1 .\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32
4 .\" ========================================================================
5 .de Sh \" Subsection heading
13 .de Sp \" Vertical space (when we can't use .PP)
17 .de Vb \" Begin verbatim text
22 .de Ve \" End verbatim text
26 .\" Set up some character translations and predefined strings. \*(-- will
27 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
28 .\" double quote, and \*(R" will give a right double quote. | will give a
29 .\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
30 .\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
31 .\" expand to `' in nroff, nothing in troff, for use with C<>.
33 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
37 . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38 . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
51 .\" If the F register is turned on, we'll generate index entries on stderr for
52 .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
53 .\" entries marked with X<> in POD. Of course, you'll have to process the
54 .\" output yourself in some meaningful fashion.
57 . tm Index:\\$1\t\\n%\t"\\$2"
63 .\" For nroff, turn off justification. Always turn off hyphenation; it makes
64 .\" way too many mistakes in technical documents.
68 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
69 .\" Fear. Run. Save yourself. No user-serviceable parts.
70 . \" fudge factors for nroff and troff
79 . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
85 . \" simple accents for nroff and troff
95 . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
96 . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
97 . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
98 . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
99 . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
100 . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
102 . \" troff and (daisy-wheel) nroff accents
103 .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
104 .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
105 .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
106 .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
107 .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
108 .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
109 .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
110 .ds ae a\h'-(\w'a'u*4/10)'e
111 .ds Ae A\h'-(\w'A'u*4/10)'E
112 . \" corrections for vroff
113 .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
114 .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
115 . \" for low resolution devices (crt and lpr)
116 .if \n(.H>23 .if \n(.V>19 \
129 .\" ========================================================================
131 .IX Title "BIO_s_mem 3"
132 .TH BIO_s_mem 3 "2009-07-23" "0.9.8k" "OpenSSL"
134 BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf,
135 BIO_get_mem_ptr, BIO_new_mem_buf \- memory BIO
137 .IX Header "SYNOPSIS"
139 \& #include <openssl/bio.h>
143 \& BIO_METHOD * BIO_s_mem(void);
147 \& BIO_set_mem_eof_return(BIO *b,int v)
148 \& long BIO_get_mem_data(BIO *b, char **pp)
149 \& BIO_set_mem_buf(BIO *b,BUF_MEM *bm,int c)
150 \& BIO_get_mem_ptr(BIO *b,BUF_MEM **pp)
154 \& BIO *BIO_new_mem_buf(void *buf, int len);
157 .IX Header "DESCRIPTION"
158 \&\fIBIO_s_mem()\fR return the memory \s-1BIO\s0 method function.
160 A memory \s-1BIO\s0 is a source/sink \s-1BIO\s0 which uses memory for its I/O. Data
161 written to a memory \s-1BIO\s0 is stored in a \s-1BUF_MEM\s0 structure which is extended
162 as appropriate to accommodate the stored data.
164 Any data written to a memory \s-1BIO\s0 can be recalled by reading from it.
165 Unless the memory \s-1BIO\s0 is read only any data read from it is deleted from
168 Memory BIOs support \fIBIO_gets()\fR and \fIBIO_puts()\fR.
170 If the \s-1BIO_CLOSE\s0 flag is set when a memory \s-1BIO\s0 is freed then the underlying
171 \&\s-1BUF_MEM\s0 structure is also freed.
173 Calling \fIBIO_reset()\fR on a read write memory \s-1BIO\s0 clears any data in it. On a
174 read only \s-1BIO\s0 it restores the \s-1BIO\s0 to its original state and the read only
175 data can be read again.
177 \&\fIBIO_eof()\fR is true if no data is in the \s-1BIO\s0.
179 \&\fIBIO_ctrl_pending()\fR returns the number of bytes currently stored.
181 \&\fIBIO_set_mem_eof_return()\fR sets the behaviour of memory \s-1BIO\s0 \fBb\fR when it is
182 empty. If the \fBv\fR is zero then an empty memory \s-1BIO\s0 will return \s-1EOF\s0 (that is
183 it will return zero and BIO_should_retry(b) will be false. If \fBv\fR is non
184 zero then it will return \fBv\fR when it is empty and it will set the read retry
185 flag (that is BIO_read_retry(b) is true). To avoid ambiguity with a normal
186 positive return value \fBv\fR should be set to a negative value, typically \-1.
188 \&\fIBIO_get_mem_data()\fR sets \fBpp\fR to a pointer to the start of the memory BIOs data
189 and returns the total amount of data available. It is implemented as a macro.
191 \&\fIBIO_set_mem_buf()\fR sets the internal \s-1BUF_MEM\s0 structure to \fBbm\fR and sets the
192 close flag to \fBc\fR, that is \fBc\fR should be either \s-1BIO_CLOSE\s0 or \s-1BIO_NOCLOSE\s0.
195 \&\fIBIO_get_mem_ptr()\fR places the underlying \s-1BUF_MEM\s0 structure in \fBpp\fR. It is
198 \&\fIBIO_new_mem_buf()\fR creates a memory \s-1BIO\s0 using \fBlen\fR bytes of data at \fBbuf\fR,
199 if \fBlen\fR is \-1 then the \fBbuf\fR is assumed to be null terminated and its
200 length is determined by \fBstrlen\fR. The \s-1BIO\s0 is set to a read only state and
201 as a result cannot be written to. This is useful when some data needs to be
202 made available from a static area of memory in the form of a \s-1BIO\s0. The
203 supplied data is read directly from the supplied buffer: it is \fBnot\fR copied
204 first, so the supplied area of memory must be unchanged until the \s-1BIO\s0 is freed.
207 Writes to memory BIOs will always succeed if memory is available: that is
208 their size can grow indefinitely.
210 Every read from a read write memory \s-1BIO\s0 will remove the data just read with
211 an internal copy operation, if a \s-1BIO\s0 contains a lots of data and it is
212 read in small chunks the operation can be very slow. The use of a read only
213 memory \s-1BIO\s0 avoids this problem. If the \s-1BIO\s0 must be read write then adding
214 a buffering \s-1BIO\s0 to the chain will speed up the process.
217 There should be an option to set the maximum size of a memory \s-1BIO\s0.
219 There should be a way to \*(L"rewind\*(R" a read write \s-1BIO\s0 without destroying
222 The copying operation should not occur after every small read of a large \s-1BIO\s0
223 to improve efficiency.
226 Create a memory \s-1BIO\s0 and write some data to it:
229 \& BIO *mem = BIO_new(BIO_s_mem());
230 \& BIO_puts(mem, "Hello World\en");
233 Create a read only memory \s-1BIO:\s0
236 \& char data[] = "Hello World";
238 \& mem = BIO_new_mem_buf(data, -1);
241 Extract the \s-1BUF_MEM\s0 structure from a memory \s-1BIO\s0 and then free up the \s-1BIO:\s0
245 \& BIO_get_mem_ptr(mem, &bptr);
246 \& BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
250 .IX Header "SEE ALSO"