
1731 number mathematicians call C<j> such that:
1733 1 + j + j*j = 0;
1735 is a simple matter of writing:
1737 $j = ((root(1, 3))[1];
1739 The I<k>th root for C<z = [r,t]> is given by:
1741 (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
1743 You can return the I<k>th root directly by C<root(z, n, k)>,
1744 indexing starting from I<zero> and ending at I<n - 1>.
1746 The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In
1747 order to ensure its restriction to real numbers is conform to what you
1748 would expect, the comparison is run on the real part of the complex
1749 number first, and imaginary parts are compared only when the real
1750 parts match.
1752 =head1 CREATION
1754 To create a complex number, use either:
1756 $z = Math::Complex->make(3, 4);
1757 $z = cplx(3, 4);
1759 if you know the cartesian form of the number, or
1761 $z = 3 + 4*i;
1763 if you like. To create a number using the polar form, use either:
1765 $z = Math::Complex->emake(5, pi/3);
1766 $x = cplxe(5, pi/3);
1768 instead. The first argument is the modulus, the second is the angle
1769 (in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a
1770 notation for complex numbers in the polar form).
1772 It is possible to write:
1774 $x = cplxe(-3, pi/4);
1776 but that will be silently converted into C<[3,-3pi/4]>, since the
1777 modulus must be non-negative (it represents the distance to the origin
1778 in the complex plane).
1780 It is also possible to have a complex number as either argument of the
1781 C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of
1782 the argument will be used.
1784 $z1 = cplx(-2, 1);
1785 $z2 = cplx($z1, 4);
1787 The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
1788 understand a single (string) argument of the forms
1790 2-3i
1792 [2,3]
1793 [2,-3pi/4]
1796 in which case the appropriate cartesian and exponential components
1797 will be parsed from the string and used to create new complex numbers.
1798 The imaginary component and the theta, respectively, will default to zero.
1800 The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
1801 understand the case of no arguments: this means plain zero or (0, 0).
1803 =head1 DISPLAYING
1805 When printed, a complex number is usually shown under its cartesian
1806 style I<a+bi>, but there are legitimate cases where the polar style
1807 I<[r,t]> is more appropriate. The process of converting the complex
1808 number into a string that can be displayed is known as I<stringification>.
1810 By calling the class method C<Math::Complex::display_format> and
1811 supplying either C<"polar"> or C<"cartesian"> as an argument, you
1812 override the default display style, which is C<"cartesian">. Not
1813 supplying any argument returns the current settings.
1815 This default can be overridden on a per-number basis by calling the
1816 C<display_format> method instead. As before, not supplying any argument
1817 returns the current display style for this number. Otherwise whatever you
1818 specify will be the new display style for I<this> particular number.
1820 For instance:
1822 use Math::Complex;
1824 Math::Complex::display_format('polar');
1825 $j = (root(1, 3))[1];
1826 print "j = $j\n"; # Prints "j = [1,2pi/3]"
1827 $j->display_format('cartesian');
1828 print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
1830 The polar style attempts to emphasize arguments like I<k*pi/n>
1831 (where I<n> is a positive integer and I<k> an integer within [-9, +9]),
1832 this is called I<polar pretty-printing>.
1834 For the reverse of stringifying, see the C<make> and C<emake>.
1836 =head2 CHANGED IN PERL 5.6
1838 The C<display_format> class method and the corresponding
1839 C<display_format> object method can now be called using
1840 a parameter hash instead of just a one parameter.
1842 The old display format style, which can have values C<"cartesian"> or
1843 C<"polar">, can be changed using the C<"style"> parameter.
1845 $j->display_format(style => "polar");
1847 The one parameter calling convention also still works.
1849 $j->display_format("polar");
1851 There are two new display parameters.
1853 The first one is C<"format">, which is a sprintf()-style format string
1854 to be used for both numeric parts of the complex number(s). The is
1855 somewhat system-dependent but most often it corresponds to C<"%.15g">.
1856 You can revert to the default by setting the C<format> to C<undef>.
1858 # the $j from the above example
1860 $j->display_format('format' => '%.5f');
1861 print "j = $j\n"; # Prints "j = -0.50000+0.86603i"
1862 $j->display_format('format' => undef);
1863 print "j = $j\n"; # Prints "j = -0.5+0.86603i"
1865 Notice that this affects also the return values of the
1866 C<display_format> methods: in list context the whole parameter hash
1867 will be returned, as opposed to only the style parameter value.
1868 This is a potential incompatibility with earlier versions if you
1869 have been calling the C<display_format> method in list context.
1871 The second new display parameter is C<"polar_pretty_print">, which can
1872 be set to true or false, the default being true. See the previous
1873 section for what this means.
1875 =head1 USAGE
1877 Thanks to overloading, the handling of arithmetics with complex numbers
1878 is simple and almost transparent.
1880 Here are some examples:
1882 use Math::Complex;
1884 $j = cplxe(1, 2*pi/3); # $j ** 3 == 1
1885 print "j = $j, j**3 = ", $j ** 3, "\n";
1886 print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
1888 $z = -16 + 0*i; # Force it to be a complex
1889 print "sqrt($z) = ", sqrt($z), "\n";
1891 $k = exp(i * 2*pi/3);
1892 print "$j - $k = ", $j - $k, "\n";
1894 $z->Re(3); # Re, Im, arg, abs,
1895 $j->arg(2); # (the last two aka rho, theta)
1896 # can be used also as mutators.
1898 =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
1900 The division (/) and the following functions
1902 log ln log10 logn
1903 tan sec csc cot
1904 atan asec acsc acot
1905 tanh sech csch coth
1906 atanh asech acsch acoth
1908 cannot be computed for all arguments because that would mean dividing
1909 by zero or taking logarithm of zero. These situations cause fatal
1910 runtime errors looking like this
1912 cot(0): Division by zero.
1913 (Because in the definition of cot(0), the divisor sin(0) is 0)
1914 Died at ...
1918 atanh(-1): Logarithm of zero.
1919 Died at...
1921 For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
1922 C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
1923 logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
1924 be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be
1925 C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be
1926 C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument
1927 cannot be C<-i> (the negative imaginary unit). For the C<tan>,
1928 C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
1929 is any integer. atan2(0, 0) is undefined, and if the complex arguments
1930 are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0.
1932 Note that because we are operating on approximations of real numbers,
1933 these errors can happen when merely `too close' to the singularities
1934 listed above.
1936 =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
1938 The C<make> and C<emake> accept both real and complex arguments.
1939 When they cannot recognize the arguments they will die with error
1940 messages like the following
1942 Math::Complex::make: Cannot take real part of ...
1943 Math::Complex::make: Cannot take real part of ...
1944 Math::Complex::emake: Cannot take rho of ...
1945 Math::Complex::emake: Cannot take theta of ...
1947 =head1 BUGS
1949 Saying C<use Math::Complex;> exports many mathematical routines in the
1950 caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>).
1951 This is construed as a feature by the Authors, actually... ;-)
1953 All routines expect to be given real or complex numbers. Don't attempt to
1954 use BigFloat, since Perl has currently no rule to disambiguate a '+'
1955 operation (for instance) between two overloaded entities.
1957 In Cray UNICOS there is some strange numerical instability that results
1958 in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware.
1959 The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex.
1960 Whatever it is, it does not manifest itself anywhere else where Perl runs.
1962 =head1 AUTHORS
1964 Daniel S. Lewart <F<d-lewart@uiuc.edu>>
1966 Original authors Raphael Manfredi <F<Raphael_Manfredi@pobox.com>> and
1967 Jarkko Hietaniemi <F<jhi@iki.fi>>
1969 =cut
1973 # eof