3 # This demonstration illustrates how Tcl/Tk can be used to construct
4 # simulations of physical systems.
6 # RCS: @(#) $Id: pendulum.tcl,v 1.3 2006/10/17 05:52:40 das Exp $
8 if {![info exists widgetDemo
]} {
9 error "This script should be run from the \"widget\" demo."
17 wm title
$w "Pendulum Animation Demonstration"
18 wm iconname
$w "pendulum"
21 label $w.msg
-font $font -wraplength 4i
-justify left
-text "This demonstration shows how Tcl/Tk can be used to carry out animations that are linked to simulations of physical systems. In the left canvas is a graphical representation of the physical system itself, a simple pendulum, and in the right canvas is a graph of the phase space of the system, which is a plot of the angle (relative to the vertical) against the angular velocity. The pendulum bob may be repositioned by clicking and dragging anywhere on the left canvas."
24 ## See Code / Dismiss buttons
25 set btns
[addSeeDismiss
$w.buttons
$w]
26 pack $btns -side bottom
-fill x
28 # Create some structural widgets
29 pack [panedwindow $w.p
] -fill both
-expand 1
30 $w.p add
[labelframe $w.p.l1
-text "Pendulum Simulation"]
31 $w.p add
[labelframe $w.p.l2
-text "Phase Space"]
33 # Create the canvas containing the graphical representation of the
35 canvas $w.c
-width 320 -height 200 -background white
-bd 2 -relief sunken
36 $w.c create
text 5 5 -anchor nw
-text "Click to Adjust Bob Start Position"
37 # Coordinates of these items don't matter; they will be set properly below
38 $w.c create line
0 25 320 25 -width 2 -fill grey50
-tags plate
39 $w.c create line
1 1 1 1 -tags pendulumRod
-width 3 -fill black
40 $w.c create oval
1 1 2 2 -tags pendulumBob
-fill yellow
-outline black
41 $w.c create oval
155 20 165 30 -fill grey50
-outline {}
42 pack $w.c
-in $w.p.l1
-fill both
-expand true
44 # Create the canvas containing the phase space graph; this consists of
45 # a line that gets gradually paler as it ages, which is an extremely
46 # effective visual trick.
47 canvas $w.k
-width 320 -height 200 -background white
-bd 2 -relief sunken
48 $w.k create line
160 200 160 0 -fill grey75
-arrow last
-tags y_axis
49 $w.k create line
0 100 320 100 -fill grey75
-arrow last
-tags x_axis
50 for {set i
90} {$i>=0} {incr i
-10} {
51 # Coordinates of these items don't matter; they will be set properly below
52 $w.k create line
0 0 1 1 -smooth true
-tags graph
$i -fill grey
$i
54 # FIXME: UNICODE labels
55 $w.k create
text 0 0 -anchor ne
-text "q" -font {Symbol
8} -tags label_theta
56 $w.k create
text 0 0 -anchor ne
-text "dq" -font {Symbol
8} -tags label_dtheta
57 pack $w.k
-in $w.p.l2
-fill both
-expand true
59 # Initialize some variables
63 set pi
3.1415926535897933
66 # This procedure makes the pendulum appear at the correct place on the
67 # canvas. If the additional arguments "at $x $y" are passed (the 'at'
68 # is really just syntactic sugar) instead of computing the position of
69 # the pendulum from the length of the pendulum rod and its angle, the
70 # length and angle are computed in reverse from the given location
71 # (which is taken to be the centre of the pendulum bob.)
72 proc showPendulum
{canvas {at
{}} {x
{}} {y
{}}} {
73 global Theta dTheta pi length
74 if {$at eq
"at" && ($x!=160 ||
$y!=25)} {
76 set x2
[expr {$x-160}]
78 set length
[expr {hypot
($x2,$y2)}]
79 set Theta
[expr {atan2
($x2,$y2)*180/$pi}]
81 set angle
[expr {$Theta * $pi/180}]
82 set x
[expr {160+$length*sin
($angle)}]
83 set y
[expr {25+$length*cos
($angle)}]
85 $canvas coords pendulumRod
160 25 $x $y
86 $canvas coords pendulumBob
\
87 [expr {$x-15}] [expr {$y-15}] [expr {$x+15}] [expr {$y+15}]
91 # Update the phase-space graph according to the current angle and the
92 # rate at which the angle is changing (the first derivative with
94 proc showPhase
{canvas} {
95 global Theta dTheta points psw psh
96 lappend points
[expr {$Theta+$psw}] [expr {-20*$dTheta+$psh}]
97 if {[llength $points] > 100} {
98 set points
[lrange $points end-99 end
]
100 for {set i
0} {$i<100} {incr i
10} {
101 set list [lrange $points end-
[expr {$i-1}] end-
[expr {$i-12}]]
102 if {[llength $list] >= 4} {
103 $canvas coords graph
$i $list
108 # Set up some bindings on the canvases. Note that when the user
109 # clicks we stop the animation until they release the mouse
110 # button. Also note that both canvases are sensitive to <Configure>
111 # events, which allows them to find out when they have been resized by
113 bind $w.c
<Destroy
> {
114 after cancel
$animationCallbacks(pendulum
)
115 unset animationCallbacks
(pendulum
)
118 after cancel
$animationCallbacks(pendulum
)
119 showPendulum
%W at
%x
%y
121 bind $w.c
<B1-Motion
> {
122 showPendulum
%W at
%x
%y
124 bind $w.c
<ButtonRelease-1
> {
125 showPendulum
%W at
%x
%y
126 set animationCallbacks
(pendulum
) [after 15 repeat
[winfo toplevel %W
]]
128 bind $w.c
<Configure
> {
129 %W coords plate
0 25 %w
25
131 bind $w.k
<Configure
> {
134 %W coords x_axis
2 $psh [expr %w-2
] $psh
135 %W coords y_axis
$psw [expr %h-2
] $psw 2
136 %W coords label_dtheta
[expr $psw-4] 6
137 %W coords label_theta
[expr %w-6
] [expr $psh+4]
140 # This procedure is the "business" part of the simulation that does
141 # simple numerical integration of the formula for a simple rotational
143 proc recomputeAngle
{} {
144 global Theta dTheta pi length
145 set scaling
[expr {3000.0/$length/$length}]
147 # To estimate the integration accurately, we really need to
148 # compute the end-point of our time-step. But to do *that*, we
149 # need to estimate the integration accurately! So we try this
150 # technique, which is inaccurate, but better than doing it in a
151 # single step. What we really want is bound up in the
152 # differential equation:
154 # theta + theta = -----------
156 # But my math skills are not good enough to solve this!
159 set firstDDTheta
[expr {-sin($Theta * $pi/180)*$scaling}]
160 set midDTheta
[expr {$dTheta + $firstDDTheta}]
161 set midTheta
[expr {$Theta + ($dTheta + $midDTheta)/2}]
163 set midDDTheta
[expr {-sin($midTheta * $pi/180)*$scaling}]
164 set midDTheta
[expr {$dTheta + ($firstDDTheta + $midDDTheta)/2}]
165 set midTheta
[expr {$Theta + ($dTheta + $midDTheta)/2}]
166 # Now we do a double-estimate approach for getting the final value
168 set midDDTheta
[expr {-sin($midTheta * $pi/180)*$scaling}]
169 set lastDTheta
[expr {$midDTheta + $midDDTheta}]
170 set lastTheta
[expr {$midTheta + ($midDTheta + $lastDTheta)/2}]
172 set lastDDTheta
[expr {-sin($lastTheta * $pi/180)*$scaling}]
173 set lastDTheta
[expr {$midDTheta + ($midDDTheta + $lastDDTheta)/2}]
174 set lastTheta
[expr {$midTheta + ($midDTheta + $lastDTheta)/2}]
175 # Now put the values back in our globals
176 set dTheta
$lastDTheta
180 # This method ties together the simulation engine and the graphical
181 # display code that visualizes it.
183 global animationCallbacks
192 # Reschedule ourselves
193 set animationCallbacks
(pendulum
) [after 15 [list repeat
$w]]
195 # Start the simulation after a short pause
196 set animationCallbacks
(pendulum
) [after 500 [list repeat
$w]]