report if the service creation failed
[mplayer/greg.git] / libaf / af_equalizer.c
blob256c7e7e5d9bdf939c997defca74b31cd0e8dfb0
1 /*=============================================================================
2 //
3 // This software has been released under the terms of the GNU Public
4 // license. See http://www.gnu.org/copyleft/gpl.html for details.
5 //
6 // Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
7 //
8 //=============================================================================
9 */
11 /* Equalizer filter, implementation of a 10 band time domain graphic
12 equalizer using IIR filters. The IIR filters are implemented using a
13 Direct Form II approach, but has been modified (b1 == 0 always) to
14 save computation.
17 #include <stdio.h>
18 #include <stdlib.h>
20 #include <unistd.h>
21 #include <inttypes.h>
22 #include <math.h>
24 #include "af.h"
26 #define L 2 // Storage for filter taps
27 #define KM 10 // Max number of bands
29 #define Q 1.2247449 /* Q value for band-pass filters 1.2247=(3/2)^(1/2)
30 gives 4dB suppression @ Fc*2 and Fc/2 */
32 /* Center frequencies for band-pass filters
33 The different frequency bands are:
34 nr. center frequency
35 0 31.25 Hz
36 1 62.50 Hz
37 2 125.0 Hz
38 3 250.0 Hz
39 4 500.0 Hz
40 5 1.000 kHz
41 6 2.000 kHz
42 7 4.000 kHz
43 8 8.000 kHz
44 9 16.00 kHz
46 #define CF {31.25,62.5,125,250,500,1000,2000,4000,8000,16000}
48 // Maximum and minimum gain for the bands
49 #define G_MAX +12.0
50 #define G_MIN -12.0
52 // Data for specific instances of this filter
53 typedef struct af_equalizer_s
55 float a[KM][L]; // A weights
56 float b[KM][L]; // B weights
57 float wq[AF_NCH][KM][L]; // Circular buffer for W data
58 float g[AF_NCH][KM]; // Gain factor for each channel and band
59 int K; // Number of used eq bands
60 int channels; // Number of channels
61 } af_equalizer_t;
63 // 2nd order Band-pass Filter design
64 static void bp2(float* a, float* b, float fc, float q){
65 double th= 2.0 * M_PI * fc;
66 double C = (1.0 - tan(th*q/2.0))/(1.0 + tan(th*q/2.0));
68 a[0] = (1.0 + C) * cos(th);
69 a[1] = -1 * C;
71 b[0] = (1.0 - C)/2.0;
72 b[1] = -1.0050;
75 // Initialization and runtime control
76 static int control(struct af_instance_s* af, int cmd, void* arg)
78 af_equalizer_t* s = (af_equalizer_t*)af->setup;
80 switch(cmd){
81 case AF_CONTROL_REINIT:{
82 int k =0;
83 float F[KM] = CF;
85 // Sanity check
86 if(!arg) return AF_ERROR;
88 af->data->rate = ((af_data_t*)arg)->rate;
89 af->data->nch = ((af_data_t*)arg)->nch;
90 af->data->format = AF_FORMAT_NE | AF_FORMAT_F;
91 af->data->bps = 4;
93 // Calculate number of active filters
94 s->K=KM;
95 while(F[s->K-1] > (float)af->data->rate/2.2)
96 s->K--;
98 if(s->K != KM)
99 af_msg(AF_MSG_INFO,"[equalizer] Limiting the number of filters to"
100 " %i due to low sample rate.\n",s->K);
102 // Generate filter taps
103 for(k=0;k<s->K;k++)
104 bp2(s->a[k],s->b[k],F[k]/((float)af->data->rate),Q);
106 // Calculate how much this plugin adds to the overall time delay
107 af->delay += 2000.0/((float)af->data->rate);
109 return af_test_output(af,arg);
111 case AF_CONTROL_COMMAND_LINE:{
112 float g[10]={0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
113 int i,j;
114 sscanf((char*)arg,"%f:%f:%f:%f:%f:%f:%f:%f:%f:%f", &g[0], &g[1],
115 &g[2], &g[3], &g[4], &g[5], &g[6], &g[7], &g[8] ,&g[9]);
116 for(i=0;i<AF_NCH;i++){
117 for(j=0;j<KM;j++){
118 ((af_equalizer_t*)af->setup)->g[i][j] =
119 pow(10.0,clamp(g[j],G_MIN,G_MAX)/20.0)-1.0;
122 return AF_OK;
124 case AF_CONTROL_EQUALIZER_GAIN | AF_CONTROL_SET:{
125 float* gain = ((af_control_ext_t*)arg)->arg;
126 int ch = ((af_control_ext_t*)arg)->ch;
127 int k;
128 if(ch > AF_NCH || ch < 0)
129 return AF_ERROR;
131 for(k = 0 ; k<KM ; k++)
132 s->g[ch][k] = pow(10.0,clamp(gain[k],G_MIN,G_MAX)/20.0)-1.0;
134 return AF_OK;
136 case AF_CONTROL_EQUALIZER_GAIN | AF_CONTROL_GET:{
137 float* gain = ((af_control_ext_t*)arg)->arg;
138 int ch = ((af_control_ext_t*)arg)->ch;
139 int k;
140 if(ch > AF_NCH || ch < 0)
141 return AF_ERROR;
143 for(k = 0 ; k<KM ; k++)
144 gain[k] = log10(s->g[ch][k]+1.0) * 20.0;
146 return AF_OK;
149 return AF_UNKNOWN;
152 // Deallocate memory
153 static void uninit(struct af_instance_s* af)
155 if(af->data)
156 free(af->data);
157 if(af->setup)
158 free(af->setup);
161 // Filter data through filter
162 static af_data_t* play(struct af_instance_s* af, af_data_t* data)
164 af_data_t* c = data; // Current working data
165 af_equalizer_t* s = (af_equalizer_t*)af->setup; // Setup
166 uint32_t ci = af->data->nch; // Index for channels
167 uint32_t nch = af->data->nch; // Number of channels
169 while(ci--){
170 float* g = s->g[ci]; // Gain factor
171 float* in = ((float*)c->audio)+ci;
172 float* out = ((float*)c->audio)+ci;
173 float* end = in + c->len/4; // Block loop end
175 while(in < end){
176 register uint32_t k = 0; // Frequency band index
177 register float yt = *in; // Current input sample
178 in+=nch;
180 // Run the filters
181 for(;k<s->K;k++){
182 // Pointer to circular buffer wq
183 register float* wq = s->wq[ci][k];
184 // Calculate output from AR part of current filter
185 register float w=yt*s->b[k][0] + wq[0]*s->a[k][0] + wq[1]*s->a[k][1];
186 // Calculate output form MA part of current filter
187 yt+=(w + wq[1]*s->b[k][1])*g[k];
188 // Update circular buffer
189 wq[1] = wq[0];
190 wq[0] = w;
192 // Calculate output
193 *out=yt/(4.0*10.0);
194 out+=nch;
197 return c;
200 // Allocate memory and set function pointers
201 static int open(af_instance_t* af){
202 af->control=control;
203 af->uninit=uninit;
204 af->play=play;
205 af->mul.n=1;
206 af->mul.d=1;
207 af->data=calloc(1,sizeof(af_data_t));
208 af->setup=calloc(1,sizeof(af_equalizer_t));
209 if(af->data == NULL || af->setup == NULL)
210 return AF_ERROR;
211 return AF_OK;
214 // Description of this filter
215 af_info_t af_info_equalizer = {
216 "Equalizer audio filter",
217 "equalizer",
218 "Anders",
220 AF_FLAGS_NOT_REENTRANT,
221 open