2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
25 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27 {BGR,RGB}{1,4,8,15,16} support dithering
29 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
35 BGR24 -> BGR32 & RGB24 -> RGB32
36 BGR32 -> BGR24 & RGB32 -> RGB24
41 tested special converters (most are tested actually but i didnt write it down ...)
48 untested special converters
49 YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
50 YV12/I420 -> YV12/I420
51 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52 BGR24 -> BGR32 & RGB24 -> RGB32
53 BGR32 -> BGR24 & RGB32 -> RGB24
64 #ifdef HAVE_SYS_MMAN_H
66 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67 #define MAP_ANONYMOUS MAP_ANON
71 #include "swscale_internal.h"
75 #include "libavcodec/opt.h"
84 //#define WORDS_BIGENDIAN
87 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
89 #define RET 0xC3 //near return opcode for X86
92 #define ASSERT(x) assert(x);
100 #define PI 3.14159265358979323846
103 #define isSupportedIn(x) ( \
104 (x)==PIX_FMT_YUV420P \
105 || (x)==PIX_FMT_YUVA420P \
106 || (x)==PIX_FMT_YUYV422 \
107 || (x)==PIX_FMT_UYVY422 \
108 || (x)==PIX_FMT_RGB32 \
109 || (x)==PIX_FMT_BGR24 \
110 || (x)==PIX_FMT_BGR565 \
111 || (x)==PIX_FMT_BGR555 \
112 || (x)==PIX_FMT_BGR32 \
113 || (x)==PIX_FMT_RGB24 \
114 || (x)==PIX_FMT_RGB565 \
115 || (x)==PIX_FMT_RGB555 \
116 || (x)==PIX_FMT_GRAY8 \
117 || (x)==PIX_FMT_YUV410P \
118 || (x)==PIX_FMT_GRAY16BE \
119 || (x)==PIX_FMT_GRAY16LE \
120 || (x)==PIX_FMT_YUV444P \
121 || (x)==PIX_FMT_YUV422P \
122 || (x)==PIX_FMT_YUV411P \
123 || (x)==PIX_FMT_PAL8 \
124 || (x)==PIX_FMT_BGR8 \
125 || (x)==PIX_FMT_RGB8 \
126 || (x)==PIX_FMT_BGR4_BYTE \
127 || (x)==PIX_FMT_RGB4_BYTE \
128 || (x)==PIX_FMT_YUV440P \
130 #define isSupportedOut(x) ( \
131 (x)==PIX_FMT_YUV420P \
132 || (x)==PIX_FMT_YUYV422 \
133 || (x)==PIX_FMT_UYVY422 \
134 || (x)==PIX_FMT_YUV444P \
135 || (x)==PIX_FMT_YUV422P \
136 || (x)==PIX_FMT_YUV411P \
139 || (x)==PIX_FMT_NV12 \
140 || (x)==PIX_FMT_NV21 \
141 || (x)==PIX_FMT_GRAY16BE \
142 || (x)==PIX_FMT_GRAY16LE \
143 || (x)==PIX_FMT_GRAY8 \
144 || (x)==PIX_FMT_YUV410P \
146 #define isPacked(x) ( \
148 || (x)==PIX_FMT_YUYV422 \
149 || (x)==PIX_FMT_UYVY422 \
154 #define RGB2YUV_SHIFT 16
155 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
156 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
157 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
158 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
159 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
160 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
161 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
162 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
163 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
165 extern const int32_t Inverse_Table_6_9
[8][4];
169 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
172 more intelligent misalignment avoidance for the horizontal scaler
173 write special vertical cubic upscale version
174 Optimize C code (yv12 / minmax)
175 add support for packed pixel yuv input & output
176 add support for Y8 output
177 optimize bgr24 & bgr32
178 add BGR4 output support
179 write special BGR->BGR scaler
182 #if defined(ARCH_X86) && defined (CONFIG_GPL)
183 static uint64_t attribute_used
__attribute__((aligned(8))) bF8
= 0xF8F8F8F8F8F8F8F8LL
;
184 static uint64_t attribute_used
__attribute__((aligned(8))) bFC
= 0xFCFCFCFCFCFCFCFCLL
;
185 static uint64_t __attribute__((aligned(8))) w10
= 0x0010001000100010LL
;
186 static uint64_t attribute_used
__attribute__((aligned(8))) w02
= 0x0002000200020002LL
;
187 static uint64_t attribute_used
__attribute__((aligned(8))) bm00001111
=0x00000000FFFFFFFFLL
;
188 static uint64_t attribute_used
__attribute__((aligned(8))) bm00000111
=0x0000000000FFFFFFLL
;
189 static uint64_t attribute_used
__attribute__((aligned(8))) bm11111000
=0xFFFFFFFFFF000000LL
;
190 static uint64_t attribute_used
__attribute__((aligned(8))) bm01010101
=0x00FF00FF00FF00FFLL
;
192 static volatile uint64_t attribute_used
__attribute__((aligned(8))) b5Dither
;
193 static volatile uint64_t attribute_used
__attribute__((aligned(8))) g5Dither
;
194 static volatile uint64_t attribute_used
__attribute__((aligned(8))) g6Dither
;
195 static volatile uint64_t attribute_used
__attribute__((aligned(8))) r5Dither
;
197 static uint64_t __attribute__((aligned(8))) dither4
[2]={
198 0x0103010301030103LL
,
199 0x0200020002000200LL
,};
201 static uint64_t __attribute__((aligned(8))) dither8
[2]={
202 0x0602060206020602LL
,
203 0x0004000400040004LL
,};
205 static uint64_t __attribute__((aligned(8))) b16Mask
= 0x001F001F001F001FLL
;
206 static uint64_t attribute_used
__attribute__((aligned(8))) g16Mask
= 0x07E007E007E007E0LL
;
207 static uint64_t attribute_used
__attribute__((aligned(8))) r16Mask
= 0xF800F800F800F800LL
;
208 static uint64_t __attribute__((aligned(8))) b15Mask
= 0x001F001F001F001FLL
;
209 static uint64_t attribute_used
__attribute__((aligned(8))) g15Mask
= 0x03E003E003E003E0LL
;
210 static uint64_t attribute_used
__attribute__((aligned(8))) r15Mask
= 0x7C007C007C007C00LL
;
212 static uint64_t attribute_used
__attribute__((aligned(8))) M24A
= 0x00FF0000FF0000FFLL
;
213 static uint64_t attribute_used
__attribute__((aligned(8))) M24B
= 0xFF0000FF0000FF00LL
;
214 static uint64_t attribute_used
__attribute__((aligned(8))) M24C
= 0x0000FF0000FF0000LL
;
217 static const uint64_t bgr2YCoeff attribute_used
__attribute__((aligned(8))) = 0x000000210041000DULL
;
218 static const uint64_t bgr2UCoeff attribute_used
__attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL
;
219 static const uint64_t bgr2VCoeff attribute_used
__attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL
;
221 static const uint64_t bgr2YCoeff attribute_used
__attribute__((aligned(8))) = 0x000020E540830C8BULL
;
222 static const uint64_t bgr2UCoeff attribute_used
__attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL
;
223 static const uint64_t bgr2VCoeff attribute_used
__attribute__((aligned(8))) = 0x00003831D0E6F6EAULL
;
224 #endif /* FAST_BGR2YV12 */
225 static const uint64_t bgr2YOffset attribute_used
__attribute__((aligned(8))) = 0x1010101010101010ULL
;
226 static const uint64_t bgr2UVOffset attribute_used
__attribute__((aligned(8))) = 0x8080808080808080ULL
;
227 static const uint64_t w1111 attribute_used
__attribute__((aligned(8))) = 0x0001000100010001ULL
;
228 #endif /* defined(ARCH_X86) */
230 // clipping helper table for C implementations:
231 static unsigned char clip_table
[768];
233 static SwsVector
*sws_getConvVec(SwsVector
*a
, SwsVector
*b
);
235 extern const uint8_t dither_2x2_4
[2][8];
236 extern const uint8_t dither_2x2_8
[2][8];
237 extern const uint8_t dither_8x8_32
[8][8];
238 extern const uint8_t dither_8x8_73
[8][8];
239 extern const uint8_t dither_8x8_220
[8][8];
241 static const char * sws_context_to_name(void * ptr
) {
245 #define OFFSET(x) offsetof(SwsContext, x)
247 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
249 static const AVOption options
[] = {
250 { "sws_flags", "scaler/cpu flags", OFFSET(flags
), FF_OPT_TYPE_FLAGS
, DEFAULT
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
251 { "fast_bilinear", "fast bilinear", 0, FF_OPT_TYPE_CONST
, SWS_FAST_BILINEAR
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
252 { "bilinear", "bilinear", 0, FF_OPT_TYPE_CONST
, SWS_BILINEAR
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
253 { "bicubic", "bicubic", 0, FF_OPT_TYPE_CONST
, SWS_BICUBIC
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
254 { "experimental", "experimental", 0, FF_OPT_TYPE_CONST
, SWS_X
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
255 { "neighbor", "nearest neighbor", 0, FF_OPT_TYPE_CONST
, SWS_POINT
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
256 { "area", "averaging area", 0, FF_OPT_TYPE_CONST
, SWS_AREA
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
257 { "bicublin", "luma bicubic, chroma bilinear", 0, FF_OPT_TYPE_CONST
, SWS_BICUBLIN
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
258 { "gauss", "gaussian", 0, FF_OPT_TYPE_CONST
, SWS_GAUSS
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
259 { "sinc", "sinc", 0, FF_OPT_TYPE_CONST
, SWS_SINC
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
260 { "lanczos", "lanczos", 0, FF_OPT_TYPE_CONST
, SWS_LANCZOS
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
261 { "spline", "natural bicubic spline", 0, FF_OPT_TYPE_CONST
, SWS_SPLINE
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
262 { "print_info", "print info", 0, FF_OPT_TYPE_CONST
, SWS_PRINT_INFO
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
263 { "accurate_rnd", "accurate rounding", 0, FF_OPT_TYPE_CONST
, SWS_ACCURATE_RND
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
264 { "mmx", "MMX SIMD acceleration", 0, FF_OPT_TYPE_CONST
, SWS_CPU_CAPS_MMX
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
265 { "mmx2", "MMX2 SIMD acceleration", 0, FF_OPT_TYPE_CONST
, SWS_CPU_CAPS_MMX2
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
266 { "3dnow", "3DNOW SIMD acceleration", 0, FF_OPT_TYPE_CONST
, SWS_CPU_CAPS_3DNOW
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
267 { "altivec", "AltiVec SIMD acceleration", 0, FF_OPT_TYPE_CONST
, SWS_CPU_CAPS_ALTIVEC
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
268 { "bfin", "Blackfin SIMD acceleration", 0, FF_OPT_TYPE_CONST
, SWS_CPU_CAPS_BFIN
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
269 { "full_chroma_int", "full chroma interpolation", 0 , FF_OPT_TYPE_CONST
, SWS_FULL_CHR_H_INT
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
270 { "full_chroma_inp", "full chroma input", 0 , FF_OPT_TYPE_CONST
, SWS_FULL_CHR_H_INP
, INT_MIN
, INT_MAX
, VE
, "sws_flags" },
277 static AVClass sws_context_class
= { "SWScaler", sws_context_to_name
, options
};
279 char *sws_format_name(enum PixelFormat format
)
282 case PIX_FMT_YUV420P
:
284 case PIX_FMT_YUVA420P
:
286 case PIX_FMT_YUYV422
:
292 case PIX_FMT_YUV422P
:
294 case PIX_FMT_YUV444P
:
298 case PIX_FMT_YUV410P
:
300 case PIX_FMT_YUV411P
:
306 case PIX_FMT_GRAY16BE
:
308 case PIX_FMT_GRAY16LE
:
312 case PIX_FMT_MONOWHITE
:
314 case PIX_FMT_MONOBLACK
:
318 case PIX_FMT_YUVJ420P
:
320 case PIX_FMT_YUVJ422P
:
322 case PIX_FMT_YUVJ444P
:
324 case PIX_FMT_XVMC_MPEG2_MC
:
325 return "xvmc_mpeg2_mc";
326 case PIX_FMT_XVMC_MPEG2_IDCT
:
327 return "xvmc_mpeg2_idct";
328 case PIX_FMT_UYVY422
:
330 case PIX_FMT_UYYVYY411
:
332 case PIX_FMT_RGB32_1
:
334 case PIX_FMT_BGR32_1
:
346 case PIX_FMT_BGR4_BYTE
:
352 case PIX_FMT_RGB4_BYTE
:
358 case PIX_FMT_YUV440P
:
361 return "Unknown format";
365 #if defined(ARCH_X86) && defined (CONFIG_GPL)
366 void in_asm_used_var_warning_killer()
368 volatile int i
= bF8
+bFC
+w10
+
369 bm00001111
+bm00000111
+bm11111000
+b16Mask
+g16Mask
+r16Mask
+b15Mask
+g15Mask
+r15Mask
+
370 M24A
+M24B
+M24C
+w02
+ b5Dither
+g5Dither
+r5Dither
+g6Dither
+dither4
[0]+dither8
[0]+bm01010101
;
375 static inline void yuv2yuvXinC(int16_t *lumFilter
, int16_t **lumSrc
, int lumFilterSize
,
376 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
377 uint8_t *dest
, uint8_t *uDest
, uint8_t *vDest
, int dstW
, int chrDstW
)
379 //FIXME Optimize (just quickly writen not opti..)
381 for (i
=0; i
<dstW
; i
++)
385 for (j
=0; j
<lumFilterSize
; j
++)
386 val
+= lumSrc
[j
][i
] * lumFilter
[j
];
388 dest
[i
]= av_clip_uint8(val
>>19);
392 for (i
=0; i
<chrDstW
; i
++)
397 for (j
=0; j
<chrFilterSize
; j
++)
399 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
400 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
403 uDest
[i
]= av_clip_uint8(u
>>19);
404 vDest
[i
]= av_clip_uint8(v
>>19);
408 static inline void yuv2nv12XinC(int16_t *lumFilter
, int16_t **lumSrc
, int lumFilterSize
,
409 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
410 uint8_t *dest
, uint8_t *uDest
, int dstW
, int chrDstW
, int dstFormat
)
412 //FIXME Optimize (just quickly writen not opti..)
414 for (i
=0; i
<dstW
; i
++)
418 for (j
=0; j
<lumFilterSize
; j
++)
419 val
+= lumSrc
[j
][i
] * lumFilter
[j
];
421 dest
[i
]= av_clip_uint8(val
>>19);
427 if (dstFormat
== PIX_FMT_NV12
)
428 for (i
=0; i
<chrDstW
; i
++)
433 for (j
=0; j
<chrFilterSize
; j
++)
435 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
436 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
439 uDest
[2*i
]= av_clip_uint8(u
>>19);
440 uDest
[2*i
+1]= av_clip_uint8(v
>>19);
443 for (i
=0; i
<chrDstW
; i
++)
448 for (j
=0; j
<chrFilterSize
; j
++)
450 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
451 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
454 uDest
[2*i
]= av_clip_uint8(v
>>19);
455 uDest
[2*i
+1]= av_clip_uint8(u
>>19);
459 #define YSCALE_YUV_2_PACKEDX_C(type) \
460 for (i=0; i<(dstW>>1); i++){\
466 type av_unused *r, *b, *g;\
469 for (j=0; j<lumFilterSize; j++)\
471 Y1 += lumSrc[j][i2] * lumFilter[j];\
472 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
474 for (j=0; j<chrFilterSize; j++)\
476 U += chrSrc[j][i] * chrFilter[j];\
477 V += chrSrc[j][i+2048] * chrFilter[j];\
483 if ((Y1|Y2|U|V)&256)\
485 if (Y1>255) Y1=255; \
486 else if (Y1<0)Y1=0; \
487 if (Y2>255) Y2=255; \
488 else if (Y2<0)Y2=0; \
495 #define YSCALE_YUV_2_RGBX_C(type) \
496 YSCALE_YUV_2_PACKEDX_C(type) \
497 r = (type *)c->table_rV[V]; \
498 g = (type *)(c->table_gU[U] + c->table_gV[V]); \
499 b = (type *)c->table_bU[U]; \
501 #define YSCALE_YUV_2_PACKED2_C \
502 for (i=0; i<(dstW>>1); i++){ \
504 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
505 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
506 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
507 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19; \
509 #define YSCALE_YUV_2_RGB2_C(type) \
510 YSCALE_YUV_2_PACKED2_C\
512 r = (type *)c->table_rV[V];\
513 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
514 b = (type *)c->table_bU[U];\
516 #define YSCALE_YUV_2_PACKED1_C \
517 for (i=0; i<(dstW>>1); i++){\
519 int Y1= buf0[i2 ]>>7;\
520 int Y2= buf0[i2+1]>>7;\
521 int U= (uvbuf1[i ])>>7;\
522 int V= (uvbuf1[i+2048])>>7;\
524 #define YSCALE_YUV_2_RGB1_C(type) \
525 YSCALE_YUV_2_PACKED1_C\
527 r = (type *)c->table_rV[V];\
528 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
529 b = (type *)c->table_bU[U];\
531 #define YSCALE_YUV_2_PACKED1B_C \
532 for (i=0; i<(dstW>>1); i++){\
534 int Y1= buf0[i2 ]>>7;\
535 int Y2= buf0[i2+1]>>7;\
536 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
537 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
539 #define YSCALE_YUV_2_RGB1B_C(type) \
540 YSCALE_YUV_2_PACKED1B_C\
542 r = (type *)c->table_rV[V];\
543 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
544 b = (type *)c->table_bU[U];\
546 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
547 switch(c->dstFormat)\
552 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
553 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
558 ((uint8_t*)dest)[0]= r[Y1];\
559 ((uint8_t*)dest)[1]= g[Y1];\
560 ((uint8_t*)dest)[2]= b[Y1];\
561 ((uint8_t*)dest)[3]= r[Y2];\
562 ((uint8_t*)dest)[4]= g[Y2];\
563 ((uint8_t*)dest)[5]= b[Y2];\
569 ((uint8_t*)dest)[0]= b[Y1];\
570 ((uint8_t*)dest)[1]= g[Y1];\
571 ((uint8_t*)dest)[2]= r[Y1];\
572 ((uint8_t*)dest)[3]= b[Y2];\
573 ((uint8_t*)dest)[4]= g[Y2];\
574 ((uint8_t*)dest)[5]= r[Y2];\
578 case PIX_FMT_RGB565:\
579 case PIX_FMT_BGR565:\
581 const int dr1= dither_2x2_8[y&1 ][0];\
582 const int dg1= dither_2x2_4[y&1 ][0];\
583 const int db1= dither_2x2_8[(y&1)^1][0];\
584 const int dr2= dither_2x2_8[y&1 ][1];\
585 const int dg2= dither_2x2_4[y&1 ][1];\
586 const int db2= dither_2x2_8[(y&1)^1][1];\
588 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
589 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
593 case PIX_FMT_RGB555:\
594 case PIX_FMT_BGR555:\
596 const int dr1= dither_2x2_8[y&1 ][0];\
597 const int dg1= dither_2x2_8[y&1 ][1];\
598 const int db1= dither_2x2_8[(y&1)^1][0];\
599 const int dr2= dither_2x2_8[y&1 ][1];\
600 const int dg2= dither_2x2_8[y&1 ][0];\
601 const int db2= dither_2x2_8[(y&1)^1][1];\
603 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
604 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
611 const uint8_t * const d64= dither_8x8_73[y&7];\
612 const uint8_t * const d32= dither_8x8_32[y&7];\
614 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
615 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
622 const uint8_t * const d64= dither_8x8_73 [y&7];\
623 const uint8_t * const d128=dither_8x8_220[y&7];\
625 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
626 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
630 case PIX_FMT_RGB4_BYTE:\
631 case PIX_FMT_BGR4_BYTE:\
633 const uint8_t * const d64= dither_8x8_73 [y&7];\
634 const uint8_t * const d128=dither_8x8_220[y&7];\
636 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
637 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
641 case PIX_FMT_MONOBLACK:\
643 const uint8_t * const d128=dither_8x8_220[y&7];\
644 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
645 for (i=0; i<dstW-7; i+=8){\
647 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
648 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
649 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
650 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
651 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
652 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
653 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
654 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
655 ((uint8_t*)dest)[0]= acc;\
660 ((uint8_t*)dest)-= dstW>>4;\
664 static int top[1024];\
665 static int last_new[1024][1024];\
666 static int last_in3[1024][1024];\
667 static int drift[1024][1024];\
671 const uint8_t * const d128=dither_8x8_220[y&7];\
676 for (i=dstW>>1; i<dstW; i++){\
677 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
678 int in2 = (76309 * (in - 16) + 32768) >> 16;\
679 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
680 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
681 + (last_new[y][i] - in3)*f/256;\
682 int new= old> 128 ? 255 : 0;\
684 error_new+= FFABS(last_new[y][i] - new);\
685 error_in3+= FFABS(last_in3[y][i] - in3);\
686 f= error_new - error_in3*4;\
691 left= top[i]= old - new;\
692 last_new[y][i]= new;\
693 last_in3[y][i]= in3;\
695 acc+= acc + (new&1);\
697 ((uint8_t*)dest)[0]= acc;\
705 case PIX_FMT_YUYV422:\
707 ((uint8_t*)dest)[2*i2+0]= Y1;\
708 ((uint8_t*)dest)[2*i2+1]= U;\
709 ((uint8_t*)dest)[2*i2+2]= Y2;\
710 ((uint8_t*)dest)[2*i2+3]= V;\
713 case PIX_FMT_UYVY422:\
715 ((uint8_t*)dest)[2*i2+0]= U;\
716 ((uint8_t*)dest)[2*i2+1]= Y1;\
717 ((uint8_t*)dest)[2*i2+2]= V;\
718 ((uint8_t*)dest)[2*i2+3]= Y2;\
724 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
725 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
726 uint8_t *dest
, int dstW
, int y
)
733 YSCALE_YUV_2_RGBX_C(uint32_t)
734 ((uint32_t*)dest
)[i2
+0]= r
[Y1
] + g
[Y1
] + b
[Y1
];
735 ((uint32_t*)dest
)[i2
+1]= r
[Y2
] + g
[Y2
] + b
[Y2
];
739 YSCALE_YUV_2_RGBX_C(uint8_t)
740 ((uint8_t*)dest
)[0]= r
[Y1
];
741 ((uint8_t*)dest
)[1]= g
[Y1
];
742 ((uint8_t*)dest
)[2]= b
[Y1
];
743 ((uint8_t*)dest
)[3]= r
[Y2
];
744 ((uint8_t*)dest
)[4]= g
[Y2
];
745 ((uint8_t*)dest
)[5]= b
[Y2
];
750 YSCALE_YUV_2_RGBX_C(uint8_t)
751 ((uint8_t*)dest
)[0]= b
[Y1
];
752 ((uint8_t*)dest
)[1]= g
[Y1
];
753 ((uint8_t*)dest
)[2]= r
[Y1
];
754 ((uint8_t*)dest
)[3]= b
[Y2
];
755 ((uint8_t*)dest
)[4]= g
[Y2
];
756 ((uint8_t*)dest
)[5]= r
[Y2
];
763 const int dr1
= dither_2x2_8
[y
&1 ][0];
764 const int dg1
= dither_2x2_4
[y
&1 ][0];
765 const int db1
= dither_2x2_8
[(y
&1)^1][0];
766 const int dr2
= dither_2x2_8
[y
&1 ][1];
767 const int dg2
= dither_2x2_4
[y
&1 ][1];
768 const int db2
= dither_2x2_8
[(y
&1)^1][1];
769 YSCALE_YUV_2_RGBX_C(uint16_t)
770 ((uint16_t*)dest
)[i2
+0]= r
[Y1
+dr1
] + g
[Y1
+dg1
] + b
[Y1
+db1
];
771 ((uint16_t*)dest
)[i2
+1]= r
[Y2
+dr2
] + g
[Y2
+dg2
] + b
[Y2
+db2
];
778 const int dr1
= dither_2x2_8
[y
&1 ][0];
779 const int dg1
= dither_2x2_8
[y
&1 ][1];
780 const int db1
= dither_2x2_8
[(y
&1)^1][0];
781 const int dr2
= dither_2x2_8
[y
&1 ][1];
782 const int dg2
= dither_2x2_8
[y
&1 ][0];
783 const int db2
= dither_2x2_8
[(y
&1)^1][1];
784 YSCALE_YUV_2_RGBX_C(uint16_t)
785 ((uint16_t*)dest
)[i2
+0]= r
[Y1
+dr1
] + g
[Y1
+dg1
] + b
[Y1
+db1
];
786 ((uint16_t*)dest
)[i2
+1]= r
[Y2
+dr2
] + g
[Y2
+dg2
] + b
[Y2
+db2
];
793 const uint8_t * const d64
= dither_8x8_73
[y
&7];
794 const uint8_t * const d32
= dither_8x8_32
[y
&7];
795 YSCALE_YUV_2_RGBX_C(uint8_t)
796 ((uint8_t*)dest
)[i2
+0]= r
[Y1
+d32
[(i2
+0)&7]] + g
[Y1
+d32
[(i2
+0)&7]] + b
[Y1
+d64
[(i2
+0)&7]];
797 ((uint8_t*)dest
)[i2
+1]= r
[Y2
+d32
[(i2
+1)&7]] + g
[Y2
+d32
[(i2
+1)&7]] + b
[Y2
+d64
[(i2
+1)&7]];
804 const uint8_t * const d64
= dither_8x8_73
[y
&7];
805 const uint8_t * const d128
=dither_8x8_220
[y
&7];
806 YSCALE_YUV_2_RGBX_C(uint8_t)
807 ((uint8_t*)dest
)[i
]= r
[Y1
+d128
[(i2
+0)&7]] + g
[Y1
+d64
[(i2
+0)&7]] + b
[Y1
+d128
[(i2
+0)&7]]
808 +((r
[Y2
+d128
[(i2
+1)&7]] + g
[Y2
+d64
[(i2
+1)&7]] + b
[Y2
+d128
[(i2
+1)&7]])<<4);
812 case PIX_FMT_RGB4_BYTE
:
813 case PIX_FMT_BGR4_BYTE
:
815 const uint8_t * const d64
= dither_8x8_73
[y
&7];
816 const uint8_t * const d128
=dither_8x8_220
[y
&7];
817 YSCALE_YUV_2_RGBX_C(uint8_t)
818 ((uint8_t*)dest
)[i2
+0]= r
[Y1
+d128
[(i2
+0)&7]] + g
[Y1
+d64
[(i2
+0)&7]] + b
[Y1
+d128
[(i2
+0)&7]];
819 ((uint8_t*)dest
)[i2
+1]= r
[Y2
+d128
[(i2
+1)&7]] + g
[Y2
+d64
[(i2
+1)&7]] + b
[Y2
+d128
[(i2
+1)&7]];
823 case PIX_FMT_MONOBLACK
:
825 const uint8_t * const d128
=dither_8x8_220
[y
&7];
826 uint8_t *g
= c
->table_gU
[128] + c
->table_gV
[128];
828 for (i
=0; i
<dstW
-1; i
+=2){
833 for (j
=0; j
<lumFilterSize
; j
++)
835 Y1
+= lumSrc
[j
][i
] * lumFilter
[j
];
836 Y2
+= lumSrc
[j
][i
+1] * lumFilter
[j
];
847 acc
+= acc
+ g
[Y1
+d128
[(i
+0)&7]];
848 acc
+= acc
+ g
[Y2
+d128
[(i
+1)&7]];
850 ((uint8_t*)dest
)[0]= acc
;
856 case PIX_FMT_YUYV422
:
857 YSCALE_YUV_2_PACKEDX_C(void)
858 ((uint8_t*)dest
)[2*i2
+0]= Y1
;
859 ((uint8_t*)dest
)[2*i2
+1]= U
;
860 ((uint8_t*)dest
)[2*i2
+2]= Y2
;
861 ((uint8_t*)dest
)[2*i2
+3]= V
;
864 case PIX_FMT_UYVY422
:
865 YSCALE_YUV_2_PACKEDX_C(void)
866 ((uint8_t*)dest
)[2*i2
+0]= U
;
867 ((uint8_t*)dest
)[2*i2
+1]= Y1
;
868 ((uint8_t*)dest
)[2*i2
+2]= V
;
869 ((uint8_t*)dest
)[2*i2
+3]= Y2
;
876 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
878 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
883 #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
884 #define COMPILE_ALTIVEC
885 #endif //HAVE_ALTIVEC
886 #endif //ARCH_POWERPC
888 #if defined(ARCH_X86)
890 #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
894 #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
898 #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
899 #define COMPILE_3DNOW
901 #endif //ARCH_X86 || ARCH_X86_64
912 #define RENAME(a) a ## _C
913 #include "swscale_template.c"
917 #ifdef COMPILE_ALTIVEC
920 #define RENAME(a) a ## _altivec
921 #include "swscale_template.c"
923 #endif //ARCH_POWERPC
925 #if defined(ARCH_X86)
934 #define RENAME(a) a ## _X86
935 #include "swscale_template.c"
943 #define RENAME(a) a ## _MMX
944 #include "swscale_template.c"
953 #define RENAME(a) a ## _MMX2
954 #include "swscale_template.c"
963 #define RENAME(a) a ## _3DNow
964 #include "swscale_template.c"
967 #endif //ARCH_X86 || ARCH_X86_64
969 // minor note: the HAVE_xyz is messed up after that line so don't use it
971 static double getSplineCoeff(double a
, double b
, double c
, double d
, double dist
)
973 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
974 if (dist
<=1.0) return ((d
*dist
+ c
)*dist
+ b
)*dist
+a
;
975 else return getSplineCoeff( 0.0,
982 static inline int initFilter(int16_t **outFilter
, int16_t **filterPos
, int *outFilterSize
, int xInc
,
983 int srcW
, int dstW
, int filterAlign
, int one
, int flags
,
984 SwsVector
*srcFilter
, SwsVector
*dstFilter
, double param
[2])
991 double *filter2
=NULL
;
992 #if defined(ARCH_X86)
993 if (flags
& SWS_CPU_CAPS_MMX
)
994 asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
997 // Note the +1 is for the MMXscaler which reads over the end
998 *filterPos
= av_malloc((dstW
+1)*sizeof(int16_t));
1000 if (FFABS(xInc
- 0x10000) <10) // unscaled
1004 filter
= av_malloc(dstW
*sizeof(double)*filterSize
);
1005 for (i
=0; i
<dstW
*filterSize
; i
++) filter
[i
]=0;
1007 for (i
=0; i
<dstW
; i
++)
1009 filter
[i
*filterSize
]=1;
1014 else if (flags
&SWS_POINT
) // lame looking point sampling mode
1019 filter
= av_malloc(dstW
*sizeof(double)*filterSize
);
1021 xDstInSrc
= xInc
/2 - 0x8000;
1022 for (i
=0; i
<dstW
; i
++)
1024 int xx
= (xDstInSrc
- ((filterSize
-1)<<15) + (1<<15))>>16;
1026 (*filterPos
)[i
]= xx
;
1031 else if ((xInc
<= (1<<16) && (flags
&SWS_AREA
)) || (flags
&SWS_FAST_BILINEAR
)) // bilinear upscale
1035 if (flags
&SWS_BICUBIC
) filterSize
= 4;
1036 else if (flags
&SWS_X
) filterSize
= 4;
1037 else filterSize
= 2; // SWS_BILINEAR / SWS_AREA
1038 filter
= av_malloc(dstW
*sizeof(double)*filterSize
);
1040 xDstInSrc
= xInc
/2 - 0x8000;
1041 for (i
=0; i
<dstW
; i
++)
1043 int xx
= (xDstInSrc
- ((filterSize
-1)<<15) + (1<<15))>>16;
1046 (*filterPos
)[i
]= xx
;
1047 //Bilinear upscale / linear interpolate / Area averaging
1048 for (j
=0; j
<filterSize
; j
++)
1050 double d
= FFABS((xx
<<16) - xDstInSrc
)/(double)(1<<16);
1051 double coeff
= 1.0 - d
;
1052 if (coeff
<0) coeff
=0;
1053 filter
[i
*filterSize
+ j
]= coeff
;
1062 double sizeFactor
, filterSizeInSrc
;
1063 const double xInc1
= (double)xInc
/ (double)(1<<16);
1065 if (flags
&SWS_BICUBIC
) sizeFactor
= 4.0;
1066 else if (flags
&SWS_X
) sizeFactor
= 8.0;
1067 else if (flags
&SWS_AREA
) sizeFactor
= 1.0; //downscale only, for upscale it is bilinear
1068 else if (flags
&SWS_GAUSS
) sizeFactor
= 8.0; // infinite ;)
1069 else if (flags
&SWS_LANCZOS
) sizeFactor
= param
[0] != SWS_PARAM_DEFAULT
? 2.0*param
[0] : 6.0;
1070 else if (flags
&SWS_SINC
) sizeFactor
= 20.0; // infinite ;)
1071 else if (flags
&SWS_SPLINE
) sizeFactor
= 20.0; // infinite ;)
1072 else if (flags
&SWS_BILINEAR
) sizeFactor
= 2.0;
1074 sizeFactor
= 0.0; //GCC warning killer
1078 if (xInc1
<= 1.0) filterSizeInSrc
= sizeFactor
; // upscale
1079 else filterSizeInSrc
= sizeFactor
*srcW
/ (double)dstW
;
1081 filterSize
= (int)ceil(1 + filterSizeInSrc
); // will be reduced later if possible
1082 if (filterSize
> srcW
-2) filterSize
=srcW
-2;
1084 filter
= av_malloc(dstW
*sizeof(double)*filterSize
);
1086 xDstInSrc
= xInc1
/ 2.0 - 0.5;
1087 for (i
=0; i
<dstW
; i
++)
1089 int xx
= (int)(xDstInSrc
- (filterSize
-1)*0.5 + 0.5);
1091 (*filterPos
)[i
]= xx
;
1092 for (j
=0; j
<filterSize
; j
++)
1094 double d
= FFABS(xx
- xDstInSrc
)/filterSizeInSrc
*sizeFactor
;
1096 if (flags
& SWS_BICUBIC
)
1098 double B
= param
[0] != SWS_PARAM_DEFAULT
? param
[0] : 0.0;
1099 double C
= param
[1] != SWS_PARAM_DEFAULT
? param
[1] : 0.6;
1102 coeff
= (12-9*B
-6*C
)*d
*d
*d
+ (-18+12*B
+6*C
)*d
*d
+ 6-2*B
;
1104 coeff
= (-B
-6*C
)*d
*d
*d
+ (6*B
+30*C
)*d
*d
+ (-12*B
-48*C
)*d
+8*B
+24*C
;
1108 /* else if (flags & SWS_X)
1110 double p= param ? param*0.01 : 0.3;
1111 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1112 coeff*= pow(2.0, - p*d*d);
1114 else if (flags
& SWS_X
)
1116 double A
= param
[0] != SWS_PARAM_DEFAULT
? param
[0] : 1.0;
1122 if (coeff
<0.0) coeff
= -pow(-coeff
, A
);
1123 else coeff
= pow( coeff
, A
);
1124 coeff
= coeff
*0.5 + 0.5;
1126 else if (flags
& SWS_AREA
)
1128 double srcPixelSize
= 1.0/xInc1
;
1129 if (d
+ srcPixelSize
/2 < 0.5) coeff
= 1.0;
1130 else if (d
- srcPixelSize
/2 < 0.5) coeff
= (0.5-d
)/srcPixelSize
+ 0.5;
1133 else if (flags
& SWS_GAUSS
)
1135 double p
= param
[0] != SWS_PARAM_DEFAULT
? param
[0] : 3.0;
1136 coeff
= pow(2.0, - p
*d
*d
);
1138 else if (flags
& SWS_SINC
)
1140 coeff
= d
? sin(d
*PI
)/(d
*PI
) : 1.0;
1142 else if (flags
& SWS_LANCZOS
)
1144 double p
= param
[0] != SWS_PARAM_DEFAULT
? param
[0] : 3.0;
1145 coeff
= d
? sin(d
*PI
)*sin(d
*PI
/p
)/(d
*d
*PI
*PI
/p
) : 1.0;
1148 else if (flags
& SWS_BILINEAR
)
1151 if (coeff
<0) coeff
=0;
1153 else if (flags
& SWS_SPLINE
)
1155 double p
=-2.196152422706632;
1156 coeff
= getSplineCoeff(1.0, 0.0, p
, -p
-1.0, d
);
1159 coeff
= 0.0; //GCC warning killer
1163 filter
[i
*filterSize
+ j
]= coeff
;
1170 /* apply src & dst Filter to filter -> filter2
1173 ASSERT(filterSize
>0)
1174 filter2Size
= filterSize
;
1175 if (srcFilter
) filter2Size
+= srcFilter
->length
- 1;
1176 if (dstFilter
) filter2Size
+= dstFilter
->length
- 1;
1177 ASSERT(filter2Size
>0)
1178 filter2
= av_malloc(filter2Size
*dstW
*sizeof(double));
1180 for (i
=0; i
<dstW
; i
++)
1183 SwsVector scaleFilter
;
1186 scaleFilter
.coeff
= filter
+ i
*filterSize
;
1187 scaleFilter
.length
= filterSize
;
1189 if (srcFilter
) outVec
= sws_getConvVec(srcFilter
, &scaleFilter
);
1190 else outVec
= &scaleFilter
;
1192 ASSERT(outVec
->length
== filter2Size
)
1195 for (j
=0; j
<outVec
->length
; j
++)
1197 filter2
[i
*filter2Size
+ j
]= outVec
->coeff
[j
];
1200 (*filterPos
)[i
]+= (filterSize
-1)/2 - (filter2Size
-1)/2;
1202 if (outVec
!= &scaleFilter
) sws_freeVec(outVec
);
1204 av_free(filter
); filter
=NULL
;
1206 /* try to reduce the filter-size (step1 find size and shift left) */
1207 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
1209 for (i
=dstW
-1; i
>=0; i
--)
1211 int min
= filter2Size
;
1215 /* get rid off near zero elements on the left by shifting left */
1216 for (j
=0; j
<filter2Size
; j
++)
1219 cutOff
+= FFABS(filter2
[i
*filter2Size
]);
1221 if (cutOff
> SWS_MAX_REDUCE_CUTOFF
) break;
1223 /* preserve monotonicity because the core can't handle the filter otherwise */
1224 if (i
<dstW
-1 && (*filterPos
)[i
] >= (*filterPos
)[i
+1]) break;
1226 // Move filter coeffs left
1227 for (k
=1; k
<filter2Size
; k
++)
1228 filter2
[i
*filter2Size
+ k
- 1]= filter2
[i
*filter2Size
+ k
];
1229 filter2
[i
*filter2Size
+ k
- 1]= 0.0;
1234 /* count near zeros on the right */
1235 for (j
=filter2Size
-1; j
>0; j
--)
1237 cutOff
+= FFABS(filter2
[i
*filter2Size
+ j
]);
1239 if (cutOff
> SWS_MAX_REDUCE_CUTOFF
) break;
1243 if (min
>minFilterSize
) minFilterSize
= min
;
1246 if (flags
& SWS_CPU_CAPS_ALTIVEC
) {
1247 // we can handle the special case 4,
1248 // so we don't want to go to the full 8
1249 if (minFilterSize
< 5)
1252 // we really don't want to waste our time
1253 // doing useless computation, so fall-back on
1254 // the scalar C code for very small filter.
1255 // vectorizing is worth it only if you have
1256 // decent-sized vector.
1257 if (minFilterSize
< 3)
1261 if (flags
& SWS_CPU_CAPS_MMX
) {
1262 // special case for unscaled vertical filtering
1263 if (minFilterSize
== 1 && filterAlign
== 2)
1267 ASSERT(minFilterSize
> 0)
1268 filterSize
= (minFilterSize
+(filterAlign
-1)) & (~(filterAlign
-1));
1269 ASSERT(filterSize
> 0)
1270 filter
= av_malloc(filterSize
*dstW
*sizeof(double));
1271 if (filterSize
>= MAX_FILTER_SIZE
)
1273 *outFilterSize
= filterSize
;
1275 if (flags
&SWS_PRINT_INFO
)
1276 av_log(NULL
, AV_LOG_VERBOSE
, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size
, filterSize
);
1277 /* try to reduce the filter-size (step2 reduce it) */
1278 for (i
=0; i
<dstW
; i
++)
1282 for (j
=0; j
<filterSize
; j
++)
1284 if (j
>=filter2Size
) filter
[i
*filterSize
+ j
]= 0.0;
1285 else filter
[i
*filterSize
+ j
]= filter2
[i
*filter2Size
+ j
];
1288 av_free(filter2
); filter2
=NULL
;
1291 //FIXME try to align filterpos if possible
1294 for (i
=0; i
<dstW
; i
++)
1297 if ((*filterPos
)[i
] < 0)
1299 // Move filter coeffs left to compensate for filterPos
1300 for (j
=1; j
<filterSize
; j
++)
1302 int left
= FFMAX(j
+ (*filterPos
)[i
], 0);
1303 filter
[i
*filterSize
+ left
] += filter
[i
*filterSize
+ j
];
1304 filter
[i
*filterSize
+ j
]=0;
1309 if ((*filterPos
)[i
] + filterSize
> srcW
)
1311 int shift
= (*filterPos
)[i
] + filterSize
- srcW
;
1312 // Move filter coeffs right to compensate for filterPos
1313 for (j
=filterSize
-2; j
>=0; j
--)
1315 int right
= FFMIN(j
+ shift
, filterSize
-1);
1316 filter
[i
*filterSize
+right
] += filter
[i
*filterSize
+j
];
1317 filter
[i
*filterSize
+j
]=0;
1319 (*filterPos
)[i
]= srcW
- filterSize
;
1323 // Note the +1 is for the MMXscaler which reads over the end
1324 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1325 *outFilter
= av_mallocz(*outFilterSize
*(dstW
+1)*sizeof(int16_t));
1327 /* Normalize & Store in outFilter */
1328 for (i
=0; i
<dstW
; i
++)
1335 for (j
=0; j
<filterSize
; j
++)
1337 sum
+= filter
[i
*filterSize
+ j
];
1340 for (j
=0; j
<*outFilterSize
; j
++)
1342 double v
= filter
[i
*filterSize
+ j
]*scale
+ error
;
1343 int intV
= floor(v
+ 0.5);
1344 (*outFilter
)[i
*(*outFilterSize
) + j
]= intV
;
1349 (*filterPos
)[dstW
]= (*filterPos
)[dstW
-1]; // the MMX scaler will read over the end
1350 for (i
=0; i
<*outFilterSize
; i
++)
1352 int j
= dstW
*(*outFilterSize
);
1353 (*outFilter
)[j
+ i
]= (*outFilter
)[j
+ i
- (*outFilterSize
)];
1361 static void initMMX2HScaler(int dstW
, int xInc
, uint8_t *funnyCode
, int16_t *filter
, int32_t *filterPos
, int numSplits
)
1364 long imm8OfPShufW1A
;
1365 long imm8OfPShufW2A
;
1366 long fragmentLengthA
;
1368 long imm8OfPShufW1B
;
1369 long imm8OfPShufW2B
;
1370 long fragmentLengthB
;
1375 // create an optimized horizontal scaling routine
1383 "movq (%%"REG_d
", %%"REG_a
"), %%mm3 \n\t"
1384 "movd (%%"REG_c
", %%"REG_S
"), %%mm0 \n\t"
1385 "movd 1(%%"REG_c
", %%"REG_S
"), %%mm1 \n\t"
1386 "punpcklbw %%mm7, %%mm1 \n\t"
1387 "punpcklbw %%mm7, %%mm0 \n\t"
1388 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1390 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1392 "psubw %%mm1, %%mm0 \n\t"
1393 "movl 8(%%"REG_b
", %%"REG_a
"), %%esi \n\t"
1394 "pmullw %%mm3, %%mm0 \n\t"
1395 "psllw $7, %%mm1 \n\t"
1396 "paddw %%mm1, %%mm0 \n\t"
1398 "movq %%mm0, (%%"REG_D
", %%"REG_a
") \n\t"
1400 "add $8, %%"REG_a
" \n\t"
1415 :"=r" (fragmentA
), "=r" (imm8OfPShufW1A
), "=r" (imm8OfPShufW2A
),
1416 "=r" (fragmentLengthA
)
1423 "movq (%%"REG_d
", %%"REG_a
"), %%mm3 \n\t"
1424 "movd (%%"REG_c
", %%"REG_S
"), %%mm0 \n\t"
1425 "punpcklbw %%mm7, %%mm0 \n\t"
1426 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1428 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1430 "psubw %%mm1, %%mm0 \n\t"
1431 "movl 8(%%"REG_b
", %%"REG_a
"), %%esi \n\t"
1432 "pmullw %%mm3, %%mm0 \n\t"
1433 "psllw $7, %%mm1 \n\t"
1434 "paddw %%mm1, %%mm0 \n\t"
1436 "movq %%mm0, (%%"REG_D
", %%"REG_a
") \n\t"
1438 "add $8, %%"REG_a
" \n\t"
1453 :"=r" (fragmentB
), "=r" (imm8OfPShufW1B
), "=r" (imm8OfPShufW2B
),
1454 "=r" (fragmentLengthB
)
1457 xpos
= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1460 for (i
=0; i
<dstW
/numSplits
; i
++)
1467 int b
=((xpos
+xInc
)>>16) - xx
;
1468 int c
=((xpos
+xInc
*2)>>16) - xx
;
1469 int d
=((xpos
+xInc
*3)>>16) - xx
;
1471 filter
[i
] = (( xpos
& 0xFFFF) ^ 0xFFFF)>>9;
1472 filter
[i
+1] = (((xpos
+xInc
) & 0xFFFF) ^ 0xFFFF)>>9;
1473 filter
[i
+2] = (((xpos
+xInc
*2) & 0xFFFF) ^ 0xFFFF)>>9;
1474 filter
[i
+3] = (((xpos
+xInc
*3) & 0xFFFF) ^ 0xFFFF)>>9;
1479 int maxShift
= 3-(d
+1);
1482 memcpy(funnyCode
+ fragmentPos
, fragmentB
, fragmentLengthB
);
1484 funnyCode
[fragmentPos
+ imm8OfPShufW1B
]=
1485 (a
+1) | ((b
+1)<<2) | ((c
+1)<<4) | ((d
+1)<<6);
1486 funnyCode
[fragmentPos
+ imm8OfPShufW2B
]=
1487 a
| (b
<<2) | (c
<<4) | (d
<<6);
1489 if (i
+3>=dstW
) shift
=maxShift
; //avoid overread
1490 else if ((filterPos
[i
/2]&3) <= maxShift
) shift
=filterPos
[i
/2]&3; //Align
1492 if (shift
&& i
>=shift
)
1494 funnyCode
[fragmentPos
+ imm8OfPShufW1B
]+= 0x55*shift
;
1495 funnyCode
[fragmentPos
+ imm8OfPShufW2B
]+= 0x55*shift
;
1496 filterPos
[i
/2]-=shift
;
1499 fragmentPos
+= fragmentLengthB
;
1506 memcpy(funnyCode
+ fragmentPos
, fragmentA
, fragmentLengthA
);
1508 funnyCode
[fragmentPos
+ imm8OfPShufW1A
]=
1509 funnyCode
[fragmentPos
+ imm8OfPShufW2A
]=
1510 a
| (b
<<2) | (c
<<4) | (d
<<6);
1512 if (i
+4>=dstW
) shift
=maxShift
; //avoid overread
1513 else if ((filterPos
[i
/2]&3) <= maxShift
) shift
=filterPos
[i
/2]&3; //partial align
1515 if (shift
&& i
>=shift
)
1517 funnyCode
[fragmentPos
+ imm8OfPShufW1A
]+= 0x55*shift
;
1518 funnyCode
[fragmentPos
+ imm8OfPShufW2A
]+= 0x55*shift
;
1519 filterPos
[i
/2]-=shift
;
1522 fragmentPos
+= fragmentLengthA
;
1525 funnyCode
[fragmentPos
]= RET
;
1529 filterPos
[i
/2]= xpos
>>16; // needed to jump to the next part
1531 #endif /* COMPILE_MMX2 */
1533 static void globalInit(void){
1534 // generating tables:
1536 for (i
=0; i
<768; i
++){
1537 int c
= av_clip_uint8(i
-256);
1542 static SwsFunc
getSwsFunc(int flags
){
1544 #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1545 #if defined(ARCH_X86)
1546 // ordered per speed fasterst first
1547 if (flags
& SWS_CPU_CAPS_MMX2
)
1548 return swScale_MMX2
;
1549 else if (flags
& SWS_CPU_CAPS_3DNOW
)
1550 return swScale_3DNow
;
1551 else if (flags
& SWS_CPU_CAPS_MMX
)
1558 if (flags
& SWS_CPU_CAPS_ALTIVEC
)
1559 return swScale_altivec
;
1564 #endif /* defined(ARCH_X86) */
1565 #else //RUNTIME_CPUDETECT
1567 return swScale_MMX2
;
1568 #elif defined (HAVE_3DNOW)
1569 return swScale_3DNow
;
1570 #elif defined (HAVE_MMX)
1572 #elif defined (HAVE_ALTIVEC)
1573 return swScale_altivec
;
1577 #endif //!RUNTIME_CPUDETECT
1580 static int PlanarToNV12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1581 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1582 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1584 if (dstStride
[0]==srcStride
[0] && srcStride
[0] > 0)
1585 memcpy(dst
, src
[0], srcSliceH
*dstStride
[0]);
1589 uint8_t *srcPtr
= src
[0];
1590 uint8_t *dstPtr
= dst
;
1591 for (i
=0; i
<srcSliceH
; i
++)
1593 memcpy(dstPtr
, srcPtr
, c
->srcW
);
1594 srcPtr
+= srcStride
[0];
1595 dstPtr
+= dstStride
[0];
1598 dst
= dstParam
[1] + dstStride
[1]*srcSliceY
/2;
1599 if (c
->dstFormat
== PIX_FMT_NV12
)
1600 interleaveBytes( src
[1],src
[2],dst
,c
->srcW
/2,srcSliceH
/2,srcStride
[1],srcStride
[2],dstStride
[0] );
1602 interleaveBytes( src
[2],src
[1],dst
,c
->srcW
/2,srcSliceH
/2,srcStride
[2],srcStride
[1],dstStride
[0] );
1607 static int PlanarToYuy2Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1608 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1609 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1611 yv12toyuy2( src
[0],src
[1],src
[2],dst
,c
->srcW
,srcSliceH
,srcStride
[0],srcStride
[1],dstStride
[0] );
1616 static int PlanarToUyvyWrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1617 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1618 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1620 yv12touyvy( src
[0],src
[1],src
[2],dst
,c
->srcW
,srcSliceH
,srcStride
[0],srcStride
[1],dstStride
[0] );
1625 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1626 static int rgb2rgbWrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1627 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1628 const int srcFormat
= c
->srcFormat
;
1629 const int dstFormat
= c
->dstFormat
;
1630 const int srcBpp
= (fmt_depth(srcFormat
) + 7) >> 3;
1631 const int dstBpp
= (fmt_depth(dstFormat
) + 7) >> 3;
1632 const int srcId
= fmt_depth(srcFormat
) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1633 const int dstId
= fmt_depth(dstFormat
) >> 2;
1634 void (*conv
)(const uint8_t *src
, uint8_t *dst
, long src_size
)=NULL
;
1637 if ( (isBGR(srcFormat
) && isBGR(dstFormat
))
1638 || (isRGB(srcFormat
) && isRGB(dstFormat
))){
1639 switch(srcId
| (dstId
<<4)){
1640 case 0x34: conv
= rgb16to15
; break;
1641 case 0x36: conv
= rgb24to15
; break;
1642 case 0x38: conv
= rgb32to15
; break;
1643 case 0x43: conv
= rgb15to16
; break;
1644 case 0x46: conv
= rgb24to16
; break;
1645 case 0x48: conv
= rgb32to16
; break;
1646 case 0x63: conv
= rgb15to24
; break;
1647 case 0x64: conv
= rgb16to24
; break;
1648 case 0x68: conv
= rgb32to24
; break;
1649 case 0x83: conv
= rgb15to32
; break;
1650 case 0x84: conv
= rgb16to32
; break;
1651 case 0x86: conv
= rgb24to32
; break;
1652 default: av_log(c
, AV_LOG_ERROR
, "swScaler: internal error %s -> %s converter\n",
1653 sws_format_name(srcFormat
), sws_format_name(dstFormat
)); break;
1655 }else if ( (isBGR(srcFormat
) && isRGB(dstFormat
))
1656 || (isRGB(srcFormat
) && isBGR(dstFormat
))){
1657 switch(srcId
| (dstId
<<4)){
1658 case 0x33: conv
= rgb15tobgr15
; break;
1659 case 0x34: conv
= rgb16tobgr15
; break;
1660 case 0x36: conv
= rgb24tobgr15
; break;
1661 case 0x38: conv
= rgb32tobgr15
; break;
1662 case 0x43: conv
= rgb15tobgr16
; break;
1663 case 0x44: conv
= rgb16tobgr16
; break;
1664 case 0x46: conv
= rgb24tobgr16
; break;
1665 case 0x48: conv
= rgb32tobgr16
; break;
1666 case 0x63: conv
= rgb15tobgr24
; break;
1667 case 0x64: conv
= rgb16tobgr24
; break;
1668 case 0x66: conv
= rgb24tobgr24
; break;
1669 case 0x68: conv
= rgb32tobgr24
; break;
1670 case 0x83: conv
= rgb15tobgr32
; break;
1671 case 0x84: conv
= rgb16tobgr32
; break;
1672 case 0x86: conv
= rgb24tobgr32
; break;
1673 case 0x88: conv
= rgb32tobgr32
; break;
1674 default: av_log(c
, AV_LOG_ERROR
, "swScaler: internal error %s -> %s converter\n",
1675 sws_format_name(srcFormat
), sws_format_name(dstFormat
)); break;
1678 av_log(c
, AV_LOG_ERROR
, "swScaler: internal error %s -> %s converter\n",
1679 sws_format_name(srcFormat
), sws_format_name(dstFormat
));
1684 if (dstStride
[0]*srcBpp
== srcStride
[0]*dstBpp
&& srcStride
[0] > 0)
1685 conv(src
[0], dst
[0] + dstStride
[0]*srcSliceY
, srcSliceH
*srcStride
[0]);
1689 uint8_t *srcPtr
= src
[0];
1690 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1692 for (i
=0; i
<srcSliceH
; i
++)
1694 conv(srcPtr
, dstPtr
, c
->srcW
*srcBpp
);
1695 srcPtr
+= srcStride
[0];
1696 dstPtr
+= dstStride
[0];
1703 static int bgr24toyv12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1704 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1708 dst
[0]+ srcSliceY
*dstStride
[0],
1709 dst
[1]+(srcSliceY
>>1)*dstStride
[1],
1710 dst
[2]+(srcSliceY
>>1)*dstStride
[2],
1712 dstStride
[0], dstStride
[1], srcStride
[0]);
1716 static int yvu9toyv12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1717 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1721 if (srcStride
[0]==dstStride
[0] && srcStride
[0] > 0)
1722 memcpy(dst
[0]+ srcSliceY
*dstStride
[0], src
[0], srcStride
[0]*srcSliceH
);
1724 uint8_t *srcPtr
= src
[0];
1725 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1727 for (i
=0; i
<srcSliceH
; i
++)
1729 memcpy(dstPtr
, srcPtr
, c
->srcW
);
1730 srcPtr
+= srcStride
[0];
1731 dstPtr
+= dstStride
[0];
1735 if (c
->dstFormat
==PIX_FMT_YUV420P
){
1736 planar2x(src
[1], dst
[1], c
->chrSrcW
, c
->chrSrcH
, srcStride
[1], dstStride
[1]);
1737 planar2x(src
[2], dst
[2], c
->chrSrcW
, c
->chrSrcH
, srcStride
[2], dstStride
[2]);
1739 planar2x(src
[1], dst
[2], c
->chrSrcW
, c
->chrSrcH
, srcStride
[1], dstStride
[2]);
1740 planar2x(src
[2], dst
[1], c
->chrSrcW
, c
->chrSrcH
, srcStride
[2], dstStride
[1]);
1745 /* unscaled copy like stuff (assumes nearly identical formats) */
1746 static int simpleCopy(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1747 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1749 if (isPacked(c
->srcFormat
))
1751 if (dstStride
[0]==srcStride
[0] && srcStride
[0] > 0)
1752 memcpy(dst
[0] + dstStride
[0]*srcSliceY
, src
[0], srcSliceH
*dstStride
[0]);
1756 uint8_t *srcPtr
= src
[0];
1757 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1760 /* universal length finder */
1761 while(length
+c
->srcW
<= FFABS(dstStride
[0])
1762 && length
+c
->srcW
<= FFABS(srcStride
[0])) length
+= c
->srcW
;
1765 for (i
=0; i
<srcSliceH
; i
++)
1767 memcpy(dstPtr
, srcPtr
, length
);
1768 srcPtr
+= srcStride
[0];
1769 dstPtr
+= dstStride
[0];
1774 { /* Planar YUV or gray */
1776 for (plane
=0; plane
<3; plane
++)
1778 int length
= plane
==0 ? c
->srcW
: -((-c
->srcW
)>>c
->chrDstHSubSample
);
1779 int y
= plane
==0 ? srcSliceY
: -((-srcSliceY
)>>c
->chrDstVSubSample
);
1780 int height
= plane
==0 ? srcSliceH
: -((-srcSliceH
)>>c
->chrDstVSubSample
);
1782 if ((isGray(c
->srcFormat
) || isGray(c
->dstFormat
)) && plane
>0)
1784 if (!isGray(c
->dstFormat
))
1785 memset(dst
[plane
], 128, dstStride
[plane
]*height
);
1789 if (dstStride
[plane
]==srcStride
[plane
] && srcStride
[plane
] > 0)
1790 memcpy(dst
[plane
] + dstStride
[plane
]*y
, src
[plane
], height
*dstStride
[plane
]);
1794 uint8_t *srcPtr
= src
[plane
];
1795 uint8_t *dstPtr
= dst
[plane
] + dstStride
[plane
]*y
;
1796 for (i
=0; i
<height
; i
++)
1798 memcpy(dstPtr
, srcPtr
, length
);
1799 srcPtr
+= srcStride
[plane
];
1800 dstPtr
+= dstStride
[plane
];
1809 static int gray16togray(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1810 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1812 int length
= c
->srcW
;
1814 int height
= srcSliceH
;
1816 uint8_t *srcPtr
= src
[0];
1817 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*y
;
1819 if (!isGray(c
->dstFormat
)){
1820 int height
= -((-srcSliceH
)>>c
->chrDstVSubSample
);
1821 memset(dst
[1], 128, dstStride
[1]*height
);
1822 memset(dst
[2], 128, dstStride
[2]*height
);
1824 if (c
->srcFormat
== PIX_FMT_GRAY16LE
) srcPtr
++;
1825 for (i
=0; i
<height
; i
++)
1827 for (j
=0; j
<length
; j
++) dstPtr
[j
] = srcPtr
[j
<<1];
1828 srcPtr
+= srcStride
[0];
1829 dstPtr
+= dstStride
[0];
1834 static int graytogray16(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1835 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1837 int length
= c
->srcW
;
1839 int height
= srcSliceH
;
1841 uint8_t *srcPtr
= src
[0];
1842 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*y
;
1843 for (i
=0; i
<height
; i
++)
1845 for (j
=0; j
<length
; j
++)
1847 dstPtr
[j
<<1] = srcPtr
[j
];
1848 dstPtr
[(j
<<1)+1] = srcPtr
[j
];
1850 srcPtr
+= srcStride
[0];
1851 dstPtr
+= dstStride
[0];
1856 static int gray16swap(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1857 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1859 int length
= c
->srcW
;
1861 int height
= srcSliceH
;
1863 uint16_t *srcPtr
= src
[0];
1864 uint16_t *dstPtr
= dst
[0] + dstStride
[0]*y
/2;
1865 for (i
=0; i
<height
; i
++)
1867 for (j
=0; j
<length
; j
++) dstPtr
[j
] = bswap_16(srcPtr
[j
]);
1868 srcPtr
+= srcStride
[0]/2;
1869 dstPtr
+= dstStride
[0]/2;
1875 static void getSubSampleFactors(int *h
, int *v
, int format
){
1877 case PIX_FMT_UYVY422
:
1878 case PIX_FMT_YUYV422
:
1882 case PIX_FMT_YUV420P
:
1883 case PIX_FMT_YUVA420P
:
1884 case PIX_FMT_GRAY16BE
:
1885 case PIX_FMT_GRAY16LE
:
1886 case PIX_FMT_GRAY8
: //FIXME remove after different subsamplings are fully implemented
1892 case PIX_FMT_YUV440P
:
1896 case PIX_FMT_YUV410P
:
1900 case PIX_FMT_YUV444P
:
1904 case PIX_FMT_YUV422P
:
1908 case PIX_FMT_YUV411P
:
1919 static uint16_t roundToInt16(int64_t f
){
1920 int r
= (f
+ (1<<15))>>16;
1921 if (r
<-0x7FFF) return 0x8000;
1922 else if (r
> 0x7FFF) return 0x7FFF;
1927 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1928 * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
1929 * @return -1 if not supported
1931 int sws_setColorspaceDetails(SwsContext
*c
, const int inv_table
[4], int srcRange
, const int table
[4], int dstRange
, int brightness
, int contrast
, int saturation
){
1932 int64_t crv
= inv_table
[0];
1933 int64_t cbu
= inv_table
[1];
1934 int64_t cgu
= -inv_table
[2];
1935 int64_t cgv
= -inv_table
[3];
1939 if (isYUV(c
->dstFormat
) || isGray(c
->dstFormat
)) return -1;
1940 memcpy(c
->srcColorspaceTable
, inv_table
, sizeof(int)*4);
1941 memcpy(c
->dstColorspaceTable
, table
, sizeof(int)*4);
1943 c
->brightness
= brightness
;
1944 c
->contrast
= contrast
;
1945 c
->saturation
= saturation
;
1946 c
->srcRange
= srcRange
;
1947 c
->dstRange
= dstRange
;
1949 c
->uOffset
= 0x0400040004000400LL
;
1950 c
->vOffset
= 0x0400040004000400LL
;
1956 crv
= (crv
*224) / 255;
1957 cbu
= (cbu
*224) / 255;
1958 cgu
= (cgu
*224) / 255;
1959 cgv
= (cgv
*224) / 255;
1962 cy
= (cy
*contrast
)>>16;
1963 crv
= (crv
*contrast
* saturation
)>>32;
1964 cbu
= (cbu
*contrast
* saturation
)>>32;
1965 cgu
= (cgu
*contrast
* saturation
)>>32;
1966 cgv
= (cgv
*contrast
* saturation
)>>32;
1968 oy
-= 256*brightness
;
1970 c
->yCoeff
= roundToInt16(cy
*8192) * 0x0001000100010001ULL
;
1971 c
->vrCoeff
= roundToInt16(crv
*8192) * 0x0001000100010001ULL
;
1972 c
->ubCoeff
= roundToInt16(cbu
*8192) * 0x0001000100010001ULL
;
1973 c
->vgCoeff
= roundToInt16(cgv
*8192) * 0x0001000100010001ULL
;
1974 c
->ugCoeff
= roundToInt16(cgu
*8192) * 0x0001000100010001ULL
;
1975 c
->yOffset
= roundToInt16(oy
* 8) * 0x0001000100010001ULL
;
1977 yuv2rgb_c_init_tables(c
, inv_table
, srcRange
, brightness
, contrast
, saturation
);
1980 #ifdef COMPILE_ALTIVEC
1981 if (c
->flags
& SWS_CPU_CAPS_ALTIVEC
)
1982 yuv2rgb_altivec_init_tables (c
, inv_table
, brightness
, contrast
, saturation
);
1988 * @return -1 if not supported
1990 int sws_getColorspaceDetails(SwsContext
*c
, int **inv_table
, int *srcRange
, int **table
, int *dstRange
, int *brightness
, int *contrast
, int *saturation
){
1991 if (isYUV(c
->dstFormat
) || isGray(c
->dstFormat
)) return -1;
1993 *inv_table
= c
->srcColorspaceTable
;
1994 *table
= c
->dstColorspaceTable
;
1995 *srcRange
= c
->srcRange
;
1996 *dstRange
= c
->dstRange
;
1997 *brightness
= c
->brightness
;
1998 *contrast
= c
->contrast
;
1999 *saturation
= c
->saturation
;
2004 static int handle_jpeg(int *format
)
2007 case PIX_FMT_YUVJ420P
:
2008 *format
= PIX_FMT_YUV420P
;
2010 case PIX_FMT_YUVJ422P
:
2011 *format
= PIX_FMT_YUV422P
;
2013 case PIX_FMT_YUVJ444P
:
2014 *format
= PIX_FMT_YUV444P
;
2016 case PIX_FMT_YUVJ440P
:
2017 *format
= PIX_FMT_YUV440P
;
2024 SwsContext
*sws_getContext(int srcW
, int srcH
, int srcFormat
, int dstW
, int dstH
, int dstFormat
, int flags
,
2025 SwsFilter
*srcFilter
, SwsFilter
*dstFilter
, double *param
){
2029 int usesVFilter
, usesHFilter
;
2030 int unscaled
, needsDither
;
2031 int srcRange
, dstRange
;
2032 SwsFilter dummyFilter
= {NULL
, NULL
, NULL
, NULL
};
2033 #if defined(ARCH_X86)
2034 if (flags
& SWS_CPU_CAPS_MMX
)
2035 asm volatile("emms\n\t"::: "memory");
2038 #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
2039 flags
&= ~(SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_MMX2
|SWS_CPU_CAPS_3DNOW
|SWS_CPU_CAPS_ALTIVEC
|SWS_CPU_CAPS_BFIN
);
2041 flags
|= SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_MMX2
;
2042 #elif defined (HAVE_3DNOW)
2043 flags
|= SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_3DNOW
;
2044 #elif defined (HAVE_MMX)
2045 flags
|= SWS_CPU_CAPS_MMX
;
2046 #elif defined (HAVE_ALTIVEC)
2047 flags
|= SWS_CPU_CAPS_ALTIVEC
;
2048 #elif defined (ARCH_BFIN)
2049 flags
|= SWS_CPU_CAPS_BFIN
;
2051 #endif /* RUNTIME_CPUDETECT */
2052 if (clip_table
[512] != 255) globalInit();
2053 if (rgb15to16
== NULL
) sws_rgb2rgb_init(flags
);
2055 unscaled
= (srcW
== dstW
&& srcH
== dstH
);
2056 needsDither
= (isBGR(dstFormat
) || isRGB(dstFormat
))
2057 && (fmt_depth(dstFormat
))<24
2058 && ((fmt_depth(dstFormat
))<(fmt_depth(srcFormat
)) || (!(isRGB(srcFormat
) || isBGR(srcFormat
))));
2060 srcRange
= handle_jpeg(&srcFormat
);
2061 dstRange
= handle_jpeg(&dstFormat
);
2063 if (!isSupportedIn(srcFormat
))
2065 av_log(NULL
, AV_LOG_ERROR
, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat
));
2068 if (!isSupportedOut(dstFormat
))
2070 av_log(NULL
, AV_LOG_ERROR
, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat
));
2075 if (srcW
<4 || srcH
<1 || dstW
<8 || dstH
<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
2077 av_log(NULL
, AV_LOG_ERROR
, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
2078 srcW
, srcH
, dstW
, dstH
);
2082 if (!dstFilter
) dstFilter
= &dummyFilter
;
2083 if (!srcFilter
) srcFilter
= &dummyFilter
;
2085 c
= av_mallocz(sizeof(SwsContext
));
2087 c
->av_class
= &sws_context_class
;
2092 c
->lumXInc
= ((srcW
<<16) + (dstW
>>1))/dstW
;
2093 c
->lumYInc
= ((srcH
<<16) + (dstH
>>1))/dstH
;
2095 c
->dstFormat
= dstFormat
;
2096 c
->srcFormat
= srcFormat
;
2097 c
->vRounder
= 4* 0x0001000100010001ULL
;
2099 usesHFilter
= usesVFilter
= 0;
2100 if (dstFilter
->lumV
!=NULL
&& dstFilter
->lumV
->length
>1) usesVFilter
=1;
2101 if (dstFilter
->lumH
!=NULL
&& dstFilter
->lumH
->length
>1) usesHFilter
=1;
2102 if (dstFilter
->chrV
!=NULL
&& dstFilter
->chrV
->length
>1) usesVFilter
=1;
2103 if (dstFilter
->chrH
!=NULL
&& dstFilter
->chrH
->length
>1) usesHFilter
=1;
2104 if (srcFilter
->lumV
!=NULL
&& srcFilter
->lumV
->length
>1) usesVFilter
=1;
2105 if (srcFilter
->lumH
!=NULL
&& srcFilter
->lumH
->length
>1) usesHFilter
=1;
2106 if (srcFilter
->chrV
!=NULL
&& srcFilter
->chrV
->length
>1) usesVFilter
=1;
2107 if (srcFilter
->chrH
!=NULL
&& srcFilter
->chrH
->length
>1) usesHFilter
=1;
2109 getSubSampleFactors(&c
->chrSrcHSubSample
, &c
->chrSrcVSubSample
, srcFormat
);
2110 getSubSampleFactors(&c
->chrDstHSubSample
, &c
->chrDstVSubSample
, dstFormat
);
2112 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2113 if ((isBGR(dstFormat
) || isRGB(dstFormat
)) && !(flags
&SWS_FULL_CHR_H_INT
)) c
->chrDstHSubSample
=1;
2115 // drop some chroma lines if the user wants it
2116 c
->vChrDrop
= (flags
&SWS_SRC_V_CHR_DROP_MASK
)>>SWS_SRC_V_CHR_DROP_SHIFT
;
2117 c
->chrSrcVSubSample
+= c
->vChrDrop
;
2119 // drop every 2. pixel for chroma calculation unless user wants full chroma
2120 if ((isBGR(srcFormat
) || isRGB(srcFormat
)) && !(flags
&SWS_FULL_CHR_H_INP
)
2121 && srcFormat
!=PIX_FMT_RGB8
&& srcFormat
!=PIX_FMT_BGR8
2122 && srcFormat
!=PIX_FMT_RGB4
&& srcFormat
!=PIX_FMT_BGR4
2123 && srcFormat
!=PIX_FMT_RGB4_BYTE
&& srcFormat
!=PIX_FMT_BGR4_BYTE
)
2124 c
->chrSrcHSubSample
=1;
2127 c
->param
[0] = param
[0];
2128 c
->param
[1] = param
[1];
2131 c
->param
[1] = SWS_PARAM_DEFAULT
;
2134 c
->chrIntHSubSample
= c
->chrDstHSubSample
;
2135 c
->chrIntVSubSample
= c
->chrSrcVSubSample
;
2137 // Note the -((-x)>>y) is so that we always round toward +inf.
2138 c
->chrSrcW
= -((-srcW
) >> c
->chrSrcHSubSample
);
2139 c
->chrSrcH
= -((-srcH
) >> c
->chrSrcVSubSample
);
2140 c
->chrDstW
= -((-dstW
) >> c
->chrDstHSubSample
);
2141 c
->chrDstH
= -((-dstH
) >> c
->chrDstVSubSample
);
2143 sws_setColorspaceDetails(c
, Inverse_Table_6_9
[SWS_CS_DEFAULT
], srcRange
, Inverse_Table_6_9
[SWS_CS_DEFAULT
] /* FIXME*/, dstRange
, 0, 1<<16, 1<<16);
2145 /* unscaled special Cases */
2146 if (unscaled
&& !usesHFilter
&& !usesVFilter
)
2149 if (srcFormat
== PIX_FMT_YUV420P
&& (dstFormat
== PIX_FMT_NV12
|| dstFormat
== PIX_FMT_NV21
))
2151 c
->swScale
= PlanarToNV12Wrapper
;
2155 if ((srcFormat
==PIX_FMT_YUV420P
|| srcFormat
==PIX_FMT_YUV422P
) && (isBGR(dstFormat
) || isRGB(dstFormat
)))
2157 c
->swScale
= yuv2rgb_get_func_ptr(c
);
2161 if ( srcFormat
==PIX_FMT_YUV410P
&& dstFormat
==PIX_FMT_YUV420P
)
2163 c
->swScale
= yvu9toyv12Wrapper
;
2167 if (srcFormat
==PIX_FMT_BGR24
&& dstFormat
==PIX_FMT_YUV420P
)
2168 c
->swScale
= bgr24toyv12Wrapper
;
2170 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2171 if ( (isBGR(srcFormat
) || isRGB(srcFormat
))
2172 && (isBGR(dstFormat
) || isRGB(dstFormat
))
2173 && srcFormat
!= PIX_FMT_BGR8
&& dstFormat
!= PIX_FMT_BGR8
2174 && srcFormat
!= PIX_FMT_RGB8
&& dstFormat
!= PIX_FMT_RGB8
2175 && srcFormat
!= PIX_FMT_BGR4
&& dstFormat
!= PIX_FMT_BGR4
2176 && srcFormat
!= PIX_FMT_RGB4
&& dstFormat
!= PIX_FMT_RGB4
2177 && srcFormat
!= PIX_FMT_BGR4_BYTE
&& dstFormat
!= PIX_FMT_BGR4_BYTE
2178 && srcFormat
!= PIX_FMT_RGB4_BYTE
&& dstFormat
!= PIX_FMT_RGB4_BYTE
2179 && srcFormat
!= PIX_FMT_MONOBLACK
&& dstFormat
!= PIX_FMT_MONOBLACK
2181 c
->swScale
= rgb2rgbWrapper
;
2183 /* LQ converters if -sws 0 or -sws 4*/
2184 if (c
->flags
&(SWS_FAST_BILINEAR
|SWS_POINT
)){
2185 /* rgb/bgr -> rgb/bgr (dither needed forms) */
2186 if ( (isBGR(srcFormat
) || isRGB(srcFormat
))
2187 && (isBGR(dstFormat
) || isRGB(dstFormat
))
2189 c
->swScale
= rgb2rgbWrapper
;
2192 if (srcFormat
== PIX_FMT_YUV420P
&&
2193 (dstFormat
== PIX_FMT_YUYV422
|| dstFormat
== PIX_FMT_UYVY422
))
2195 if (dstFormat
== PIX_FMT_YUYV422
)
2196 c
->swScale
= PlanarToYuy2Wrapper
;
2198 c
->swScale
= PlanarToUyvyWrapper
;
2202 #ifdef COMPILE_ALTIVEC
2203 if ((c
->flags
& SWS_CPU_CAPS_ALTIVEC
) &&
2204 ((srcFormat
== PIX_FMT_YUV420P
&&
2205 (dstFormat
== PIX_FMT_YUYV422
|| dstFormat
== PIX_FMT_UYVY422
)))) {
2206 // unscaled YV12 -> packed YUV, we want speed
2207 if (dstFormat
== PIX_FMT_YUYV422
)
2208 c
->swScale
= yv12toyuy2_unscaled_altivec
;
2210 c
->swScale
= yv12touyvy_unscaled_altivec
;
2215 if ( srcFormat
== dstFormat
2216 || (isPlanarYUV(srcFormat
) && isGray(dstFormat
))
2217 || (isPlanarYUV(dstFormat
) && isGray(srcFormat
)) )
2219 c
->swScale
= simpleCopy
;
2222 /* gray16{le,be} conversions */
2223 if (isGray16(srcFormat
) && (isPlanarYUV(dstFormat
) || (dstFormat
== PIX_FMT_GRAY8
)))
2225 c
->swScale
= gray16togray
;
2227 if ((isPlanarYUV(srcFormat
) || (srcFormat
== PIX_FMT_GRAY8
)) && isGray16(dstFormat
))
2229 c
->swScale
= graytogray16
;
2231 if (srcFormat
!= dstFormat
&& isGray16(srcFormat
) && isGray16(dstFormat
))
2233 c
->swScale
= gray16swap
;
2237 if (flags
& SWS_CPU_CAPS_BFIN
)
2238 ff_bfin_get_unscaled_swscale (c
);
2242 if (flags
&SWS_PRINT_INFO
)
2243 av_log(c
, AV_LOG_INFO
, "SwScaler: using unscaled %s -> %s special converter\n",
2244 sws_format_name(srcFormat
), sws_format_name(dstFormat
));
2249 if (flags
& SWS_CPU_CAPS_MMX2
)
2251 c
->canMMX2BeUsed
= (dstW
>=srcW
&& (dstW
&31)==0 && (srcW
&15)==0) ? 1 : 0;
2252 if (!c
->canMMX2BeUsed
&& dstW
>=srcW
&& (srcW
&15)==0 && (flags
&SWS_FAST_BILINEAR
))
2254 if (flags
&SWS_PRINT_INFO
)
2255 av_log(c
, AV_LOG_INFO
, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2257 if (usesHFilter
) c
->canMMX2BeUsed
=0;
2262 c
->chrXInc
= ((c
->chrSrcW
<<16) + (c
->chrDstW
>>1))/c
->chrDstW
;
2263 c
->chrYInc
= ((c
->chrSrcH
<<16) + (c
->chrDstH
>>1))/c
->chrDstH
;
2265 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2266 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2267 // n-2 is the last chrominance sample available
2268 // this is not perfect, but no one should notice the difference, the more correct variant
2269 // would be like the vertical one, but that would require some special code for the
2270 // first and last pixel
2271 if (flags
&SWS_FAST_BILINEAR
)
2273 if (c
->canMMX2BeUsed
)
2278 //we don't use the x86asm scaler if mmx is available
2279 else if (flags
& SWS_CPU_CAPS_MMX
)
2281 c
->lumXInc
= ((srcW
-2)<<16)/(dstW
-2) - 20;
2282 c
->chrXInc
= ((c
->chrSrcW
-2)<<16)/(c
->chrDstW
-2) - 20;
2286 /* precalculate horizontal scaler filter coefficients */
2288 const int filterAlign
=
2289 (flags
& SWS_CPU_CAPS_MMX
) ? 4 :
2290 (flags
& SWS_CPU_CAPS_ALTIVEC
) ? 8 :
2293 initFilter(&c
->hLumFilter
, &c
->hLumFilterPos
, &c
->hLumFilterSize
, c
->lumXInc
,
2294 srcW
, dstW
, filterAlign
, 1<<14,
2295 (flags
&SWS_BICUBLIN
) ? (flags
|SWS_BICUBIC
) : flags
,
2296 srcFilter
->lumH
, dstFilter
->lumH
, c
->param
);
2297 initFilter(&c
->hChrFilter
, &c
->hChrFilterPos
, &c
->hChrFilterSize
, c
->chrXInc
,
2298 c
->chrSrcW
, c
->chrDstW
, filterAlign
, 1<<14,
2299 (flags
&SWS_BICUBLIN
) ? (flags
|SWS_BILINEAR
) : flags
,
2300 srcFilter
->chrH
, dstFilter
->chrH
, c
->param
);
2302 #define MAX_FUNNY_CODE_SIZE 10000
2303 #if defined(COMPILE_MMX2)
2304 // can't downscale !!!
2305 if (c
->canMMX2BeUsed
&& (flags
& SWS_FAST_BILINEAR
))
2307 #ifdef MAP_ANONYMOUS
2308 c
->funnyYCode
= (uint8_t*)mmap(NULL
, MAX_FUNNY_CODE_SIZE
, PROT_EXEC
| PROT_READ
| PROT_WRITE
, MAP_PRIVATE
| MAP_ANONYMOUS
, 0, 0);
2309 c
->funnyUVCode
= (uint8_t*)mmap(NULL
, MAX_FUNNY_CODE_SIZE
, PROT_EXEC
| PROT_READ
| PROT_WRITE
, MAP_PRIVATE
| MAP_ANONYMOUS
, 0, 0);
2311 c
->funnyYCode
= av_malloc(MAX_FUNNY_CODE_SIZE
);
2312 c
->funnyUVCode
= av_malloc(MAX_FUNNY_CODE_SIZE
);
2315 c
->lumMmx2Filter
= av_malloc((dstW
/8+8)*sizeof(int16_t));
2316 c
->chrMmx2Filter
= av_malloc((c
->chrDstW
/4+8)*sizeof(int16_t));
2317 c
->lumMmx2FilterPos
= av_malloc((dstW
/2/8+8)*sizeof(int32_t));
2318 c
->chrMmx2FilterPos
= av_malloc((c
->chrDstW
/2/4+8)*sizeof(int32_t));
2320 initMMX2HScaler( dstW
, c
->lumXInc
, c
->funnyYCode
, c
->lumMmx2Filter
, c
->lumMmx2FilterPos
, 8);
2321 initMMX2HScaler(c
->chrDstW
, c
->chrXInc
, c
->funnyUVCode
, c
->chrMmx2Filter
, c
->chrMmx2FilterPos
, 4);
2323 #endif /* defined(COMPILE_MMX2) */
2324 } // Init Horizontal stuff
2328 /* precalculate vertical scaler filter coefficients */
2330 const int filterAlign
=
2331 (flags
& SWS_CPU_CAPS_MMX
) && (flags
& SWS_ACCURATE_RND
) ? 2 :
2332 (flags
& SWS_CPU_CAPS_ALTIVEC
) ? 8 :
2335 initFilter(&c
->vLumFilter
, &c
->vLumFilterPos
, &c
->vLumFilterSize
, c
->lumYInc
,
2336 srcH
, dstH
, filterAlign
, (1<<12)-4,
2337 (flags
&SWS_BICUBLIN
) ? (flags
|SWS_BICUBIC
) : flags
,
2338 srcFilter
->lumV
, dstFilter
->lumV
, c
->param
);
2339 initFilter(&c
->vChrFilter
, &c
->vChrFilterPos
, &c
->vChrFilterSize
, c
->chrYInc
,
2340 c
->chrSrcH
, c
->chrDstH
, filterAlign
, (1<<12)-4,
2341 (flags
&SWS_BICUBLIN
) ? (flags
|SWS_BILINEAR
) : flags
,
2342 srcFilter
->chrV
, dstFilter
->chrV
, c
->param
);
2345 c
->vYCoeffsBank
= av_malloc(sizeof (vector
signed short)*c
->vLumFilterSize
*c
->dstH
);
2346 c
->vCCoeffsBank
= av_malloc(sizeof (vector
signed short)*c
->vChrFilterSize
*c
->chrDstH
);
2348 for (i
=0;i
<c
->vLumFilterSize
*c
->dstH
;i
++) {
2350 short *p
= (short *)&c
->vYCoeffsBank
[i
];
2352 p
[j
] = c
->vLumFilter
[i
];
2355 for (i
=0;i
<c
->vChrFilterSize
*c
->chrDstH
;i
++) {
2357 short *p
= (short *)&c
->vCCoeffsBank
[i
];
2359 p
[j
] = c
->vChrFilter
[i
];
2364 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2365 c
->vLumBufSize
= c
->vLumFilterSize
;
2366 c
->vChrBufSize
= c
->vChrFilterSize
;
2367 for (i
=0; i
<dstH
; i
++)
2369 int chrI
= i
*c
->chrDstH
/ dstH
;
2370 int nextSlice
= FFMAX(c
->vLumFilterPos
[i
] + c
->vLumFilterSize
- 1,
2371 ((c
->vChrFilterPos
[chrI
] + c
->vChrFilterSize
- 1)<<c
->chrSrcVSubSample
));
2373 nextSlice
>>= c
->chrSrcVSubSample
;
2374 nextSlice
<<= c
->chrSrcVSubSample
;
2375 if (c
->vLumFilterPos
[i
] + c
->vLumBufSize
< nextSlice
)
2376 c
->vLumBufSize
= nextSlice
- c
->vLumFilterPos
[i
];
2377 if (c
->vChrFilterPos
[chrI
] + c
->vChrBufSize
< (nextSlice
>>c
->chrSrcVSubSample
))
2378 c
->vChrBufSize
= (nextSlice
>>c
->chrSrcVSubSample
) - c
->vChrFilterPos
[chrI
];
2381 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2382 c
->lumPixBuf
= av_malloc(c
->vLumBufSize
*2*sizeof(int16_t*));
2383 c
->chrPixBuf
= av_malloc(c
->vChrBufSize
*2*sizeof(int16_t*));
2384 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2385 /* align at 16 bytes for AltiVec */
2386 for (i
=0; i
<c
->vLumBufSize
; i
++)
2387 c
->lumPixBuf
[i
]= c
->lumPixBuf
[i
+c
->vLumBufSize
]= av_mallocz(4000);
2388 for (i
=0; i
<c
->vChrBufSize
; i
++)
2389 c
->chrPixBuf
[i
]= c
->chrPixBuf
[i
+c
->vChrBufSize
]= av_malloc(8000);
2391 //try to avoid drawing green stuff between the right end and the stride end
2392 for (i
=0; i
<c
->vChrBufSize
; i
++) memset(c
->chrPixBuf
[i
], 64, 8000);
2394 ASSERT(c
->chrDstH
<= dstH
)
2396 if (flags
&SWS_PRINT_INFO
)
2399 char *dither
= " dithered";
2403 if (flags
&SWS_FAST_BILINEAR
)
2404 av_log(c
, AV_LOG_INFO
, "SwScaler: FAST_BILINEAR scaler, ");
2405 else if (flags
&SWS_BILINEAR
)
2406 av_log(c
, AV_LOG_INFO
, "SwScaler: BILINEAR scaler, ");
2407 else if (flags
&SWS_BICUBIC
)
2408 av_log(c
, AV_LOG_INFO
, "SwScaler: BICUBIC scaler, ");
2409 else if (flags
&SWS_X
)
2410 av_log(c
, AV_LOG_INFO
, "SwScaler: Experimental scaler, ");
2411 else if (flags
&SWS_POINT
)
2412 av_log(c
, AV_LOG_INFO
, "SwScaler: Nearest Neighbor / POINT scaler, ");
2413 else if (flags
&SWS_AREA
)
2414 av_log(c
, AV_LOG_INFO
, "SwScaler: Area Averageing scaler, ");
2415 else if (flags
&SWS_BICUBLIN
)
2416 av_log(c
, AV_LOG_INFO
, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2417 else if (flags
&SWS_GAUSS
)
2418 av_log(c
, AV_LOG_INFO
, "SwScaler: Gaussian scaler, ");
2419 else if (flags
&SWS_SINC
)
2420 av_log(c
, AV_LOG_INFO
, "SwScaler: Sinc scaler, ");
2421 else if (flags
&SWS_LANCZOS
)
2422 av_log(c
, AV_LOG_INFO
, "SwScaler: Lanczos scaler, ");
2423 else if (flags
&SWS_SPLINE
)
2424 av_log(c
, AV_LOG_INFO
, "SwScaler: Bicubic spline scaler, ");
2426 av_log(c
, AV_LOG_INFO
, "SwScaler: ehh flags invalid?! ");
2428 if (dstFormat
==PIX_FMT_BGR555
|| dstFormat
==PIX_FMT_BGR565
)
2429 av_log(c
, AV_LOG_INFO
, "from %s to%s %s ",
2430 sws_format_name(srcFormat
), dither
, sws_format_name(dstFormat
));
2432 av_log(c
, AV_LOG_INFO
, "from %s to %s ",
2433 sws_format_name(srcFormat
), sws_format_name(dstFormat
));
2435 if (flags
& SWS_CPU_CAPS_MMX2
)
2436 av_log(c
, AV_LOG_INFO
, "using MMX2\n");
2437 else if (flags
& SWS_CPU_CAPS_3DNOW
)
2438 av_log(c
, AV_LOG_INFO
, "using 3DNOW\n");
2439 else if (flags
& SWS_CPU_CAPS_MMX
)
2440 av_log(c
, AV_LOG_INFO
, "using MMX\n");
2441 else if (flags
& SWS_CPU_CAPS_ALTIVEC
)
2442 av_log(c
, AV_LOG_INFO
, "using AltiVec\n");
2444 av_log(c
, AV_LOG_INFO
, "using C\n");
2447 if (flags
& SWS_PRINT_INFO
)
2449 if (flags
& SWS_CPU_CAPS_MMX
)
2451 if (c
->canMMX2BeUsed
&& (flags
&SWS_FAST_BILINEAR
))
2452 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2455 if (c
->hLumFilterSize
==4)
2456 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2457 else if (c
->hLumFilterSize
==8)
2458 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2460 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2462 if (c
->hChrFilterSize
==4)
2463 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2464 else if (c
->hChrFilterSize
==8)
2465 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2467 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2472 #if defined(ARCH_X86)
2473 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
2475 if (flags
& SWS_FAST_BILINEAR
)
2476 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2478 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using C scaler for horizontal scaling\n");
2481 if (isPlanarYUV(dstFormat
))
2483 if (c
->vLumFilterSize
==1)
2484 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2486 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2490 if (c
->vLumFilterSize
==1 && c
->vChrFilterSize
==2)
2491 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2492 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2493 else if (c
->vLumFilterSize
==2 && c
->vChrFilterSize
==2)
2494 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2496 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2499 if (dstFormat
==PIX_FMT_BGR24
)
2500 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using %s YV12->BGR24 Converter\n",
2501 (flags
& SWS_CPU_CAPS_MMX2
) ? "MMX2" : ((flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C"));
2502 else if (dstFormat
==PIX_FMT_RGB32
)
2503 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using %s YV12->BGR32 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2504 else if (dstFormat
==PIX_FMT_BGR565
)
2505 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using %s YV12->BGR16 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2506 else if (dstFormat
==PIX_FMT_BGR555
)
2507 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: using %s YV12->BGR15 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2509 av_log(c
, AV_LOG_VERBOSE
, "SwScaler: %dx%d -> %dx%d\n", srcW
, srcH
, dstW
, dstH
);
2511 if (flags
& SWS_PRINT_INFO
)
2513 av_log(c
, AV_LOG_DEBUG
, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2514 c
->srcW
, c
->srcH
, c
->dstW
, c
->dstH
, c
->lumXInc
, c
->lumYInc
);
2515 av_log(c
, AV_LOG_DEBUG
, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2516 c
->chrSrcW
, c
->chrSrcH
, c
->chrDstW
, c
->chrDstH
, c
->chrXInc
, c
->chrYInc
);
2519 c
->swScale
= getSwsFunc(flags
);
2524 * swscale wrapper, so we don't need to export the SwsContext.
2525 * assumes planar YUV to be in YUV order instead of YVU
2527 int sws_scale(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
2528 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
2530 uint8_t* src2
[4]= {src
[0], src
[1], src
[2]};
2532 if (c
->sliceDir
== 0 && srcSliceY
!= 0 && srcSliceY
+ srcSliceH
!= c
->srcH
) {
2533 av_log(c
, AV_LOG_ERROR
, "swScaler: slices start in the middle!\n");
2536 if (c
->sliceDir
== 0) {
2537 if (srcSliceY
== 0) c
->sliceDir
= 1; else c
->sliceDir
= -1;
2540 if (c
->srcFormat
== PIX_FMT_PAL8
){
2541 for (i
=0; i
<256; i
++){
2542 int p
= ((uint32_t*)(src
[1]))[i
];
2543 int r
= (p
>>16)&0xFF;
2544 int g
= (p
>> 8)&0xFF;
2546 int y
= av_clip_uint8(((RY
*r
+ GY
*g
+ BY
*b
)>>RGB2YUV_SHIFT
) + 16 );
2547 int u
= av_clip_uint8(((RU
*r
+ GU
*g
+ BU
*b
)>>RGB2YUV_SHIFT
) + 128);
2548 int v
= av_clip_uint8(((RV
*r
+ GV
*g
+ BV
*b
)>>RGB2YUV_SHIFT
) + 128);
2549 pal
[i
]= y
+ (u
<<8) + (v
<<16);
2554 // copy strides, so they can safely be modified
2555 if (c
->sliceDir
== 1) {
2556 // slices go from top to bottom
2557 int srcStride2
[4]= {srcStride
[0], srcStride
[1], srcStride
[2]};
2558 int dstStride2
[4]= {dstStride
[0], dstStride
[1], dstStride
[2]};
2559 return c
->swScale(c
, src2
, srcStride2
, srcSliceY
, srcSliceH
, dst
, dstStride2
);
2561 // slices go from bottom to top => we flip the image internally
2562 uint8_t* dst2
[4]= {dst
[0] + (c
->dstH
-1)*dstStride
[0],
2563 dst
[1] + ((c
->dstH
>>c
->chrDstVSubSample
)-1)*dstStride
[1],
2564 dst
[2] + ((c
->dstH
>>c
->chrDstVSubSample
)-1)*dstStride
[2]};
2565 int srcStride2
[4]= {-srcStride
[0], -srcStride
[1], -srcStride
[2]};
2566 int dstStride2
[4]= {-dstStride
[0], -dstStride
[1], -dstStride
[2]};
2568 src2
[0] += (srcSliceH
-1)*srcStride
[0];
2569 if (c
->srcFormat
!= PIX_FMT_PAL8
)
2570 src2
[1] += ((srcSliceH
>>c
->chrSrcVSubSample
)-1)*srcStride
[1];
2571 src2
[2] += ((srcSliceH
>>c
->chrSrcVSubSample
)-1)*srcStride
[2];
2573 return c
->swScale(c
, src2
, srcStride2
, c
->srcH
-srcSliceY
-srcSliceH
, srcSliceH
, dst2
, dstStride2
);
2578 * swscale wrapper, so we don't need to export the SwsContext
2580 int sws_scale_ordered(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
2581 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
2582 return sws_scale(c
, src
, srcStride
, srcSliceY
, srcSliceH
, dst
, dstStride
);
2585 SwsFilter
*sws_getDefaultFilter(float lumaGBlur
, float chromaGBlur
,
2586 float lumaSharpen
, float chromaSharpen
,
2587 float chromaHShift
, float chromaVShift
,
2590 SwsFilter
*filter
= av_malloc(sizeof(SwsFilter
));
2592 if (lumaGBlur
!=0.0){
2593 filter
->lumH
= sws_getGaussianVec(lumaGBlur
, 3.0);
2594 filter
->lumV
= sws_getGaussianVec(lumaGBlur
, 3.0);
2596 filter
->lumH
= sws_getIdentityVec();
2597 filter
->lumV
= sws_getIdentityVec();
2600 if (chromaGBlur
!=0.0){
2601 filter
->chrH
= sws_getGaussianVec(chromaGBlur
, 3.0);
2602 filter
->chrV
= sws_getGaussianVec(chromaGBlur
, 3.0);
2604 filter
->chrH
= sws_getIdentityVec();
2605 filter
->chrV
= sws_getIdentityVec();
2608 if (chromaSharpen
!=0.0){
2609 SwsVector
*id
= sws_getIdentityVec();
2610 sws_scaleVec(filter
->chrH
, -chromaSharpen
);
2611 sws_scaleVec(filter
->chrV
, -chromaSharpen
);
2612 sws_addVec(filter
->chrH
, id
);
2613 sws_addVec(filter
->chrV
, id
);
2617 if (lumaSharpen
!=0.0){
2618 SwsVector
*id
= sws_getIdentityVec();
2619 sws_scaleVec(filter
->lumH
, -lumaSharpen
);
2620 sws_scaleVec(filter
->lumV
, -lumaSharpen
);
2621 sws_addVec(filter
->lumH
, id
);
2622 sws_addVec(filter
->lumV
, id
);
2626 if (chromaHShift
!= 0.0)
2627 sws_shiftVec(filter
->chrH
, (int)(chromaHShift
+0.5));
2629 if (chromaVShift
!= 0.0)
2630 sws_shiftVec(filter
->chrV
, (int)(chromaVShift
+0.5));
2632 sws_normalizeVec(filter
->chrH
, 1.0);
2633 sws_normalizeVec(filter
->chrV
, 1.0);
2634 sws_normalizeVec(filter
->lumH
, 1.0);
2635 sws_normalizeVec(filter
->lumV
, 1.0);
2637 if (verbose
) sws_printVec(filter
->chrH
);
2638 if (verbose
) sws_printVec(filter
->lumH
);
2644 * returns a normalized gaussian curve used to filter stuff
2645 * quality=3 is high quality, lowwer is lowwer quality
2647 SwsVector
*sws_getGaussianVec(double variance
, double quality
){
2648 const int length
= (int)(variance
*quality
+ 0.5) | 1;
2650 double *coeff
= av_malloc(length
*sizeof(double));
2651 double middle
= (length
-1)*0.5;
2652 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2655 vec
->length
= length
;
2657 for (i
=0; i
<length
; i
++)
2659 double dist
= i
-middle
;
2660 coeff
[i
]= exp( -dist
*dist
/(2*variance
*variance
) ) / sqrt(2*variance
*PI
);
2663 sws_normalizeVec(vec
, 1.0);
2668 SwsVector
*sws_getConstVec(double c
, int length
){
2670 double *coeff
= av_malloc(length
*sizeof(double));
2671 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2674 vec
->length
= length
;
2676 for (i
=0; i
<length
; i
++)
2683 SwsVector
*sws_getIdentityVec(void){
2684 return sws_getConstVec(1.0, 1);
2687 double sws_dcVec(SwsVector
*a
){
2691 for (i
=0; i
<a
->length
; i
++)
2697 void sws_scaleVec(SwsVector
*a
, double scalar
){
2700 for (i
=0; i
<a
->length
; i
++)
2701 a
->coeff
[i
]*= scalar
;
2704 void sws_normalizeVec(SwsVector
*a
, double height
){
2705 sws_scaleVec(a
, height
/sws_dcVec(a
));
2708 static SwsVector
*sws_getConvVec(SwsVector
*a
, SwsVector
*b
){
2709 int length
= a
->length
+ b
->length
- 1;
2710 double *coeff
= av_malloc(length
*sizeof(double));
2712 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2715 vec
->length
= length
;
2717 for (i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2719 for (i
=0; i
<a
->length
; i
++)
2721 for (j
=0; j
<b
->length
; j
++)
2723 coeff
[i
+j
]+= a
->coeff
[i
]*b
->coeff
[j
];
2730 static SwsVector
*sws_sumVec(SwsVector
*a
, SwsVector
*b
){
2731 int length
= FFMAX(a
->length
, b
->length
);
2732 double *coeff
= av_malloc(length
*sizeof(double));
2734 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2737 vec
->length
= length
;
2739 for (i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2741 for (i
=0; i
<a
->length
; i
++) coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2]+= a
->coeff
[i
];
2742 for (i
=0; i
<b
->length
; i
++) coeff
[i
+ (length
-1)/2 - (b
->length
-1)/2]+= b
->coeff
[i
];
2747 static SwsVector
*sws_diffVec(SwsVector
*a
, SwsVector
*b
){
2748 int length
= FFMAX(a
->length
, b
->length
);
2749 double *coeff
= av_malloc(length
*sizeof(double));
2751 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2754 vec
->length
= length
;
2756 for (i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2758 for (i
=0; i
<a
->length
; i
++) coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2]+= a
->coeff
[i
];
2759 for (i
=0; i
<b
->length
; i
++) coeff
[i
+ (length
-1)/2 - (b
->length
-1)/2]-= b
->coeff
[i
];
2764 /* shift left / or right if "shift" is negative */
2765 static SwsVector
*sws_getShiftedVec(SwsVector
*a
, int shift
){
2766 int length
= a
->length
+ FFABS(shift
)*2;
2767 double *coeff
= av_malloc(length
*sizeof(double));
2769 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2772 vec
->length
= length
;
2774 for (i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2776 for (i
=0; i
<a
->length
; i
++)
2778 coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2 - shift
]= a
->coeff
[i
];
2784 void sws_shiftVec(SwsVector
*a
, int shift
){
2785 SwsVector
*shifted
= sws_getShiftedVec(a
, shift
);
2787 a
->coeff
= shifted
->coeff
;
2788 a
->length
= shifted
->length
;
2792 void sws_addVec(SwsVector
*a
, SwsVector
*b
){
2793 SwsVector
*sum
= sws_sumVec(a
, b
);
2795 a
->coeff
= sum
->coeff
;
2796 a
->length
= sum
->length
;
2800 void sws_subVec(SwsVector
*a
, SwsVector
*b
){
2801 SwsVector
*diff
= sws_diffVec(a
, b
);
2803 a
->coeff
= diff
->coeff
;
2804 a
->length
= diff
->length
;
2808 void sws_convVec(SwsVector
*a
, SwsVector
*b
){
2809 SwsVector
*conv
= sws_getConvVec(a
, b
);
2811 a
->coeff
= conv
->coeff
;
2812 a
->length
= conv
->length
;
2816 SwsVector
*sws_cloneVec(SwsVector
*a
){
2817 double *coeff
= av_malloc(a
->length
*sizeof(double));
2819 SwsVector
*vec
= av_malloc(sizeof(SwsVector
));
2822 vec
->length
= a
->length
;
2824 for (i
=0; i
<a
->length
; i
++) coeff
[i
]= a
->coeff
[i
];
2829 void sws_printVec(SwsVector
*a
){
2835 for (i
=0; i
<a
->length
; i
++)
2836 if (a
->coeff
[i
]>max
) max
= a
->coeff
[i
];
2838 for (i
=0; i
<a
->length
; i
++)
2839 if (a
->coeff
[i
]<min
) min
= a
->coeff
[i
];
2843 for (i
=0; i
<a
->length
; i
++)
2845 int x
= (int)((a
->coeff
[i
]-min
)*60.0/range
+0.5);
2846 av_log(NULL
, AV_LOG_DEBUG
, "%1.3f ", a
->coeff
[i
]);
2847 for (;x
>0; x
--) av_log(NULL
, AV_LOG_DEBUG
, " ");
2848 av_log(NULL
, AV_LOG_DEBUG
, "|\n");
2852 void sws_freeVec(SwsVector
*a
){
2860 void sws_freeFilter(SwsFilter
*filter
){
2861 if (!filter
) return;
2863 if (filter
->lumH
) sws_freeVec(filter
->lumH
);
2864 if (filter
->lumV
) sws_freeVec(filter
->lumV
);
2865 if (filter
->chrH
) sws_freeVec(filter
->chrH
);
2866 if (filter
->chrV
) sws_freeVec(filter
->chrV
);
2871 void sws_freeContext(SwsContext
*c
){
2877 for (i
=0; i
<c
->vLumBufSize
; i
++)
2879 av_free(c
->lumPixBuf
[i
]);
2880 c
->lumPixBuf
[i
]=NULL
;
2882 av_free(c
->lumPixBuf
);
2888 for (i
=0; i
<c
->vChrBufSize
; i
++)
2890 av_free(c
->chrPixBuf
[i
]);
2891 c
->chrPixBuf
[i
]=NULL
;
2893 av_free(c
->chrPixBuf
);
2897 av_free(c
->vLumFilter
);
2898 c
->vLumFilter
= NULL
;
2899 av_free(c
->vChrFilter
);
2900 c
->vChrFilter
= NULL
;
2901 av_free(c
->hLumFilter
);
2902 c
->hLumFilter
= NULL
;
2903 av_free(c
->hChrFilter
);
2904 c
->hChrFilter
= NULL
;
2906 av_free(c
->vYCoeffsBank
);
2907 c
->vYCoeffsBank
= NULL
;
2908 av_free(c
->vCCoeffsBank
);
2909 c
->vCCoeffsBank
= NULL
;
2912 av_free(c
->vLumFilterPos
);
2913 c
->vLumFilterPos
= NULL
;
2914 av_free(c
->vChrFilterPos
);
2915 c
->vChrFilterPos
= NULL
;
2916 av_free(c
->hLumFilterPos
);
2917 c
->hLumFilterPos
= NULL
;
2918 av_free(c
->hChrFilterPos
);
2919 c
->hChrFilterPos
= NULL
;
2921 #if defined(ARCH_X86) && defined(CONFIG_GPL)
2922 #ifdef MAP_ANONYMOUS
2923 if (c
->funnyYCode
) munmap(c
->funnyYCode
, MAX_FUNNY_CODE_SIZE
);
2924 if (c
->funnyUVCode
) munmap(c
->funnyUVCode
, MAX_FUNNY_CODE_SIZE
);
2926 av_free(c
->funnyYCode
);
2927 av_free(c
->funnyUVCode
);
2930 c
->funnyUVCode
=NULL
;
2931 #endif /* defined(ARCH_X86) */
2933 av_free(c
->lumMmx2Filter
);
2934 c
->lumMmx2Filter
=NULL
;
2935 av_free(c
->chrMmx2Filter
);
2936 c
->chrMmx2Filter
=NULL
;
2937 av_free(c
->lumMmx2FilterPos
);
2938 c
->lumMmx2FilterPos
=NULL
;
2939 av_free(c
->chrMmx2FilterPos
);
2940 c
->chrMmx2FilterPos
=NULL
;
2941 av_free(c
->yuvTable
);
2948 * Checks if context is valid or reallocs a new one instead.
2949 * If context is NULL, just calls sws_getContext() to get a new one.
2950 * Otherwise, checks if the parameters are the same already saved in context.
2951 * If that is the case, returns the current context.
2952 * Otherwise, frees context and gets a new one.
2954 * Be warned that srcFilter, dstFilter are not checked, they are
2955 * asumed to remain valid.
2957 struct SwsContext
*sws_getCachedContext(struct SwsContext
*context
,
2958 int srcW
, int srcH
, int srcFormat
,
2959 int dstW
, int dstH
, int dstFormat
, int flags
,
2960 SwsFilter
*srcFilter
, SwsFilter
*dstFilter
, double *param
)
2962 if (context
!= NULL
) {
2963 if ((context
->srcW
!= srcW
) || (context
->srcH
!= srcH
) ||
2964 (context
->srcFormat
!= srcFormat
) ||
2965 (context
->dstW
!= dstW
) || (context
->dstH
!= dstH
) ||
2966 (context
->dstFormat
!= dstFormat
) || (context
->flags
!= flags
) ||
2967 (context
->param
!= param
))
2969 sws_freeContext(context
);
2973 if (context
== NULL
) {
2974 return sws_getContext(srcW
, srcH
, srcFormat
,
2975 dstW
, dstH
, dstFormat
, flags
,
2976 srcFilter
, dstFilter
, param
);