Updated to Git v1.8.4
[msysgit.git] / lib / perl5 / 5.8.8 / Benchmark.pm
blobad04a754bbbab1b5dc8bebdc787e5b183db74eb9
1 package Benchmark;
3 use strict;
6 =head1 NAME
8 Benchmark - benchmark running times of Perl code
10 =head1 SYNOPSIS
12 use Benchmark qw(:all) ;
14 timethis ($count, "code");
16 # Use Perl code in strings...
17 timethese($count, {
18 'Name1' => '...code1...',
19 'Name2' => '...code2...',
20 });
22 # ... or use subroutine references.
23 timethese($count, {
24 'Name1' => sub { ...code1... },
25 'Name2' => sub { ...code2... },
26 });
28 # cmpthese can be used both ways as well
29 cmpthese($count, {
30 'Name1' => '...code1...',
31 'Name2' => '...code2...',
32 });
34 cmpthese($count, {
35 'Name1' => sub { ...code1... },
36 'Name2' => sub { ...code2... },
37 });
39 # ...or in two stages
40 $results = timethese($count,
42 'Name1' => sub { ...code1... },
43 'Name2' => sub { ...code2... },
45 'none'
47 cmpthese( $results ) ;
49 $t = timeit($count, '...other code...')
50 print "$count loops of other code took:",timestr($t),"\n";
52 $t = countit($time, '...other code...')
53 $count = $t->iters ;
54 print "$count loops of other code took:",timestr($t),"\n";
56 # enable hires wallclock timing if possible
57 use Benchmark ':hireswallclock';
59 =head1 DESCRIPTION
61 The Benchmark module encapsulates a number of routines to help you
62 figure out how long it takes to execute some code.
64 timethis - run a chunk of code several times
66 timethese - run several chunks of code several times
68 cmpthese - print results of timethese as a comparison chart
70 timeit - run a chunk of code and see how long it goes
72 countit - see how many times a chunk of code runs in a given time
75 =head2 Methods
77 =over 10
79 =item new
81 Returns the current time. Example:
83 use Benchmark;
84 $t0 = new Benchmark;
85 # ... your code here ...
86 $t1 = new Benchmark;
87 $td = timediff($t1, $t0);
88 print "the code took:",timestr($td),"\n";
90 =item debug
92 Enables or disable debugging by setting the C<$Benchmark::Debug> flag:
94 debug Benchmark 1;
95 $t = timeit(10, ' 5 ** $Global ');
96 debug Benchmark 0;
98 =item iters
100 Returns the number of iterations.
102 =back
104 =head2 Standard Exports
106 The following routines will be exported into your namespace
107 if you use the Benchmark module:
109 =over 10
111 =item timeit(COUNT, CODE)
113 Arguments: COUNT is the number of times to run the loop, and CODE is
114 the code to run. CODE may be either a code reference or a string to
115 be eval'd; either way it will be run in the caller's package.
117 Returns: a Benchmark object.
119 =item timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] )
121 Time COUNT iterations of CODE. CODE may be a string to eval or a
122 code reference; either way the CODE will run in the caller's package.
123 Results will be printed to STDOUT as TITLE followed by the times.
124 TITLE defaults to "timethis COUNT" if none is provided. STYLE
125 determines the format of the output, as described for timestr() below.
127 The COUNT can be zero or negative: this means the I<minimum number of
128 CPU seconds> to run. A zero signifies the default of 3 seconds. For
129 example to run at least for 10 seconds:
131 timethis(-10, $code)
133 or to run two pieces of code tests for at least 3 seconds:
135 timethese(0, { test1 => '...', test2 => '...'})
137 CPU seconds is, in UNIX terms, the user time plus the system time of
138 the process itself, as opposed to the real (wallclock) time and the
139 time spent by the child processes. Less than 0.1 seconds is not
140 accepted (-0.01 as the count, for example, will cause a fatal runtime
141 exception).
143 Note that the CPU seconds is the B<minimum> time: CPU scheduling and
144 other operating system factors may complicate the attempt so that a
145 little bit more time is spent. The benchmark output will, however,
146 also tell the number of C<$code> runs/second, which should be a more
147 interesting number than the actually spent seconds.
149 Returns a Benchmark object.
151 =item timethese ( COUNT, CODEHASHREF, [ STYLE ] )
153 The CODEHASHREF is a reference to a hash containing names as keys
154 and either a string to eval or a code reference for each value.
155 For each (KEY, VALUE) pair in the CODEHASHREF, this routine will
156 call
158 timethis(COUNT, VALUE, KEY, STYLE)
160 The routines are called in string comparison order of KEY.
162 The COUNT can be zero or negative, see timethis().
164 Returns a hash of Benchmark objects, keyed by name.
166 =item timediff ( T1, T2 )
168 Returns the difference between two Benchmark times as a Benchmark
169 object suitable for passing to timestr().
171 =item timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] )
173 Returns a string that formats the times in the TIMEDIFF object in
174 the requested STYLE. TIMEDIFF is expected to be a Benchmark object
175 similar to that returned by timediff().
177 STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows
178 each of the 5 times available ('wallclock' time, user time, system time,
179 user time of children, and system time of children). 'noc' shows all
180 except the two children times. 'nop' shows only wallclock and the
181 two children times. 'auto' (the default) will act as 'all' unless
182 the children times are both zero, in which case it acts as 'noc'.
183 'none' prevents output.
185 FORMAT is the L<printf(3)>-style format specifier (without the
186 leading '%') to use to print the times. It defaults to '5.2f'.
188 =back
190 =head2 Optional Exports
192 The following routines will be exported into your namespace
193 if you specifically ask that they be imported:
195 =over 10
197 =item clearcache ( COUNT )
199 Clear the cached time for COUNT rounds of the null loop.
201 =item clearallcache ( )
203 Clear all cached times.
205 =item cmpthese ( COUNT, CODEHASHREF, [ STYLE ] )
207 =item cmpthese ( RESULTSHASHREF, [ STYLE ] )
209 Optionally calls timethese(), then outputs comparison chart. This:
211 cmpthese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
213 outputs a chart like:
215 Rate b a
216 b 2831802/s -- -61%
217 a 7208959/s 155% --
219 This chart is sorted from slowest to fastest, and shows the percent speed
220 difference between each pair of tests.
222 c<cmpthese> can also be passed the data structure that timethese() returns:
224 $results = timethese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
225 cmpthese( $results );
227 in case you want to see both sets of results.
229 Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the
230 above chart, including labels. This:
232 my $rows = cmpthese( -1, { a => '++$i', b => '$i *= 2' }, "none" );
234 returns a data structure like:
237 [ '', 'Rate', 'b', 'a' ],
238 [ 'b', '2885232/s', '--', '-59%' ],
239 [ 'a', '7099126/s', '146%', '--' ],
242 B<NOTE>: This result value differs from previous versions, which returned
243 the C<timethese()> result structure. If you want that, just use the two
244 statement C<timethese>...C<cmpthese> idiom shown above.
246 Incidently, note the variance in the result values between the two examples;
247 this is typical of benchmarking. If this were a real benchmark, you would
248 probably want to run a lot more iterations.
250 =item countit(TIME, CODE)
252 Arguments: TIME is the minimum length of time to run CODE for, and CODE is
253 the code to run. CODE may be either a code reference or a string to
254 be eval'd; either way it will be run in the caller's package.
256 TIME is I<not> negative. countit() will run the loop many times to
257 calculate the speed of CODE before running it for TIME. The actual
258 time run for will usually be greater than TIME due to system clock
259 resolution, so it's best to look at the number of iterations divided
260 by the times that you are concerned with, not just the iterations.
262 Returns: a Benchmark object.
264 =item disablecache ( )
266 Disable caching of timings for the null loop. This will force Benchmark
267 to recalculate these timings for each new piece of code timed.
269 =item enablecache ( )
271 Enable caching of timings for the null loop. The time taken for COUNT
272 rounds of the null loop will be calculated only once for each
273 different COUNT used.
275 =item timesum ( T1, T2 )
277 Returns the sum of two Benchmark times as a Benchmark object suitable
278 for passing to timestr().
280 =back
282 =head2 :hireswallclock
284 If the Time::HiRes module has been installed, you can specify the
285 special tag C<:hireswallclock> for Benchmark (if Time::HiRes is not
286 available, the tag will be silently ignored). This tag will cause the
287 wallclock time to be measured in microseconds, instead of integer
288 seconds. Note though that the speed computations are still conducted
289 in CPU time, not wallclock time.
291 =head1 NOTES
293 The data is stored as a list of values from the time and times
294 functions:
296 ($real, $user, $system, $children_user, $children_system, $iters)
298 in seconds for the whole loop (not divided by the number of rounds).
300 The timing is done using time(3) and times(3).
302 Code is executed in the caller's package.
304 The time of the null loop (a loop with the same
305 number of rounds but empty loop body) is subtracted
306 from the time of the real loop.
308 The null loop times can be cached, the key being the
309 number of rounds. The caching can be controlled using
310 calls like these:
312 clearcache($key);
313 clearallcache();
315 disablecache();
316 enablecache();
318 Caching is off by default, as it can (usually slightly) decrease
319 accuracy and does not usually noticably affect runtimes.
321 =head1 EXAMPLES
323 For example,
325 use Benchmark qw( cmpthese ) ;
326 $x = 3;
327 cmpthese( -5, {
328 a => sub{$x*$x},
329 b => sub{$x**2},
330 } );
332 outputs something like this:
334 Benchmark: running a, b, each for at least 5 CPU seconds...
335 Rate b a
336 b 1559428/s -- -62%
337 a 4152037/s 166% --
340 while
342 use Benchmark qw( timethese cmpthese ) ;
343 $x = 3;
344 $r = timethese( -5, {
345 a => sub{$x*$x},
346 b => sub{$x**2},
347 } );
348 cmpthese $r;
350 outputs something like this:
352 Benchmark: running a, b, each for at least 5 CPU seconds...
353 a: 10 wallclock secs ( 5.14 usr + 0.13 sys = 5.27 CPU) @ 3835055.60/s (n=20210743)
354 b: 5 wallclock secs ( 5.41 usr + 0.00 sys = 5.41 CPU) @ 1574944.92/s (n=8520452)
355 Rate b a
356 b 1574945/s -- -59%
357 a 3835056/s 144% --
360 =head1 INHERITANCE
362 Benchmark inherits from no other class, except of course
363 for Exporter.
365 =head1 CAVEATS
367 Comparing eval'd strings with code references will give you
368 inaccurate results: a code reference will show a slightly slower
369 execution time than the equivalent eval'd string.
371 The real time timing is done using time(2) and
372 the granularity is therefore only one second.
374 Short tests may produce negative figures because perl
375 can appear to take longer to execute the empty loop
376 than a short test; try:
378 timethis(100,'1');
380 The system time of the null loop might be slightly
381 more than the system time of the loop with the actual
382 code and therefore the difference might end up being E<lt> 0.
384 =head1 SEE ALSO
386 L<Devel::DProf> - a Perl code profiler
388 =head1 AUTHORS
390 Jarkko Hietaniemi <F<jhi@iki.fi>>, Tim Bunce <F<Tim.Bunce@ig.co.uk>>
392 =head1 MODIFICATION HISTORY
394 September 8th, 1994; by Tim Bunce.
396 March 28th, 1997; by Hugo van der Sanden: added support for code
397 references and the already documented 'debug' method; revamped
398 documentation.
400 April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time
401 functionality.
403 September, 1999; by Barrie Slaymaker: math fixes and accuracy and
404 efficiency tweaks. Added cmpthese(). A result is now returned from
405 timethese(). Exposed countit() (was runfor()).
407 December, 2001; by Nicholas Clark: make timestr() recognise the style 'none'
408 and return an empty string. If cmpthese is calling timethese, make it pass the
409 style in. (so that 'none' will suppress output). Make sub new dump its
410 debugging output to STDERR, to be consistent with everything else.
411 All bugs found while writing a regression test.
413 September, 2002; by Jarkko Hietaniemi: add ':hireswallclock' special tag.
415 February, 2004; by Chia-liang Kao: make cmpthese and timestr use time
416 statistics for children instead of parent when the style is 'nop'.
418 =cut
420 # evaluate something in a clean lexical environment
421 sub _doeval { no strict; eval shift }
424 # put any lexicals at file scope AFTER here
427 use Carp;
428 use Exporter;
430 our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION);
432 @ISA=qw(Exporter);
433 @EXPORT=qw(timeit timethis timethese timediff timestr);
434 @EXPORT_OK=qw(timesum cmpthese countit
435 clearcache clearallcache disablecache enablecache);
436 %EXPORT_TAGS=( all => [ @EXPORT, @EXPORT_OK ] ) ;
438 $VERSION = 1.07;
440 # --- ':hireswallclock' special handling
442 my $hirestime;
444 sub mytime () { time }
446 init();
448 sub BEGIN {
449 if (eval 'require Time::HiRes') {
450 import Time::HiRes qw(time);
451 $hirestime = \&Time::HiRes::time;
455 sub import {
456 my $class = shift;
457 if (grep { $_ eq ":hireswallclock" } @_) {
458 @_ = grep { $_ ne ":hireswallclock" } @_;
459 *mytime = $hirestime if defined $hirestime;
461 Benchmark->export_to_level(1, $class, @_);
464 our($Debug, $Min_Count, $Min_CPU, $Default_Format, $Default_Style,
465 %_Usage, %Cache, $Do_Cache);
467 sub init {
468 $Debug = 0;
469 $Min_Count = 4;
470 $Min_CPU = 0.4;
471 $Default_Format = '5.2f';
472 $Default_Style = 'auto';
473 # The cache can cause a slight loss of sys time accuracy. If a
474 # user does many tests (>10) with *very* large counts (>10000)
475 # or works on a very slow machine the cache may be useful.
476 disablecache();
477 clearallcache();
480 sub debug { $Debug = ($_[1] != 0); }
482 sub usage {
483 my $calling_sub = (caller(1))[3];
484 $calling_sub =~ s/^Benchmark:://;
485 return $_Usage{$calling_sub} || '';
488 # The cache needs two branches: 's' for strings and 'c' for code. The
489 # empty loop is different in these two cases.
491 $_Usage{clearcache} = <<'USAGE';
492 usage: clearcache($count);
493 USAGE
495 sub clearcache {
496 die usage unless @_ == 1;
497 delete $Cache{"$_[0]c"}; delete $Cache{"$_[0]s"};
500 $_Usage{clearallcache} = <<'USAGE';
501 usage: clearallcache();
502 USAGE
504 sub clearallcache {
505 die usage if @_;
506 %Cache = ();
509 $_Usage{enablecache} = <<'USAGE';
510 usage: enablecache();
511 USAGE
513 sub enablecache {
514 die usage if @_;
515 $Do_Cache = 1;
518 $_Usage{disablecache} = <<'USAGE';
519 usage: disablecache();
520 USAGE
522 sub disablecache {
523 die usage if @_;
524 $Do_Cache = 0;
528 # --- Functions to process the 'time' data type
530 sub new { my @t = (mytime, times, @_ == 2 ? $_[1] : 0);
531 print STDERR "new=@t\n" if $Debug;
532 bless \@t; }
534 sub cpu_p { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps ; }
535 sub cpu_c { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $cu+$cs ; }
536 sub cpu_a { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps+$cu+$cs ; }
537 sub real { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $r ; }
538 sub iters { $_[0]->[5] ; }
541 $_Usage{timediff} = <<'USAGE';
542 usage: $result_diff = timediff($result1, $result2);
543 USAGE
545 sub timediff {
546 my($a, $b) = @_;
548 die usage unless ref $a and ref $b;
550 my @r;
551 for (my $i=0; $i < @$a; ++$i) {
552 push(@r, $a->[$i] - $b->[$i]);
554 bless \@r;
557 $_Usage{timesum} = <<'USAGE';
558 usage: $sum = timesum($result1, $result2);
559 USAGE
561 sub timesum {
562 my($a, $b) = @_;
564 die usage unless ref $a and ref $b;
566 my @r;
567 for (my $i=0; $i < @$a; ++$i) {
568 push(@r, $a->[$i] + $b->[$i]);
570 bless \@r;
574 $_Usage{timestr} = <<'USAGE';
575 usage: $formatted_result = timestr($result1);
576 USAGE
578 sub timestr {
579 my($tr, $style, $f) = @_;
581 die usage unless ref $tr;
583 my @t = @$tr;
584 warn "bad time value (@t)" unless @t==6;
585 my($r, $pu, $ps, $cu, $cs, $n) = @t;
586 my($pt, $ct, $tt) = ($tr->cpu_p, $tr->cpu_c, $tr->cpu_a);
587 $f = $Default_Format unless defined $f;
588 # format a time in the required style, other formats may be added here
589 $style ||= $Default_Style;
590 return '' if $style eq 'none';
591 $style = ($ct>0) ? 'all' : 'noc' if $style eq 'auto';
592 my $s = "@t $style"; # default for unknown style
593 my $w = $hirestime ? "%2g" : "%2d";
594 $s=sprintf("$w wallclock secs (%$f usr %$f sys + %$f cusr %$f csys = %$f CPU)",
595 $r,$pu,$ps,$cu,$cs,$tt) if $style eq 'all';
596 $s=sprintf("$w wallclock secs (%$f usr + %$f sys = %$f CPU)",
597 $r,$pu,$ps,$pt) if $style eq 'noc';
598 $s=sprintf("$w wallclock secs (%$f cusr + %$f csys = %$f CPU)",
599 $r,$cu,$cs,$ct) if $style eq 'nop';
600 $s .= sprintf(" @ %$f/s (n=$n)", $n / ( $style eq 'nop' ? $cu + $cs : $pu + $ps ))
601 if $n && ($style eq 'nop' ? $cu+$cs : $pu+$ps);
605 sub timedebug {
606 my($msg, $t) = @_;
607 print STDERR "$msg",timestr($t),"\n" if $Debug;
610 # --- Functions implementing low-level support for timing loops
612 $_Usage{runloop} = <<'USAGE';
613 usage: runloop($number, [$string | $coderef])
614 USAGE
616 sub runloop {
617 my($n, $c) = @_;
619 $n+=0; # force numeric now, so garbage won't creep into the eval
620 croak "negative loopcount $n" if $n<0;
621 confess usage unless defined $c;
622 my($t0, $t1, $td); # before, after, difference
624 # find package of caller so we can execute code there
625 my($curpack) = caller(0);
626 my($i, $pack)= 0;
627 while (($pack) = caller(++$i)) {
628 last if $pack ne $curpack;
631 my ($subcode, $subref);
632 if (ref $c eq 'CODE') {
633 $subcode = "sub { for (1 .. $n) { local \$_; package $pack; &\$c; } }";
634 $subref = eval $subcode;
636 else {
637 $subcode = "sub { for (1 .. $n) { local \$_; package $pack; $c;} }";
638 $subref = _doeval($subcode);
640 croak "runloop unable to compile '$c': $@\ncode: $subcode\n" if $@;
641 print STDERR "runloop $n '$subcode'\n" if $Debug;
643 # Wait for the user timer to tick. This makes the error range more like
644 # -0.01, +0. If we don't wait, then it's more like -0.01, +0.01. This
645 # may not seem important, but it significantly reduces the chances of
646 # getting a too low initial $n in the initial, 'find the minimum' loop
647 # in &countit. This, in turn, can reduce the number of calls to
648 # &runloop a lot, and thus reduce additive errors.
649 my $tbase = Benchmark->new(0)->[1];
650 while ( ( $t0 = Benchmark->new(0) )->[1] == $tbase ) {} ;
651 $subref->();
652 $t1 = Benchmark->new($n);
653 $td = &timediff($t1, $t0);
654 timedebug("runloop:",$td);
655 $td;
658 $_Usage{timeit} = <<'USAGE';
659 usage: $result = timeit($count, 'code' ); or
660 $result = timeit($count, sub { code } );
661 USAGE
663 sub timeit {
664 my($n, $code) = @_;
665 my($wn, $wc, $wd);
667 die usage unless defined $code and
668 (!ref $code or ref $code eq 'CODE');
670 printf STDERR "timeit $n $code\n" if $Debug;
671 my $cache_key = $n . ( ref( $code ) ? 'c' : 's' );
672 if ($Do_Cache && exists $Cache{$cache_key} ) {
673 $wn = $Cache{$cache_key};
674 } else {
675 $wn = &runloop($n, ref( $code ) ? sub { } : '' );
676 # Can't let our baseline have any iterations, or they get subtracted
677 # out of the result.
678 $wn->[5] = 0;
679 $Cache{$cache_key} = $wn;
682 $wc = &runloop($n, $code);
684 $wd = timediff($wc, $wn);
685 timedebug("timeit: ",$wc);
686 timedebug(" - ",$wn);
687 timedebug(" = ",$wd);
689 $wd;
693 my $default_for = 3;
694 my $min_for = 0.1;
697 $_Usage{countit} = <<'USAGE';
698 usage: $result = countit($time, 'code' ); or
699 $result = countit($time, sub { code } );
700 USAGE
702 sub countit {
703 my ( $tmax, $code ) = @_;
705 die usage unless @_;
707 if ( not defined $tmax or $tmax == 0 ) {
708 $tmax = $default_for;
709 } elsif ( $tmax < 0 ) {
710 $tmax = -$tmax;
713 die "countit($tmax, ...): timelimit cannot be less than $min_for.\n"
714 if $tmax < $min_for;
716 my ($n, $tc);
718 # First find the minimum $n that gives a significant timing.
719 for ($n = 1; ; $n *= 2 ) {
720 my $td = timeit($n, $code);
721 $tc = $td->[1] + $td->[2];
722 last if $tc > 0.1;
725 my $nmin = $n;
727 # Get $n high enough that we can guess the final $n with some accuracy.
728 my $tpra = 0.1 * $tmax; # Target/time practice.
729 while ( $tc < $tpra ) {
730 # The 5% fudge is to keep us from iterating again all
731 # that often (this speeds overall responsiveness when $tmax is big
732 # and we guess a little low). This does not noticably affect
733 # accuracy since we're not couting these times.
734 $n = int( $tpra * 1.05 * $n / $tc ); # Linear approximation.
735 my $td = timeit($n, $code);
736 my $new_tc = $td->[1] + $td->[2];
737 # Make sure we are making progress.
738 $tc = $new_tc > 1.2 * $tc ? $new_tc : 1.2 * $tc;
741 # Now, do the 'for real' timing(s), repeating until we exceed
742 # the max.
743 my $ntot = 0;
744 my $rtot = 0;
745 my $utot = 0.0;
746 my $stot = 0.0;
747 my $cutot = 0.0;
748 my $cstot = 0.0;
749 my $ttot = 0.0;
751 # The 5% fudge is because $n is often a few % low even for routines
752 # with stable times and avoiding extra timeit()s is nice for
753 # accuracy's sake.
754 $n = int( $n * ( 1.05 * $tmax / $tc ) );
756 while () {
757 my $td = timeit($n, $code);
758 $ntot += $n;
759 $rtot += $td->[0];
760 $utot += $td->[1];
761 $stot += $td->[2];
762 $cutot += $td->[3];
763 $cstot += $td->[4];
764 $ttot = $utot + $stot;
765 last if $ttot >= $tmax;
767 $ttot = 0.01 if $ttot < 0.01;
768 my $r = $tmax / $ttot - 1; # Linear approximation.
769 $n = int( $r * $ntot );
770 $n = $nmin if $n < $nmin;
773 return bless [ $rtot, $utot, $stot, $cutot, $cstot, $ntot ];
776 # --- Functions implementing high-level time-then-print utilities
778 sub n_to_for {
779 my $n = shift;
780 return $n == 0 ? $default_for : $n < 0 ? -$n : undef;
783 $_Usage{timethis} = <<'USAGE';
784 usage: $result = timethis($time, 'code' ); or
785 $result = timethis($time, sub { code } );
786 USAGE
788 sub timethis{
789 my($n, $code, $title, $style) = @_;
790 my($t, $forn);
792 die usage unless defined $code and
793 (!ref $code or ref $code eq 'CODE');
795 if ( $n > 0 ) {
796 croak "non-integer loopcount $n, stopped" if int($n)<$n;
797 $t = timeit($n, $code);
798 $title = "timethis $n" unless defined $title;
799 } else {
800 my $fort = n_to_for( $n );
801 $t = countit( $fort, $code );
802 $title = "timethis for $fort" unless defined $title;
803 $forn = $t->[-1];
805 local $| = 1;
806 $style = "" unless defined $style;
807 printf("%10s: ", $title) unless $style eq 'none';
808 print timestr($t, $style, $Default_Format),"\n" unless $style eq 'none';
810 $n = $forn if defined $forn;
812 # A conservative warning to spot very silly tests.
813 # Don't assume that your benchmark is ok simply because
814 # you don't get this warning!
815 print " (warning: too few iterations for a reliable count)\n"
816 if $n < $Min_Count
817 || ($t->real < 1 && $n < 1000)
818 || $t->cpu_a < $Min_CPU;
823 $_Usage{timethese} = <<'USAGE';
824 usage: timethese($count, { Name1 => 'code1', ... }); or
825 timethese($count, { Name1 => sub { code1 }, ... });
826 USAGE
828 sub timethese{
829 my($n, $alt, $style) = @_;
830 die usage unless ref $alt eq 'HASH';
832 my @names = sort keys %$alt;
833 $style = "" unless defined $style;
834 print "Benchmark: " unless $style eq 'none';
835 if ( $n > 0 ) {
836 croak "non-integer loopcount $n, stopped" if int($n)<$n;
837 print "timing $n iterations of" unless $style eq 'none';
838 } else {
839 print "running" unless $style eq 'none';
841 print " ", join(', ',@names) unless $style eq 'none';
842 unless ( $n > 0 ) {
843 my $for = n_to_for( $n );
844 print ", each" if $n > 1 && $style ne 'none';
845 print " for at least $for CPU seconds" unless $style eq 'none';
847 print "...\n" unless $style eq 'none';
849 # we could save the results in an array and produce a summary here
850 # sum, min, max, avg etc etc
851 my %results;
852 foreach my $name (@names) {
853 $results{$name} = timethis ($n, $alt -> {$name}, $name, $style);
856 return \%results;
860 $_Usage{cmpthese} = <<'USAGE';
861 usage: cmpthese($count, { Name1 => 'code1', ... }); or
862 cmpthese($count, { Name1 => sub { code1 }, ... }); or
863 cmpthese($result, $style);
864 USAGE
866 sub cmpthese{
867 my ($results, $style);
869 if( ref $_[0] ) {
870 ($results, $style) = @_;
872 else {
873 my($count, $code) = @_[0,1];
874 $style = $_[2] if defined $_[2];
876 die usage unless ref $code eq 'HASH';
878 $results = timethese($count, $code, ($style || "none"));
881 $style = "" unless defined $style;
883 # Flatten in to an array of arrays with the name as the first field
884 my @vals = map{ [ $_, @{$results->{$_}} ] } keys %$results;
886 for (@vals) {
887 # The epsilon fudge here is to prevent div by 0. Since clock
888 # resolutions are much larger, it's below the noise floor.
889 my $rate = $_->[6] / (( $style eq 'nop' ? $_->[4] + $_->[5]
890 : $_->[2] + $_->[3]) + 0.000000000000001 );
891 $_->[7] = $rate;
894 # Sort by rate
895 @vals = sort { $a->[7] <=> $b->[7] } @vals;
897 # If more than half of the rates are greater than one...
898 my $display_as_rate = @vals ? ($vals[$#vals>>1]->[7] > 1) : 0;
900 my @rows;
901 my @col_widths;
903 my @top_row = (
904 '',
905 $display_as_rate ? 'Rate' : 's/iter',
906 map { $_->[0] } @vals
909 push @rows, \@top_row;
910 @col_widths = map { length( $_ ) } @top_row;
912 # Build the data rows
913 # We leave the last column in even though it never has any data. Perhaps
914 # it should go away. Also, perhaps a style for a single column of
915 # percentages might be nice.
916 for my $row_val ( @vals ) {
917 my @row;
919 # Column 0 = test name
920 push @row, $row_val->[0];
921 $col_widths[0] = length( $row_val->[0] )
922 if length( $row_val->[0] ) > $col_widths[0];
924 # Column 1 = performance
925 my $row_rate = $row_val->[7];
927 # We assume that we'll never get a 0 rate.
928 my $rate = $display_as_rate ? $row_rate : 1 / $row_rate;
930 # Only give a few decimal places before switching to sci. notation,
931 # since the results aren't usually that accurate anyway.
932 my $format =
933 $rate >= 100 ?
934 "%0.0f" :
935 $rate >= 10 ?
936 "%0.1f" :
937 $rate >= 1 ?
938 "%0.2f" :
939 $rate >= 0.1 ?
940 "%0.3f" :
941 "%0.2e";
943 $format .= "/s"
944 if $display_as_rate;
946 my $formatted_rate = sprintf( $format, $rate );
947 push @row, $formatted_rate;
948 $col_widths[1] = length( $formatted_rate )
949 if length( $formatted_rate ) > $col_widths[1];
951 # Columns 2..N = performance ratios
952 my $skip_rest = 0;
953 for ( my $col_num = 0 ; $col_num < @vals ; ++$col_num ) {
954 my $col_val = $vals[$col_num];
955 my $out;
956 if ( $skip_rest ) {
957 $out = '';
959 elsif ( $col_val->[0] eq $row_val->[0] ) {
960 $out = "--";
961 # $skip_rest = 1;
963 else {
964 my $col_rate = $col_val->[7];
965 $out = sprintf( "%.0f%%", 100*$row_rate/$col_rate - 100 );
967 push @row, $out;
968 $col_widths[$col_num+2] = length( $out )
969 if length( $out ) > $col_widths[$col_num+2];
971 # A little wierdness to set the first column width properly
972 $col_widths[$col_num+2] = length( $col_val->[0] )
973 if length( $col_val->[0] ) > $col_widths[$col_num+2];
975 push @rows, \@row;
978 return \@rows if $style eq "none";
980 # Equalize column widths in the chart as much as possible without
981 # exceeding 80 characters. This does not use or affect cols 0 or 1.
982 my @sorted_width_refs =
983 sort { $$a <=> $$b } map { \$_ } @col_widths[2..$#col_widths];
984 my $max_width = ${$sorted_width_refs[-1]};
986 my $total = @col_widths - 1 ;
987 for ( @col_widths ) { $total += $_ }
989 STRETCHER:
990 while ( $total < 80 ) {
991 my $min_width = ${$sorted_width_refs[0]};
992 last
993 if $min_width == $max_width;
994 for ( @sorted_width_refs ) {
995 last
996 if $$_ > $min_width;
997 ++$$_;
998 ++$total;
999 last STRETCHER
1000 if $total >= 80;
1004 # Dump the output
1005 my $format = join( ' ', map { "%${_}s" } @col_widths ) . "\n";
1006 substr( $format, 1, 0 ) = '-';
1007 for ( @rows ) {
1008 printf $format, @$_;
1011 return \@rows ;