synced with r22469
[mplayer/greg.git] / libswscale / swscale.c
blob2baef4a318c48eee8c995c4b625976acaf16c45c
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
25 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27 {BGR,RGB}{1,4,8,15,16} support dithering
29 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31 x -> x
32 YUV9 -> YV12
33 YUV9/YV12 -> Y800
34 Y800 -> YUV9/YV12
35 BGR24 -> BGR32 & RGB24 -> RGB32
36 BGR32 -> BGR24 & RGB32 -> RGB24
37 BGR15 -> BGR16
40 /*
41 tested special converters (most are tested actually but i didnt write it down ...)
42 YV12 -> BGR16
43 YV12 -> YV12
44 BGR15 -> BGR16
45 BGR16 -> BGR16
46 YVU9 -> YV12
48 untested special converters
49 YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
50 YV12/I420 -> YV12/I420
51 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52 BGR24 -> BGR32 & RGB24 -> RGB32
53 BGR32 -> BGR24 & RGB32 -> RGB24
54 BGR24 -> YV12
57 #include <inttypes.h>
58 #include <string.h>
59 #include <math.h>
60 #include <stdio.h>
61 #include <unistd.h>
62 #include "config.h"
63 #include <assert.h>
64 #ifdef HAVE_SYS_MMAN_H
65 #include <sys/mman.h>
66 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67 #define MAP_ANONYMOUS MAP_ANON
68 #endif
69 #endif
70 #include "swscale.h"
71 #include "swscale_internal.h"
72 #include "x86_cpu.h"
73 #include "bswap.h"
74 #include "rgb2rgb.h"
75 #ifdef USE_FASTMEMCPY
76 #include "libvo/fastmemcpy.h"
77 #endif
79 #undef MOVNTQ
80 #undef PAVGB
82 //#undef HAVE_MMX2
83 //#define HAVE_3DNOW
84 //#undef HAVE_MMX
85 //#undef ARCH_X86
86 //#define WORDS_BIGENDIAN
87 #define DITHER1XBPP
89 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
91 #define RET 0xC3 //near return opcode for X86
93 #ifdef MP_DEBUG
94 #define ASSERT(x) assert(x);
95 #else
96 #define ASSERT(x) ;
97 #endif
99 #ifdef M_PI
100 #define PI M_PI
101 #else
102 #define PI 3.14159265358979323846
103 #endif
105 #define isSupportedIn(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
106 || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\
107 || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24|| (x)==PIX_FMT_RGB565|| (x)==PIX_FMT_RGB555\
108 || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\
109 || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
110 || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
111 || (x)==PIX_FMT_PAL8 || (x)==PIX_FMT_BGR8 || (x)==PIX_FMT_RGB8\
112 || (x)==PIX_FMT_BGR4_BYTE || (x)==PIX_FMT_RGB4_BYTE)
113 #define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
114 || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
115 || isRGB(x) || isBGR(x)\
116 || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\
117 || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
118 || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
119 #define isPacked(x) ((x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 ||isRGB(x) || isBGR(x))
121 #define RGB2YUV_SHIFT 16
122 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
123 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
124 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
125 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
126 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
127 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
128 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
129 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
130 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
132 extern const int32_t Inverse_Table_6_9[8][4];
135 NOTES
136 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
138 TODO
139 more intelligent missalignment avoidance for the horizontal scaler
140 write special vertical cubic upscale version
141 Optimize C code (yv12 / minmax)
142 add support for packed pixel yuv input & output
143 add support for Y8 output
144 optimize bgr24 & bgr32
145 add BGR4 output support
146 write special BGR->BGR scaler
149 #if defined(ARCH_X86) && defined (CONFIG_GPL)
150 static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
151 static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
152 static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
153 static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL;
154 static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
155 static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
156 static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
157 static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
159 static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
160 static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
161 static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
162 static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
164 static uint64_t __attribute__((aligned(8))) dither4[2]={
165 0x0103010301030103LL,
166 0x0200020002000200LL,};
168 static uint64_t __attribute__((aligned(8))) dither8[2]={
169 0x0602060206020602LL,
170 0x0004000400040004LL,};
172 static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
173 static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
174 static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
175 static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
176 static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
177 static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
179 static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
180 static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
181 static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
183 #ifdef FAST_BGR2YV12
184 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
185 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
186 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
187 #else
188 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
189 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
190 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
191 #endif /* FAST_BGR2YV12 */
192 static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
193 static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
194 static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
195 #endif /* defined(ARCH_X86) */
197 // clipping helper table for C implementations:
198 static unsigned char clip_table[768];
200 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
202 extern const uint8_t dither_2x2_4[2][8];
203 extern const uint8_t dither_2x2_8[2][8];
204 extern const uint8_t dither_8x8_32[8][8];
205 extern const uint8_t dither_8x8_73[8][8];
206 extern const uint8_t dither_8x8_220[8][8];
208 static const char * sws_context_to_name(void * ptr) {
209 return "swscaler";
212 static AVClass sws_context_class = { "SWScaler", sws_context_to_name, NULL };
214 char *sws_format_name(enum PixelFormat format)
216 switch (format) {
217 case PIX_FMT_YUV420P:
218 return "yuv420p";
219 case PIX_FMT_YUYV422:
220 return "yuyv422";
221 case PIX_FMT_RGB24:
222 return "rgb24";
223 case PIX_FMT_BGR24:
224 return "bgr24";
225 case PIX_FMT_YUV422P:
226 return "yuv422p";
227 case PIX_FMT_YUV444P:
228 return "yuv444p";
229 case PIX_FMT_RGB32:
230 return "rgb32";
231 case PIX_FMT_YUV410P:
232 return "yuv410p";
233 case PIX_FMT_YUV411P:
234 return "yuv411p";
235 case PIX_FMT_RGB565:
236 return "rgb565";
237 case PIX_FMT_RGB555:
238 return "rgb555";
239 case PIX_FMT_GRAY16BE:
240 return "gray16be";
241 case PIX_FMT_GRAY16LE:
242 return "gray16le";
243 case PIX_FMT_GRAY8:
244 return "gray8";
245 case PIX_FMT_MONOWHITE:
246 return "mono white";
247 case PIX_FMT_MONOBLACK:
248 return "mono black";
249 case PIX_FMT_PAL8:
250 return "Palette";
251 case PIX_FMT_YUVJ420P:
252 return "yuvj420p";
253 case PIX_FMT_YUVJ422P:
254 return "yuvj422p";
255 case PIX_FMT_YUVJ444P:
256 return "yuvj444p";
257 case PIX_FMT_XVMC_MPEG2_MC:
258 return "xvmc_mpeg2_mc";
259 case PIX_FMT_XVMC_MPEG2_IDCT:
260 return "xvmc_mpeg2_idct";
261 case PIX_FMT_UYVY422:
262 return "uyvy422";
263 case PIX_FMT_UYYVYY411:
264 return "uyyvyy411";
265 case PIX_FMT_RGB32_1:
266 return "rgb32x";
267 case PIX_FMT_BGR32_1:
268 return "bgr32x";
269 case PIX_FMT_BGR32:
270 return "bgr32";
271 case PIX_FMT_BGR565:
272 return "bgr565";
273 case PIX_FMT_BGR555:
274 return "bgr555";
275 case PIX_FMT_BGR8:
276 return "bgr8";
277 case PIX_FMT_BGR4:
278 return "bgr4";
279 case PIX_FMT_BGR4_BYTE:
280 return "bgr4 byte";
281 case PIX_FMT_RGB8:
282 return "rgb8";
283 case PIX_FMT_RGB4:
284 return "rgb4";
285 case PIX_FMT_RGB4_BYTE:
286 return "rgb4 byte";
287 case PIX_FMT_NV12:
288 return "nv12";
289 case PIX_FMT_NV21:
290 return "nv21";
291 default:
292 return "Unknown format";
296 #if defined(ARCH_X86) && defined (CONFIG_GPL)
297 void in_asm_used_var_warning_killer()
299 volatile int i= bF8+bFC+w10+
300 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
301 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
302 if(i) i=0;
304 #endif
306 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
307 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
308 uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
310 //FIXME Optimize (just quickly writen not opti..)
311 int i;
312 for(i=0; i<dstW; i++)
314 int val=1<<18;
315 int j;
316 for(j=0; j<lumFilterSize; j++)
317 val += lumSrc[j][i] * lumFilter[j];
319 dest[i]= av_clip_uint8(val>>19);
322 if(uDest != NULL)
323 for(i=0; i<chrDstW; i++)
325 int u=1<<18;
326 int v=1<<18;
327 int j;
328 for(j=0; j<chrFilterSize; j++)
330 u += chrSrc[j][i] * chrFilter[j];
331 v += chrSrc[j][i + 2048] * chrFilter[j];
334 uDest[i]= av_clip_uint8(u>>19);
335 vDest[i]= av_clip_uint8(v>>19);
339 static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
340 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
341 uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
343 //FIXME Optimize (just quickly writen not opti..)
344 int i;
345 for(i=0; i<dstW; i++)
347 int val=1<<18;
348 int j;
349 for(j=0; j<lumFilterSize; j++)
350 val += lumSrc[j][i] * lumFilter[j];
352 dest[i]= av_clip_uint8(val>>19);
355 if(uDest == NULL)
356 return;
358 if(dstFormat == PIX_FMT_NV12)
359 for(i=0; i<chrDstW; i++)
361 int u=1<<18;
362 int v=1<<18;
363 int j;
364 for(j=0; j<chrFilterSize; j++)
366 u += chrSrc[j][i] * chrFilter[j];
367 v += chrSrc[j][i + 2048] * chrFilter[j];
370 uDest[2*i]= av_clip_uint8(u>>19);
371 uDest[2*i+1]= av_clip_uint8(v>>19);
373 else
374 for(i=0; i<chrDstW; i++)
376 int u=1<<18;
377 int v=1<<18;
378 int j;
379 for(j=0; j<chrFilterSize; j++)
381 u += chrSrc[j][i] * chrFilter[j];
382 v += chrSrc[j][i + 2048] * chrFilter[j];
385 uDest[2*i]= av_clip_uint8(v>>19);
386 uDest[2*i+1]= av_clip_uint8(u>>19);
390 #define YSCALE_YUV_2_PACKEDX_C(type) \
391 for(i=0; i<(dstW>>1); i++){\
392 int j;\
393 int Y1=1<<18;\
394 int Y2=1<<18;\
395 int U=1<<18;\
396 int V=1<<18;\
397 type attribute_unused *r, *b, *g;\
398 const int i2= 2*i;\
400 for(j=0; j<lumFilterSize; j++)\
402 Y1 += lumSrc[j][i2] * lumFilter[j];\
403 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
405 for(j=0; j<chrFilterSize; j++)\
407 U += chrSrc[j][i] * chrFilter[j];\
408 V += chrSrc[j][i+2048] * chrFilter[j];\
410 Y1>>=19;\
411 Y2>>=19;\
412 U >>=19;\
413 V >>=19;\
414 if((Y1|Y2|U|V)&256)\
416 if(Y1>255) Y1=255;\
417 else if(Y1<0)Y1=0;\
418 if(Y2>255) Y2=255;\
419 else if(Y2<0)Y2=0;\
420 if(U>255) U=255;\
421 else if(U<0) U=0;\
422 if(V>255) V=255;\
423 else if(V<0) V=0;\
426 #define YSCALE_YUV_2_RGBX_C(type) \
427 YSCALE_YUV_2_PACKEDX_C(type)\
428 r = (type *)c->table_rV[V];\
429 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
430 b = (type *)c->table_bU[U];\
432 #define YSCALE_YUV_2_PACKED2_C \
433 for(i=0; i<(dstW>>1); i++){\
434 const int i2= 2*i;\
435 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
436 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
437 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
438 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
440 #define YSCALE_YUV_2_RGB2_C(type) \
441 YSCALE_YUV_2_PACKED2_C\
442 type *r, *b, *g;\
443 r = (type *)c->table_rV[V];\
444 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
445 b = (type *)c->table_bU[U];\
447 #define YSCALE_YUV_2_PACKED1_C \
448 for(i=0; i<(dstW>>1); i++){\
449 const int i2= 2*i;\
450 int Y1= buf0[i2 ]>>7;\
451 int Y2= buf0[i2+1]>>7;\
452 int U= (uvbuf1[i ])>>7;\
453 int V= (uvbuf1[i+2048])>>7;\
455 #define YSCALE_YUV_2_RGB1_C(type) \
456 YSCALE_YUV_2_PACKED1_C\
457 type *r, *b, *g;\
458 r = (type *)c->table_rV[V];\
459 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
460 b = (type *)c->table_bU[U];\
462 #define YSCALE_YUV_2_PACKED1B_C \
463 for(i=0; i<(dstW>>1); i++){\
464 const int i2= 2*i;\
465 int Y1= buf0[i2 ]>>7;\
466 int Y2= buf0[i2+1]>>7;\
467 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
468 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
470 #define YSCALE_YUV_2_RGB1B_C(type) \
471 YSCALE_YUV_2_PACKED1B_C\
472 type *r, *b, *g;\
473 r = (type *)c->table_rV[V];\
474 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
475 b = (type *)c->table_bU[U];\
477 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
478 switch(c->dstFormat)\
480 case PIX_FMT_RGB32:\
481 case PIX_FMT_BGR32:\
482 func(uint32_t)\
483 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
484 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
486 break;\
487 case PIX_FMT_RGB24:\
488 func(uint8_t)\
489 ((uint8_t*)dest)[0]= r[Y1];\
490 ((uint8_t*)dest)[1]= g[Y1];\
491 ((uint8_t*)dest)[2]= b[Y1];\
492 ((uint8_t*)dest)[3]= r[Y2];\
493 ((uint8_t*)dest)[4]= g[Y2];\
494 ((uint8_t*)dest)[5]= b[Y2];\
495 dest+=6;\
497 break;\
498 case PIX_FMT_BGR24:\
499 func(uint8_t)\
500 ((uint8_t*)dest)[0]= b[Y1];\
501 ((uint8_t*)dest)[1]= g[Y1];\
502 ((uint8_t*)dest)[2]= r[Y1];\
503 ((uint8_t*)dest)[3]= b[Y2];\
504 ((uint8_t*)dest)[4]= g[Y2];\
505 ((uint8_t*)dest)[5]= r[Y2];\
506 dest+=6;\
508 break;\
509 case PIX_FMT_RGB565:\
510 case PIX_FMT_BGR565:\
512 const int dr1= dither_2x2_8[y&1 ][0];\
513 const int dg1= dither_2x2_4[y&1 ][0];\
514 const int db1= dither_2x2_8[(y&1)^1][0];\
515 const int dr2= dither_2x2_8[y&1 ][1];\
516 const int dg2= dither_2x2_4[y&1 ][1];\
517 const int db2= dither_2x2_8[(y&1)^1][1];\
518 func(uint16_t)\
519 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
520 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
523 break;\
524 case PIX_FMT_RGB555:\
525 case PIX_FMT_BGR555:\
527 const int dr1= dither_2x2_8[y&1 ][0];\
528 const int dg1= dither_2x2_8[y&1 ][1];\
529 const int db1= dither_2x2_8[(y&1)^1][0];\
530 const int dr2= dither_2x2_8[y&1 ][1];\
531 const int dg2= dither_2x2_8[y&1 ][0];\
532 const int db2= dither_2x2_8[(y&1)^1][1];\
533 func(uint16_t)\
534 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
535 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
538 break;\
539 case PIX_FMT_RGB8:\
540 case PIX_FMT_BGR8:\
542 const uint8_t * const d64= dither_8x8_73[y&7];\
543 const uint8_t * const d32= dither_8x8_32[y&7];\
544 func(uint8_t)\
545 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
546 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
549 break;\
550 case PIX_FMT_RGB4:\
551 case PIX_FMT_BGR4:\
553 const uint8_t * const d64= dither_8x8_73 [y&7];\
554 const uint8_t * const d128=dither_8x8_220[y&7];\
555 func(uint8_t)\
556 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
557 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
560 break;\
561 case PIX_FMT_RGB4_BYTE:\
562 case PIX_FMT_BGR4_BYTE:\
564 const uint8_t * const d64= dither_8x8_73 [y&7];\
565 const uint8_t * const d128=dither_8x8_220[y&7];\
566 func(uint8_t)\
567 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
568 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
571 break;\
572 case PIX_FMT_MONOBLACK:\
574 const uint8_t * const d128=dither_8x8_220[y&7];\
575 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
576 for(i=0; i<dstW-7; i+=8){\
577 int acc;\
578 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
579 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
580 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
581 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
582 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
583 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
584 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
585 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
586 ((uint8_t*)dest)[0]= acc;\
587 dest++;\
591 ((uint8_t*)dest)-= dstW>>4;\
593 int acc=0;\
594 int left=0;\
595 static int top[1024];\
596 static int last_new[1024][1024];\
597 static int last_in3[1024][1024];\
598 static int drift[1024][1024];\
599 int topLeft=0;\
600 int shift=0;\
601 int count=0;\
602 const uint8_t * const d128=dither_8x8_220[y&7];\
603 int error_new=0;\
604 int error_in3=0;\
605 int f=0;\
607 for(i=dstW>>1; i<dstW; i++){\
608 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
609 int in2 = (76309 * (in - 16) + 32768) >> 16;\
610 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
611 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
612 + (last_new[y][i] - in3)*f/256;\
613 int new= old> 128 ? 255 : 0;\
615 error_new+= FFABS(last_new[y][i] - new);\
616 error_in3+= FFABS(last_in3[y][i] - in3);\
617 f= error_new - error_in3*4;\
618 if(f<0) f=0;\
619 if(f>256) f=256;\
621 topLeft= top[i];\
622 left= top[i]= old - new;\
623 last_new[y][i]= new;\
624 last_in3[y][i]= in3;\
626 acc+= acc + (new&1);\
627 if((i&7)==6){\
628 ((uint8_t*)dest)[0]= acc;\
629 ((uint8_t*)dest)++;\
635 break;\
636 case PIX_FMT_YUYV422:\
637 func2\
638 ((uint8_t*)dest)[2*i2+0]= Y1;\
639 ((uint8_t*)dest)[2*i2+1]= U;\
640 ((uint8_t*)dest)[2*i2+2]= Y2;\
641 ((uint8_t*)dest)[2*i2+3]= V;\
643 break;\
644 case PIX_FMT_UYVY422:\
645 func2\
646 ((uint8_t*)dest)[2*i2+0]= U;\
647 ((uint8_t*)dest)[2*i2+1]= Y1;\
648 ((uint8_t*)dest)[2*i2+2]= V;\
649 ((uint8_t*)dest)[2*i2+3]= Y2;\
651 break;\
655 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
656 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
657 uint8_t *dest, int dstW, int y)
659 int i;
660 switch(c->dstFormat)
662 case PIX_FMT_BGR32:
663 case PIX_FMT_RGB32:
664 YSCALE_YUV_2_RGBX_C(uint32_t)
665 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
666 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
668 break;
669 case PIX_FMT_RGB24:
670 YSCALE_YUV_2_RGBX_C(uint8_t)
671 ((uint8_t*)dest)[0]= r[Y1];
672 ((uint8_t*)dest)[1]= g[Y1];
673 ((uint8_t*)dest)[2]= b[Y1];
674 ((uint8_t*)dest)[3]= r[Y2];
675 ((uint8_t*)dest)[4]= g[Y2];
676 ((uint8_t*)dest)[5]= b[Y2];
677 dest+=6;
679 break;
680 case PIX_FMT_BGR24:
681 YSCALE_YUV_2_RGBX_C(uint8_t)
682 ((uint8_t*)dest)[0]= b[Y1];
683 ((uint8_t*)dest)[1]= g[Y1];
684 ((uint8_t*)dest)[2]= r[Y1];
685 ((uint8_t*)dest)[3]= b[Y2];
686 ((uint8_t*)dest)[4]= g[Y2];
687 ((uint8_t*)dest)[5]= r[Y2];
688 dest+=6;
690 break;
691 case PIX_FMT_RGB565:
692 case PIX_FMT_BGR565:
694 const int dr1= dither_2x2_8[y&1 ][0];
695 const int dg1= dither_2x2_4[y&1 ][0];
696 const int db1= dither_2x2_8[(y&1)^1][0];
697 const int dr2= dither_2x2_8[y&1 ][1];
698 const int dg2= dither_2x2_4[y&1 ][1];
699 const int db2= dither_2x2_8[(y&1)^1][1];
700 YSCALE_YUV_2_RGBX_C(uint16_t)
701 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
702 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
705 break;
706 case PIX_FMT_RGB555:
707 case PIX_FMT_BGR555:
709 const int dr1= dither_2x2_8[y&1 ][0];
710 const int dg1= dither_2x2_8[y&1 ][1];
711 const int db1= dither_2x2_8[(y&1)^1][0];
712 const int dr2= dither_2x2_8[y&1 ][1];
713 const int dg2= dither_2x2_8[y&1 ][0];
714 const int db2= dither_2x2_8[(y&1)^1][1];
715 YSCALE_YUV_2_RGBX_C(uint16_t)
716 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
717 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
720 break;
721 case PIX_FMT_RGB8:
722 case PIX_FMT_BGR8:
724 const uint8_t * const d64= dither_8x8_73[y&7];
725 const uint8_t * const d32= dither_8x8_32[y&7];
726 YSCALE_YUV_2_RGBX_C(uint8_t)
727 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
728 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
731 break;
732 case PIX_FMT_RGB4:
733 case PIX_FMT_BGR4:
735 const uint8_t * const d64= dither_8x8_73 [y&7];
736 const uint8_t * const d128=dither_8x8_220[y&7];
737 YSCALE_YUV_2_RGBX_C(uint8_t)
738 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
739 +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
742 break;
743 case PIX_FMT_RGB4_BYTE:
744 case PIX_FMT_BGR4_BYTE:
746 const uint8_t * const d64= dither_8x8_73 [y&7];
747 const uint8_t * const d128=dither_8x8_220[y&7];
748 YSCALE_YUV_2_RGBX_C(uint8_t)
749 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
750 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
753 break;
754 case PIX_FMT_MONOBLACK:
756 const uint8_t * const d128=dither_8x8_220[y&7];
757 uint8_t *g= c->table_gU[128] + c->table_gV[128];
758 int acc=0;
759 for(i=0; i<dstW-1; i+=2){
760 int j;
761 int Y1=1<<18;
762 int Y2=1<<18;
764 for(j=0; j<lumFilterSize; j++)
766 Y1 += lumSrc[j][i] * lumFilter[j];
767 Y2 += lumSrc[j][i+1] * lumFilter[j];
769 Y1>>=19;
770 Y2>>=19;
771 if((Y1|Y2)&256)
773 if(Y1>255) Y1=255;
774 else if(Y1<0)Y1=0;
775 if(Y2>255) Y2=255;
776 else if(Y2<0)Y2=0;
778 acc+= acc + g[Y1+d128[(i+0)&7]];
779 acc+= acc + g[Y2+d128[(i+1)&7]];
780 if((i&7)==6){
781 ((uint8_t*)dest)[0]= acc;
782 dest++;
786 break;
787 case PIX_FMT_YUYV422:
788 YSCALE_YUV_2_PACKEDX_C(void)
789 ((uint8_t*)dest)[2*i2+0]= Y1;
790 ((uint8_t*)dest)[2*i2+1]= U;
791 ((uint8_t*)dest)[2*i2+2]= Y2;
792 ((uint8_t*)dest)[2*i2+3]= V;
794 break;
795 case PIX_FMT_UYVY422:
796 YSCALE_YUV_2_PACKEDX_C(void)
797 ((uint8_t*)dest)[2*i2+0]= U;
798 ((uint8_t*)dest)[2*i2+1]= Y1;
799 ((uint8_t*)dest)[2*i2+2]= V;
800 ((uint8_t*)dest)[2*i2+3]= Y2;
802 break;
807 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
808 //Plain C versions
809 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
810 #define COMPILE_C
811 #endif
813 #ifdef ARCH_POWERPC
814 #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
815 #define COMPILE_ALTIVEC
816 #endif //HAVE_ALTIVEC
817 #endif //ARCH_POWERPC
819 #if defined(ARCH_X86)
821 #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
822 #define COMPILE_MMX
823 #endif
825 #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
826 #define COMPILE_MMX2
827 #endif
829 #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
830 #define COMPILE_3DNOW
831 #endif
832 #endif //ARCH_X86 || ARCH_X86_64
834 #undef HAVE_MMX
835 #undef HAVE_MMX2
836 #undef HAVE_3DNOW
838 #ifdef COMPILE_C
839 #undef HAVE_MMX
840 #undef HAVE_MMX2
841 #undef HAVE_3DNOW
842 #undef HAVE_ALTIVEC
843 #define RENAME(a) a ## _C
844 #include "swscale_template.c"
845 #endif
847 #ifdef ARCH_POWERPC
848 #ifdef COMPILE_ALTIVEC
849 #undef RENAME
850 #define HAVE_ALTIVEC
851 #define RENAME(a) a ## _altivec
852 #include "swscale_template.c"
853 #endif
854 #endif //ARCH_POWERPC
856 #if defined(ARCH_X86)
858 //X86 versions
860 #undef RENAME
861 #undef HAVE_MMX
862 #undef HAVE_MMX2
863 #undef HAVE_3DNOW
864 #define ARCH_X86
865 #define RENAME(a) a ## _X86
866 #include "swscale_template.c"
868 //MMX versions
869 #ifdef COMPILE_MMX
870 #undef RENAME
871 #define HAVE_MMX
872 #undef HAVE_MMX2
873 #undef HAVE_3DNOW
874 #define RENAME(a) a ## _MMX
875 #include "swscale_template.c"
876 #endif
878 //MMX2 versions
879 #ifdef COMPILE_MMX2
880 #undef RENAME
881 #define HAVE_MMX
882 #define HAVE_MMX2
883 #undef HAVE_3DNOW
884 #define RENAME(a) a ## _MMX2
885 #include "swscale_template.c"
886 #endif
888 //3DNOW versions
889 #ifdef COMPILE_3DNOW
890 #undef RENAME
891 #define HAVE_MMX
892 #undef HAVE_MMX2
893 #define HAVE_3DNOW
894 #define RENAME(a) a ## _3DNow
895 #include "swscale_template.c"
896 #endif
898 #endif //ARCH_X86 || ARCH_X86_64
900 // minor note: the HAVE_xyz is messed up after that line so don't use it
902 static double getSplineCoeff(double a, double b, double c, double d, double dist)
904 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
905 if(dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
906 else return getSplineCoeff( 0.0,
907 b+ 2.0*c + 3.0*d,
908 c + 3.0*d,
909 -b- 3.0*c - 6.0*d,
910 dist-1.0);
913 static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
914 int srcW, int dstW, int filterAlign, int one, int flags,
915 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
917 int i;
918 int filterSize;
919 int filter2Size;
920 int minFilterSize;
921 double *filter=NULL;
922 double *filter2=NULL;
923 #if defined(ARCH_X86)
924 if(flags & SWS_CPU_CAPS_MMX)
925 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
926 #endif
928 // Note the +1 is for the MMXscaler which reads over the end
929 *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
931 if(FFABS(xInc - 0x10000) <10) // unscaled
933 int i;
934 filterSize= 1;
935 filter= av_malloc(dstW*sizeof(double)*filterSize);
936 for(i=0; i<dstW*filterSize; i++) filter[i]=0;
938 for(i=0; i<dstW; i++)
940 filter[i*filterSize]=1;
941 (*filterPos)[i]=i;
945 else if(flags&SWS_POINT) // lame looking point sampling mode
947 int i;
948 int xDstInSrc;
949 filterSize= 1;
950 filter= av_malloc(dstW*sizeof(double)*filterSize);
952 xDstInSrc= xInc/2 - 0x8000;
953 for(i=0; i<dstW; i++)
955 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
957 (*filterPos)[i]= xx;
958 filter[i]= 1.0;
959 xDstInSrc+= xInc;
962 else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
964 int i;
965 int xDstInSrc;
966 if (flags&SWS_BICUBIC) filterSize= 4;
967 else if(flags&SWS_X ) filterSize= 4;
968 else filterSize= 2; // SWS_BILINEAR / SWS_AREA
969 filter= av_malloc(dstW*sizeof(double)*filterSize);
971 xDstInSrc= xInc/2 - 0x8000;
972 for(i=0; i<dstW; i++)
974 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
975 int j;
977 (*filterPos)[i]= xx;
978 //Bilinear upscale / linear interpolate / Area averaging
979 for(j=0; j<filterSize; j++)
981 double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
982 double coeff= 1.0 - d;
983 if(coeff<0) coeff=0;
984 filter[i*filterSize + j]= coeff;
985 xx++;
987 xDstInSrc+= xInc;
990 else
992 double xDstInSrc;
993 double sizeFactor, filterSizeInSrc;
994 const double xInc1= (double)xInc / (double)(1<<16);
996 if (flags&SWS_BICUBIC) sizeFactor= 4.0;
997 else if(flags&SWS_X) sizeFactor= 8.0;
998 else if(flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
999 else if(flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
1000 else if(flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
1001 else if(flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
1002 else if(flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
1003 else if(flags&SWS_BILINEAR) sizeFactor= 2.0;
1004 else {
1005 sizeFactor= 0.0; //GCC warning killer
1006 ASSERT(0)
1009 if(xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
1010 else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1012 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1013 if(filterSize > srcW-2) filterSize=srcW-2;
1015 filter= av_malloc(dstW*sizeof(double)*filterSize);
1017 xDstInSrc= xInc1 / 2.0 - 0.5;
1018 for(i=0; i<dstW; i++)
1020 int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1021 int j;
1022 (*filterPos)[i]= xx;
1023 for(j=0; j<filterSize; j++)
1025 double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1026 double coeff;
1027 if(flags & SWS_BICUBIC)
1029 double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1030 double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1032 if(d<1.0)
1033 coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1034 else if(d<2.0)
1035 coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1036 else
1037 coeff=0.0;
1039 /* else if(flags & SWS_X)
1041 double p= param ? param*0.01 : 0.3;
1042 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1043 coeff*= pow(2.0, - p*d*d);
1045 else if(flags & SWS_X)
1047 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1049 if(d<1.0)
1050 coeff = cos(d*PI);
1051 else
1052 coeff=-1.0;
1053 if(coeff<0.0) coeff= -pow(-coeff, A);
1054 else coeff= pow( coeff, A);
1055 coeff= coeff*0.5 + 0.5;
1057 else if(flags & SWS_AREA)
1059 double srcPixelSize= 1.0/xInc1;
1060 if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
1061 else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1062 else coeff=0.0;
1064 else if(flags & SWS_GAUSS)
1066 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1067 coeff = pow(2.0, - p*d*d);
1069 else if(flags & SWS_SINC)
1071 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1073 else if(flags & SWS_LANCZOS)
1075 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1076 coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1077 if(d>p) coeff=0;
1079 else if(flags & SWS_BILINEAR)
1081 coeff= 1.0 - d;
1082 if(coeff<0) coeff=0;
1084 else if(flags & SWS_SPLINE)
1086 double p=-2.196152422706632;
1087 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1089 else {
1090 coeff= 0.0; //GCC warning killer
1091 ASSERT(0)
1094 filter[i*filterSize + j]= coeff;
1095 xx++;
1097 xDstInSrc+= xInc1;
1101 /* apply src & dst Filter to filter -> filter2
1102 av_free(filter);
1104 ASSERT(filterSize>0)
1105 filter2Size= filterSize;
1106 if(srcFilter) filter2Size+= srcFilter->length - 1;
1107 if(dstFilter) filter2Size+= dstFilter->length - 1;
1108 ASSERT(filter2Size>0)
1109 filter2= av_malloc(filter2Size*dstW*sizeof(double));
1111 for(i=0; i<dstW; i++)
1113 int j;
1114 SwsVector scaleFilter;
1115 SwsVector *outVec;
1117 scaleFilter.coeff= filter + i*filterSize;
1118 scaleFilter.length= filterSize;
1120 if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1121 else outVec= &scaleFilter;
1123 ASSERT(outVec->length == filter2Size)
1124 //FIXME dstFilter
1126 for(j=0; j<outVec->length; j++)
1128 filter2[i*filter2Size + j]= outVec->coeff[j];
1131 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1133 if(outVec != &scaleFilter) sws_freeVec(outVec);
1135 av_free(filter); filter=NULL;
1137 /* try to reduce the filter-size (step1 find size and shift left) */
1138 // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1139 minFilterSize= 0;
1140 for(i=dstW-1; i>=0; i--)
1142 int min= filter2Size;
1143 int j;
1144 double cutOff=0.0;
1146 /* get rid off near zero elements on the left by shifting left */
1147 for(j=0; j<filter2Size; j++)
1149 int k;
1150 cutOff += FFABS(filter2[i*filter2Size]);
1152 if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1154 /* preserve Monotonicity because the core can't handle the filter otherwise */
1155 if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1157 // Move filter coeffs left
1158 for(k=1; k<filter2Size; k++)
1159 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1160 filter2[i*filter2Size + k - 1]= 0.0;
1161 (*filterPos)[i]++;
1164 cutOff=0.0;
1165 /* count near zeros on the right */
1166 for(j=filter2Size-1; j>0; j--)
1168 cutOff += FFABS(filter2[i*filter2Size + j]);
1170 if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1171 min--;
1174 if(min>minFilterSize) minFilterSize= min;
1177 if (flags & SWS_CPU_CAPS_ALTIVEC) {
1178 // we can handle the special case 4,
1179 // so we don't want to go to the full 8
1180 if (minFilterSize < 5)
1181 filterAlign = 4;
1183 // we really don't want to waste our time
1184 // doing useless computation, so fall-back on
1185 // the scalar C code for very small filter.
1186 // vectorizing is worth it only if you have
1187 // decent-sized vector.
1188 if (minFilterSize < 3)
1189 filterAlign = 1;
1192 if (flags & SWS_CPU_CAPS_MMX) {
1193 // special case for unscaled vertical filtering
1194 if(minFilterSize == 1 && filterAlign == 2)
1195 filterAlign= 1;
1198 ASSERT(minFilterSize > 0)
1199 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1200 ASSERT(filterSize > 0)
1201 filter= av_malloc(filterSize*dstW*sizeof(double));
1202 if(filterSize >= MAX_FILTER_SIZE)
1203 return -1;
1204 *outFilterSize= filterSize;
1206 if(flags&SWS_PRINT_INFO)
1207 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1208 /* try to reduce the filter-size (step2 reduce it) */
1209 for(i=0; i<dstW; i++)
1211 int j;
1213 for(j=0; j<filterSize; j++)
1215 if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1216 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
1219 av_free(filter2); filter2=NULL;
1222 //FIXME try to align filterpos if possible
1224 //fix borders
1225 for(i=0; i<dstW; i++)
1227 int j;
1228 if((*filterPos)[i] < 0)
1230 // Move filter coeffs left to compensate for filterPos
1231 for(j=1; j<filterSize; j++)
1233 int left= FFMAX(j + (*filterPos)[i], 0);
1234 filter[i*filterSize + left] += filter[i*filterSize + j];
1235 filter[i*filterSize + j]=0;
1237 (*filterPos)[i]= 0;
1240 if((*filterPos)[i] + filterSize > srcW)
1242 int shift= (*filterPos)[i] + filterSize - srcW;
1243 // Move filter coeffs right to compensate for filterPos
1244 for(j=filterSize-2; j>=0; j--)
1246 int right= FFMIN(j + shift, filterSize-1);
1247 filter[i*filterSize +right] += filter[i*filterSize +j];
1248 filter[i*filterSize +j]=0;
1250 (*filterPos)[i]= srcW - filterSize;
1254 // Note the +1 is for the MMXscaler which reads over the end
1255 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1256 *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1258 /* Normalize & Store in outFilter */
1259 for(i=0; i<dstW; i++)
1261 int j;
1262 double error=0;
1263 double sum=0;
1264 double scale= one;
1266 for(j=0; j<filterSize; j++)
1268 sum+= filter[i*filterSize + j];
1270 scale/= sum;
1271 for(j=0; j<*outFilterSize; j++)
1273 double v= filter[i*filterSize + j]*scale + error;
1274 int intV= floor(v + 0.5);
1275 (*outFilter)[i*(*outFilterSize) + j]= intV;
1276 error = v - intV;
1280 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1281 for(i=0; i<*outFilterSize; i++)
1283 int j= dstW*(*outFilterSize);
1284 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1287 av_free(filter);
1288 return 0;
1291 #ifdef COMPILE_MMX2
1292 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1294 uint8_t *fragmentA;
1295 long imm8OfPShufW1A;
1296 long imm8OfPShufW2A;
1297 long fragmentLengthA;
1298 uint8_t *fragmentB;
1299 long imm8OfPShufW1B;
1300 long imm8OfPShufW2B;
1301 long fragmentLengthB;
1302 int fragmentPos;
1304 int xpos, i;
1306 // create an optimized horizontal scaling routine
1308 //code fragment
1310 asm volatile(
1311 "jmp 9f \n\t"
1312 // Begin
1313 "0: \n\t"
1314 "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
1315 "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
1316 "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1317 "punpcklbw %%mm7, %%mm1 \n\t"
1318 "punpcklbw %%mm7, %%mm0 \n\t"
1319 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1320 "1: \n\t"
1321 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1322 "2: \n\t"
1323 "psubw %%mm1, %%mm0 \n\t"
1324 "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1325 "pmullw %%mm3, %%mm0 \n\t"
1326 "psllw $7, %%mm1 \n\t"
1327 "paddw %%mm1, %%mm0 \n\t"
1329 "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1331 "add $8, %%"REG_a" \n\t"
1332 // End
1333 "9: \n\t"
1334 // "int $3\n\t"
1335 "lea 0b, %0 \n\t"
1336 "lea 1b, %1 \n\t"
1337 "lea 2b, %2 \n\t"
1338 "dec %1 \n\t"
1339 "dec %2 \n\t"
1340 "sub %0, %1 \n\t"
1341 "sub %0, %2 \n\t"
1342 "lea 9b, %3 \n\t"
1343 "sub %0, %3 \n\t"
1346 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1347 "=r" (fragmentLengthA)
1350 asm volatile(
1351 "jmp 9f \n\t"
1352 // Begin
1353 "0: \n\t"
1354 "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
1355 "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
1356 "punpcklbw %%mm7, %%mm0 \n\t"
1357 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1358 "1: \n\t"
1359 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1360 "2: \n\t"
1361 "psubw %%mm1, %%mm0 \n\t"
1362 "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1363 "pmullw %%mm3, %%mm0 \n\t"
1364 "psllw $7, %%mm1 \n\t"
1365 "paddw %%mm1, %%mm0 \n\t"
1367 "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1369 "add $8, %%"REG_a" \n\t"
1370 // End
1371 "9: \n\t"
1372 // "int $3\n\t"
1373 "lea 0b, %0 \n\t"
1374 "lea 1b, %1 \n\t"
1375 "lea 2b, %2 \n\t"
1376 "dec %1 \n\t"
1377 "dec %2 \n\t"
1378 "sub %0, %1 \n\t"
1379 "sub %0, %2 \n\t"
1380 "lea 9b, %3 \n\t"
1381 "sub %0, %3 \n\t"
1384 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1385 "=r" (fragmentLengthB)
1388 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1389 fragmentPos=0;
1391 for(i=0; i<dstW/numSplits; i++)
1393 int xx=xpos>>16;
1395 if((i&3) == 0)
1397 int a=0;
1398 int b=((xpos+xInc)>>16) - xx;
1399 int c=((xpos+xInc*2)>>16) - xx;
1400 int d=((xpos+xInc*3)>>16) - xx;
1402 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
1403 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
1404 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1405 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1406 filterPos[i/2]= xx;
1408 if(d+1<4)
1410 int maxShift= 3-(d+1);
1411 int shift=0;
1413 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1415 funnyCode[fragmentPos + imm8OfPShufW1B]=
1416 (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1417 funnyCode[fragmentPos + imm8OfPShufW2B]=
1418 a | (b<<2) | (c<<4) | (d<<6);
1420 if(i+3>=dstW) shift=maxShift; //avoid overread
1421 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1423 if(shift && i>=shift)
1425 funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1426 funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1427 filterPos[i/2]-=shift;
1430 fragmentPos+= fragmentLengthB;
1432 else
1434 int maxShift= 3-d;
1435 int shift=0;
1437 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1439 funnyCode[fragmentPos + imm8OfPShufW1A]=
1440 funnyCode[fragmentPos + imm8OfPShufW2A]=
1441 a | (b<<2) | (c<<4) | (d<<6);
1443 if(i+4>=dstW) shift=maxShift; //avoid overread
1444 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1446 if(shift && i>=shift)
1448 funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1449 funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1450 filterPos[i/2]-=shift;
1453 fragmentPos+= fragmentLengthA;
1456 funnyCode[fragmentPos]= RET;
1458 xpos+=xInc;
1460 filterPos[i/2]= xpos>>16; // needed to jump to the next part
1462 #endif /* COMPILE_MMX2 */
1464 static void globalInit(void){
1465 // generating tables:
1466 int i;
1467 for(i=0; i<768; i++){
1468 int c= av_clip_uint8(i-256);
1469 clip_table[i]=c;
1473 static SwsFunc getSwsFunc(int flags){
1475 #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1476 #if defined(ARCH_X86)
1477 // ordered per speed fasterst first
1478 if(flags & SWS_CPU_CAPS_MMX2)
1479 return swScale_MMX2;
1480 else if(flags & SWS_CPU_CAPS_3DNOW)
1481 return swScale_3DNow;
1482 else if(flags & SWS_CPU_CAPS_MMX)
1483 return swScale_MMX;
1484 else
1485 return swScale_C;
1487 #else
1488 #ifdef ARCH_POWERPC
1489 if(flags & SWS_CPU_CAPS_ALTIVEC)
1490 return swScale_altivec;
1491 else
1492 return swScale_C;
1493 #endif
1494 return swScale_C;
1495 #endif /* defined(ARCH_X86) */
1496 #else //RUNTIME_CPUDETECT
1497 #ifdef HAVE_MMX2
1498 return swScale_MMX2;
1499 #elif defined (HAVE_3DNOW)
1500 return swScale_3DNow;
1501 #elif defined (HAVE_MMX)
1502 return swScale_MMX;
1503 #elif defined (HAVE_ALTIVEC)
1504 return swScale_altivec;
1505 #else
1506 return swScale_C;
1507 #endif
1508 #endif //!RUNTIME_CPUDETECT
1511 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1512 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1513 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1514 /* Copy Y plane */
1515 if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1516 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1517 else
1519 int i;
1520 uint8_t *srcPtr= src[0];
1521 uint8_t *dstPtr= dst;
1522 for(i=0; i<srcSliceH; i++)
1524 memcpy(dstPtr, srcPtr, c->srcW);
1525 srcPtr+= srcStride[0];
1526 dstPtr+= dstStride[0];
1529 dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1530 if (c->dstFormat == PIX_FMT_NV12)
1531 interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1532 else
1533 interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1535 return srcSliceH;
1538 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1539 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1540 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1542 yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1544 return srcSliceH;
1547 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1548 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1549 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1551 yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1553 return srcSliceH;
1556 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1557 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1558 int srcSliceH, uint8_t* dst[], int dstStride[]){
1559 const int srcFormat= c->srcFormat;
1560 const int dstFormat= c->dstFormat;
1561 const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1562 const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1563 const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1564 const int dstId= fmt_depth(dstFormat) >> 2;
1565 void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1567 /* BGR -> BGR */
1568 if( (isBGR(srcFormat) && isBGR(dstFormat))
1569 || (isRGB(srcFormat) && isRGB(dstFormat))){
1570 switch(srcId | (dstId<<4)){
1571 case 0x34: conv= rgb16to15; break;
1572 case 0x36: conv= rgb24to15; break;
1573 case 0x38: conv= rgb32to15; break;
1574 case 0x43: conv= rgb15to16; break;
1575 case 0x46: conv= rgb24to16; break;
1576 case 0x48: conv= rgb32to16; break;
1577 case 0x63: conv= rgb15to24; break;
1578 case 0x64: conv= rgb16to24; break;
1579 case 0x68: conv= rgb32to24; break;
1580 case 0x83: conv= rgb15to32; break;
1581 case 0x84: conv= rgb16to32; break;
1582 case 0x86: conv= rgb24to32; break;
1583 default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
1584 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1586 }else if( (isBGR(srcFormat) && isRGB(dstFormat))
1587 || (isRGB(srcFormat) && isBGR(dstFormat))){
1588 switch(srcId | (dstId<<4)){
1589 case 0x33: conv= rgb15tobgr15; break;
1590 case 0x34: conv= rgb16tobgr15; break;
1591 case 0x36: conv= rgb24tobgr15; break;
1592 case 0x38: conv= rgb32tobgr15; break;
1593 case 0x43: conv= rgb15tobgr16; break;
1594 case 0x44: conv= rgb16tobgr16; break;
1595 case 0x46: conv= rgb24tobgr16; break;
1596 case 0x48: conv= rgb32tobgr16; break;
1597 case 0x63: conv= rgb15tobgr24; break;
1598 case 0x64: conv= rgb16tobgr24; break;
1599 case 0x66: conv= rgb24tobgr24; break;
1600 case 0x68: conv= rgb32tobgr24; break;
1601 case 0x83: conv= rgb15tobgr32; break;
1602 case 0x84: conv= rgb16tobgr32; break;
1603 case 0x86: conv= rgb24tobgr32; break;
1604 case 0x88: conv= rgb32tobgr32; break;
1605 default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
1606 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1608 }else{
1609 av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
1610 sws_format_name(srcFormat), sws_format_name(dstFormat));
1613 if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1614 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1615 else
1617 int i;
1618 uint8_t *srcPtr= src[0];
1619 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1621 for(i=0; i<srcSliceH; i++)
1623 conv(srcPtr, dstPtr, c->srcW*srcBpp);
1624 srcPtr+= srcStride[0];
1625 dstPtr+= dstStride[0];
1628 return srcSliceH;
1631 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1632 int srcSliceH, uint8_t* dst[], int dstStride[]){
1634 rgb24toyv12(
1635 src[0],
1636 dst[0]+ srcSliceY *dstStride[0],
1637 dst[1]+(srcSliceY>>1)*dstStride[1],
1638 dst[2]+(srcSliceY>>1)*dstStride[2],
1639 c->srcW, srcSliceH,
1640 dstStride[0], dstStride[1], srcStride[0]);
1641 return srcSliceH;
1644 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1645 int srcSliceH, uint8_t* dst[], int dstStride[]){
1646 int i;
1648 /* copy Y */
1649 if(srcStride[0]==dstStride[0] && srcStride[0] > 0)
1650 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1651 else{
1652 uint8_t *srcPtr= src[0];
1653 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1655 for(i=0; i<srcSliceH; i++)
1657 memcpy(dstPtr, srcPtr, c->srcW);
1658 srcPtr+= srcStride[0];
1659 dstPtr+= dstStride[0];
1663 if(c->dstFormat==PIX_FMT_YUV420P){
1664 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1665 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1666 }else{
1667 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1668 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1670 return srcSliceH;
1673 /* unscaled copy like stuff (assumes nearly identical formats) */
1674 static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1675 int srcSliceH, uint8_t* dst[], int dstStride[]){
1677 if(isPacked(c->srcFormat))
1679 if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1680 memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1681 else
1683 int i;
1684 uint8_t *srcPtr= src[0];
1685 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1686 int length=0;
1688 /* universal length finder */
1689 while(length+c->srcW <= FFABS(dstStride[0])
1690 && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1691 ASSERT(length!=0);
1693 for(i=0; i<srcSliceH; i++)
1695 memcpy(dstPtr, srcPtr, length);
1696 srcPtr+= srcStride[0];
1697 dstPtr+= dstStride[0];
1701 else
1702 { /* Planar YUV or gray */
1703 int plane;
1704 for(plane=0; plane<3; plane++)
1706 int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
1707 int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1708 int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1710 if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1712 if(!isGray(c->dstFormat))
1713 memset(dst[plane], 128, dstStride[plane]*height);
1715 else
1717 if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1718 memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1719 else
1721 int i;
1722 uint8_t *srcPtr= src[plane];
1723 uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1724 for(i=0; i<height; i++)
1726 memcpy(dstPtr, srcPtr, length);
1727 srcPtr+= srcStride[plane];
1728 dstPtr+= dstStride[plane];
1734 return srcSliceH;
1737 static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1738 int srcSliceH, uint8_t* dst[], int dstStride[]){
1740 int length= c->srcW;
1741 int y= srcSliceY;
1742 int height= srcSliceH;
1743 int i, j;
1744 uint8_t *srcPtr= src[0];
1745 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1747 if(!isGray(c->dstFormat)){
1748 int height= -((-srcSliceH)>>c->chrDstVSubSample);
1749 memset(dst[1], 128, dstStride[1]*height);
1750 memset(dst[2], 128, dstStride[2]*height);
1752 if(c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1753 for(i=0; i<height; i++)
1755 for(j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1756 srcPtr+= srcStride[0];
1757 dstPtr+= dstStride[0];
1759 return srcSliceH;
1762 static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1763 int srcSliceH, uint8_t* dst[], int dstStride[]){
1765 int length= c->srcW;
1766 int y= srcSliceY;
1767 int height= srcSliceH;
1768 int i, j;
1769 uint8_t *srcPtr= src[0];
1770 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1771 for(i=0; i<height; i++)
1773 for(j=0; j<length; j++)
1775 dstPtr[j<<1] = srcPtr[j];
1776 dstPtr[(j<<1)+1] = srcPtr[j];
1778 srcPtr+= srcStride[0];
1779 dstPtr+= dstStride[0];
1781 return srcSliceH;
1784 static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1785 int srcSliceH, uint8_t* dst[], int dstStride[]){
1787 int length= c->srcW;
1788 int y= srcSliceY;
1789 int height= srcSliceH;
1790 int i, j;
1791 uint16_t *srcPtr= src[0];
1792 uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
1793 for(i=0; i<height; i++)
1795 for(j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1796 srcPtr+= srcStride[0]/2;
1797 dstPtr+= dstStride[0]/2;
1799 return srcSliceH;
1803 static void getSubSampleFactors(int *h, int *v, int format){
1804 switch(format){
1805 case PIX_FMT_UYVY422:
1806 case PIX_FMT_YUYV422:
1807 *h=1;
1808 *v=0;
1809 break;
1810 case PIX_FMT_YUV420P:
1811 case PIX_FMT_GRAY16BE:
1812 case PIX_FMT_GRAY16LE:
1813 case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1814 case PIX_FMT_NV12:
1815 case PIX_FMT_NV21:
1816 *h=1;
1817 *v=1;
1818 break;
1819 case PIX_FMT_YUV410P:
1820 *h=2;
1821 *v=2;
1822 break;
1823 case PIX_FMT_YUV444P:
1824 *h=0;
1825 *v=0;
1826 break;
1827 case PIX_FMT_YUV422P:
1828 *h=1;
1829 *v=0;
1830 break;
1831 case PIX_FMT_YUV411P:
1832 *h=2;
1833 *v=0;
1834 break;
1835 default:
1836 *h=0;
1837 *v=0;
1838 break;
1842 static uint16_t roundToInt16(int64_t f){
1843 int r= (f + (1<<15))>>16;
1844 if(r<-0x7FFF) return 0x8000;
1845 else if(r> 0x7FFF) return 0x7FFF;
1846 else return r;
1850 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1851 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1852 * @return -1 if not supported
1854 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1855 int64_t crv = inv_table[0];
1856 int64_t cbu = inv_table[1];
1857 int64_t cgu = -inv_table[2];
1858 int64_t cgv = -inv_table[3];
1859 int64_t cy = 1<<16;
1860 int64_t oy = 0;
1862 if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1863 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1864 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
1866 c->brightness= brightness;
1867 c->contrast = contrast;
1868 c->saturation= saturation;
1869 c->srcRange = srcRange;
1870 c->dstRange = dstRange;
1872 c->uOffset= 0x0400040004000400LL;
1873 c->vOffset= 0x0400040004000400LL;
1875 if(!srcRange){
1876 cy= (cy*255) / 219;
1877 oy= 16<<16;
1880 cy = (cy *contrast )>>16;
1881 crv= (crv*contrast * saturation)>>32;
1882 cbu= (cbu*contrast * saturation)>>32;
1883 cgu= (cgu*contrast * saturation)>>32;
1884 cgv= (cgv*contrast * saturation)>>32;
1886 oy -= 256*brightness;
1888 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
1889 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
1890 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1891 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1892 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1893 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
1895 yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1896 //FIXME factorize
1898 #ifdef COMPILE_ALTIVEC
1899 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1900 yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1901 #endif
1902 return 0;
1906 * @return -1 if not supported
1908 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1909 if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1911 *inv_table = c->srcColorspaceTable;
1912 *table = c->dstColorspaceTable;
1913 *srcRange = c->srcRange;
1914 *dstRange = c->dstRange;
1915 *brightness= c->brightness;
1916 *contrast = c->contrast;
1917 *saturation= c->saturation;
1919 return 0;
1922 static int handle_jpeg(int *format)
1924 switch (*format) {
1925 case PIX_FMT_YUVJ420P:
1926 *format = PIX_FMT_YUV420P;
1927 return 1;
1928 case PIX_FMT_YUVJ422P:
1929 *format = PIX_FMT_YUV422P;
1930 return 1;
1931 case PIX_FMT_YUVJ444P:
1932 *format = PIX_FMT_YUV444P;
1933 return 1;
1934 default:
1935 return 0;
1939 SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
1940 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1942 SwsContext *c;
1943 int i;
1944 int usesVFilter, usesHFilter;
1945 int unscaled, needsDither;
1946 int srcRange, dstRange;
1947 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1948 #if defined(ARCH_X86)
1949 if(flags & SWS_CPU_CAPS_MMX)
1950 asm volatile("emms\n\t"::: "memory");
1951 #endif
1953 #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
1954 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1955 #ifdef HAVE_MMX2
1956 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1957 #elif defined (HAVE_3DNOW)
1958 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1959 #elif defined (HAVE_MMX)
1960 flags |= SWS_CPU_CAPS_MMX;
1961 #elif defined (HAVE_ALTIVEC)
1962 flags |= SWS_CPU_CAPS_ALTIVEC;
1963 #endif
1964 #endif /* RUNTIME_CPUDETECT */
1965 if(clip_table[512] != 255) globalInit();
1966 if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1968 unscaled = (srcW == dstW && srcH == dstH);
1969 needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
1970 && (fmt_depth(dstFormat))<24
1971 && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1973 srcRange = handle_jpeg(&srcFormat);
1974 dstRange = handle_jpeg(&dstFormat);
1976 if(!isSupportedIn(srcFormat))
1978 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
1979 return NULL;
1981 if(!isSupportedOut(dstFormat))
1983 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
1984 return NULL;
1987 /* sanity check */
1988 if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1990 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
1991 srcW, srcH, dstW, dstH);
1992 return NULL;
1995 if(!dstFilter) dstFilter= &dummyFilter;
1996 if(!srcFilter) srcFilter= &dummyFilter;
1998 c= av_mallocz(sizeof(SwsContext));
2000 c->av_class = &sws_context_class;
2001 c->srcW= srcW;
2002 c->srcH= srcH;
2003 c->dstW= dstW;
2004 c->dstH= dstH;
2005 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2006 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2007 c->flags= flags;
2008 c->dstFormat= dstFormat;
2009 c->srcFormat= srcFormat;
2010 c->vRounder= 4* 0x0001000100010001ULL;
2012 usesHFilter= usesVFilter= 0;
2013 if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
2014 if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
2015 if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
2016 if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
2017 if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
2018 if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
2019 if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
2020 if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
2022 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2023 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2025 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2026 if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2028 // drop some chroma lines if the user wants it
2029 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2030 c->chrSrcVSubSample+= c->vChrDrop;
2032 // drop every 2. pixel for chroma calculation unless user wants full chroma
2033 if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP))
2034 c->chrSrcHSubSample=1;
2036 if(param){
2037 c->param[0] = param[0];
2038 c->param[1] = param[1];
2039 }else{
2040 c->param[0] =
2041 c->param[1] = SWS_PARAM_DEFAULT;
2044 c->chrIntHSubSample= c->chrDstHSubSample;
2045 c->chrIntVSubSample= c->chrSrcVSubSample;
2047 // note the -((-x)>>y) is so that we allways round toward +inf
2048 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2049 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2050 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2051 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2053 sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
2055 /* unscaled special Cases */
2056 if(unscaled && !usesHFilter && !usesVFilter)
2058 /* yv12_to_nv12 */
2059 if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2061 c->swScale= PlanarToNV12Wrapper;
2063 #ifdef CONFIG_GPL
2064 /* yuv2bgr */
2065 if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2067 c->swScale= yuv2rgb_get_func_ptr(c);
2069 #endif
2071 if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
2073 c->swScale= yvu9toyv12Wrapper;
2076 /* bgr24toYV12 */
2077 if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2078 c->swScale= bgr24toyv12Wrapper;
2080 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2081 if( (isBGR(srcFormat) || isRGB(srcFormat))
2082 && (isBGR(dstFormat) || isRGB(dstFormat))
2083 && !needsDither)
2084 c->swScale= rgb2rgbWrapper;
2086 /* LQ converters if -sws 0 or -sws 4*/
2087 if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2088 /* rgb/bgr -> rgb/bgr (dither needed forms) */
2089 if( (isBGR(srcFormat) || isRGB(srcFormat))
2090 && (isBGR(dstFormat) || isRGB(dstFormat))
2091 && needsDither)
2092 c->swScale= rgb2rgbWrapper;
2094 /* yv12_to_yuy2 */
2095 if(srcFormat == PIX_FMT_YUV420P &&
2096 (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
2098 if (dstFormat == PIX_FMT_YUYV422)
2099 c->swScale= PlanarToYuy2Wrapper;
2100 else
2101 c->swScale= PlanarToUyvyWrapper;
2105 #ifdef COMPILE_ALTIVEC
2106 if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2107 ((srcFormat == PIX_FMT_YUV420P &&
2108 (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
2109 // unscaled YV12 -> packed YUV, we want speed
2110 if (dstFormat == PIX_FMT_YUYV422)
2111 c->swScale= yv12toyuy2_unscaled_altivec;
2112 else
2113 c->swScale= yv12touyvy_unscaled_altivec;
2115 #endif
2117 /* simple copy */
2118 if( srcFormat == dstFormat
2119 || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2120 || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2123 c->swScale= simpleCopy;
2126 /* gray16{le,be} conversions */
2127 if(isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2129 c->swScale= gray16togray;
2131 if((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2133 c->swScale= graytogray16;
2135 if(srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2137 c->swScale= gray16swap;
2140 if(c->swScale){
2141 if(flags&SWS_PRINT_INFO)
2142 av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n",
2143 sws_format_name(srcFormat), sws_format_name(dstFormat));
2144 return c;
2148 if(flags & SWS_CPU_CAPS_MMX2)
2150 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2151 if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2153 if(flags&SWS_PRINT_INFO)
2154 av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2156 if(usesHFilter) c->canMMX2BeUsed=0;
2158 else
2159 c->canMMX2BeUsed=0;
2161 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2162 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2164 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2165 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2166 // n-2 is the last chrominance sample available
2167 // this is not perfect, but noone shuld notice the difference, the more correct variant
2168 // would be like the vertical one, but that would require some special code for the
2169 // first and last pixel
2170 if(flags&SWS_FAST_BILINEAR)
2172 if(c->canMMX2BeUsed)
2174 c->lumXInc+= 20;
2175 c->chrXInc+= 20;
2177 //we don't use the x86asm scaler if mmx is available
2178 else if(flags & SWS_CPU_CAPS_MMX)
2180 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2181 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2185 /* precalculate horizontal scaler filter coefficients */
2187 const int filterAlign=
2188 (flags & SWS_CPU_CAPS_MMX) ? 4 :
2189 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2192 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2193 srcW , dstW, filterAlign, 1<<14,
2194 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2195 srcFilter->lumH, dstFilter->lumH, c->param);
2196 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2197 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2198 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2199 srcFilter->chrH, dstFilter->chrH, c->param);
2201 #define MAX_FUNNY_CODE_SIZE 10000
2202 #if defined(COMPILE_MMX2)
2203 // can't downscale !!!
2204 if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2206 #ifdef MAP_ANONYMOUS
2207 c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2208 c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2209 #else
2210 c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2211 c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2212 #endif
2214 c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
2215 c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
2216 c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
2217 c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2219 initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2220 initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2222 #endif /* defined(COMPILE_MMX2) */
2223 } // Init Horizontal stuff
2227 /* precalculate vertical scaler filter coefficients */
2229 const int filterAlign=
2230 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2231 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2234 initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2235 srcH , dstH, filterAlign, (1<<12)-4,
2236 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2237 srcFilter->lumV, dstFilter->lumV, c->param);
2238 initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2239 c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2240 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2241 srcFilter->chrV, dstFilter->chrV, c->param);
2243 #ifdef HAVE_ALTIVEC
2244 c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2245 c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2247 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2248 int j;
2249 short *p = (short *)&c->vYCoeffsBank[i];
2250 for (j=0;j<8;j++)
2251 p[j] = c->vLumFilter[i];
2254 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2255 int j;
2256 short *p = (short *)&c->vCCoeffsBank[i];
2257 for (j=0;j<8;j++)
2258 p[j] = c->vChrFilter[i];
2260 #endif
2263 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2264 c->vLumBufSize= c->vLumFilterSize;
2265 c->vChrBufSize= c->vChrFilterSize;
2266 for(i=0; i<dstH; i++)
2268 int chrI= i*c->chrDstH / dstH;
2269 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
2270 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2272 nextSlice>>= c->chrSrcVSubSample;
2273 nextSlice<<= c->chrSrcVSubSample;
2274 if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
2275 c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
2276 if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2277 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2280 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2281 c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2282 c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2283 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2284 /* align at 16 bytes for AltiVec */
2285 for(i=0; i<c->vLumBufSize; i++)
2286 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
2287 for(i=0; i<c->vChrBufSize; i++)
2288 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
2290 //try to avoid drawing green stuff between the right end and the stride end
2291 for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2293 ASSERT(c->chrDstH <= dstH)
2295 if(flags&SWS_PRINT_INFO)
2297 #ifdef DITHER1XBPP
2298 char *dither= " dithered";
2299 #else
2300 char *dither= "";
2301 #endif
2302 if(flags&SWS_FAST_BILINEAR)
2303 av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
2304 else if(flags&SWS_BILINEAR)
2305 av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
2306 else if(flags&SWS_BICUBIC)
2307 av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
2308 else if(flags&SWS_X)
2309 av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
2310 else if(flags&SWS_POINT)
2311 av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
2312 else if(flags&SWS_AREA)
2313 av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
2314 else if(flags&SWS_BICUBLIN)
2315 av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2316 else if(flags&SWS_GAUSS)
2317 av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
2318 else if(flags&SWS_SINC)
2319 av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
2320 else if(flags&SWS_LANCZOS)
2321 av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
2322 else if(flags&SWS_SPLINE)
2323 av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
2324 else
2325 av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");
2327 if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2328 av_log(c, AV_LOG_INFO, "from %s to%s %s ",
2329 sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2330 else
2331 av_log(c, AV_LOG_INFO, "from %s to %s ",
2332 sws_format_name(srcFormat), sws_format_name(dstFormat));
2334 if(flags & SWS_CPU_CAPS_MMX2)
2335 av_log(c, AV_LOG_INFO, "using MMX2\n");
2336 else if(flags & SWS_CPU_CAPS_3DNOW)
2337 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2338 else if(flags & SWS_CPU_CAPS_MMX)
2339 av_log(c, AV_LOG_INFO, "using MMX\n");
2340 else if(flags & SWS_CPU_CAPS_ALTIVEC)
2341 av_log(c, AV_LOG_INFO, "using AltiVec\n");
2342 else
2343 av_log(c, AV_LOG_INFO, "using C\n");
2346 if(flags & SWS_PRINT_INFO)
2348 if(flags & SWS_CPU_CAPS_MMX)
2350 if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2351 av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2352 else
2354 if(c->hLumFilterSize==4)
2355 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2356 else if(c->hLumFilterSize==8)
2357 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2358 else
2359 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2361 if(c->hChrFilterSize==4)
2362 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2363 else if(c->hChrFilterSize==8)
2364 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2365 else
2366 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2369 else
2371 #if defined(ARCH_X86)
2372 av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
2373 #else
2374 if(flags & SWS_FAST_BILINEAR)
2375 av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2376 else
2377 av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
2378 #endif
2380 if(isPlanarYUV(dstFormat))
2382 if(c->vLumFilterSize==1)
2383 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2384 else
2385 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2387 else
2389 if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2390 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2391 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2392 else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2393 av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2394 else
2395 av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2398 if(dstFormat==PIX_FMT_BGR24)
2399 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
2400 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2401 else if(dstFormat==PIX_FMT_RGB32)
2402 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2403 else if(dstFormat==PIX_FMT_BGR565)
2404 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2405 else if(dstFormat==PIX_FMT_BGR555)
2406 av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2408 av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2410 if(flags & SWS_PRINT_INFO)
2412 av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2413 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2414 av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2415 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2418 c->swScale= getSwsFunc(flags);
2419 return c;
2423 * swscale warper, so we don't need to export the SwsContext.
2424 * assumes planar YUV to be in YUV order instead of YVU
2426 int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2427 int srcSliceH, uint8_t* dst[], int dstStride[]){
2428 if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2429 av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
2430 return 0;
2432 if (c->sliceDir == 0) {
2433 if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2436 // copy strides, so they can safely be modified
2437 if (c->sliceDir == 1) {
2438 uint8_t* src2[4]= {src[0], src[1], src[2]};
2439 // slices go from top to bottom
2440 int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
2441 int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
2442 return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2443 } else {
2444 // slices go from bottom to top => we flip the image internally
2445 uint8_t* src2[4]= {src[0] + (srcSliceH-1)*srcStride[0],
2446 src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2447 src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2449 uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
2450 dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2451 dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2452 int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2453 int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2455 return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2460 * swscale warper, so we don't need to export the SwsContext
2462 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2463 int srcSliceH, uint8_t* dst[], int dstStride[]){
2464 return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2467 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2468 float lumaSharpen, float chromaSharpen,
2469 float chromaHShift, float chromaVShift,
2470 int verbose)
2472 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2474 if(lumaGBlur!=0.0){
2475 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2476 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2477 }else{
2478 filter->lumH= sws_getIdentityVec();
2479 filter->lumV= sws_getIdentityVec();
2482 if(chromaGBlur!=0.0){
2483 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2484 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2485 }else{
2486 filter->chrH= sws_getIdentityVec();
2487 filter->chrV= sws_getIdentityVec();
2490 if(chromaSharpen!=0.0){
2491 SwsVector *id= sws_getIdentityVec();
2492 sws_scaleVec(filter->chrH, -chromaSharpen);
2493 sws_scaleVec(filter->chrV, -chromaSharpen);
2494 sws_addVec(filter->chrH, id);
2495 sws_addVec(filter->chrV, id);
2496 sws_freeVec(id);
2499 if(lumaSharpen!=0.0){
2500 SwsVector *id= sws_getIdentityVec();
2501 sws_scaleVec(filter->lumH, -lumaSharpen);
2502 sws_scaleVec(filter->lumV, -lumaSharpen);
2503 sws_addVec(filter->lumH, id);
2504 sws_addVec(filter->lumV, id);
2505 sws_freeVec(id);
2508 if(chromaHShift != 0.0)
2509 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2511 if(chromaVShift != 0.0)
2512 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2514 sws_normalizeVec(filter->chrH, 1.0);
2515 sws_normalizeVec(filter->chrV, 1.0);
2516 sws_normalizeVec(filter->lumH, 1.0);
2517 sws_normalizeVec(filter->lumV, 1.0);
2519 if(verbose) sws_printVec(filter->chrH);
2520 if(verbose) sws_printVec(filter->lumH);
2522 return filter;
2526 * returns a normalized gaussian curve used to filter stuff
2527 * quality=3 is high quality, lowwer is lowwer quality
2529 SwsVector *sws_getGaussianVec(double variance, double quality){
2530 const int length= (int)(variance*quality + 0.5) | 1;
2531 int i;
2532 double *coeff= av_malloc(length*sizeof(double));
2533 double middle= (length-1)*0.5;
2534 SwsVector *vec= av_malloc(sizeof(SwsVector));
2536 vec->coeff= coeff;
2537 vec->length= length;
2539 for(i=0; i<length; i++)
2541 double dist= i-middle;
2542 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2545 sws_normalizeVec(vec, 1.0);
2547 return vec;
2550 SwsVector *sws_getConstVec(double c, int length){
2551 int i;
2552 double *coeff= av_malloc(length*sizeof(double));
2553 SwsVector *vec= av_malloc(sizeof(SwsVector));
2555 vec->coeff= coeff;
2556 vec->length= length;
2558 for(i=0; i<length; i++)
2559 coeff[i]= c;
2561 return vec;
2565 SwsVector *sws_getIdentityVec(void){
2566 return sws_getConstVec(1.0, 1);
2569 double sws_dcVec(SwsVector *a){
2570 int i;
2571 double sum=0;
2573 for(i=0; i<a->length; i++)
2574 sum+= a->coeff[i];
2576 return sum;
2579 void sws_scaleVec(SwsVector *a, double scalar){
2580 int i;
2582 for(i=0; i<a->length; i++)
2583 a->coeff[i]*= scalar;
2586 void sws_normalizeVec(SwsVector *a, double height){
2587 sws_scaleVec(a, height/sws_dcVec(a));
2590 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2591 int length= a->length + b->length - 1;
2592 double *coeff= av_malloc(length*sizeof(double));
2593 int i, j;
2594 SwsVector *vec= av_malloc(sizeof(SwsVector));
2596 vec->coeff= coeff;
2597 vec->length= length;
2599 for(i=0; i<length; i++) coeff[i]= 0.0;
2601 for(i=0; i<a->length; i++)
2603 for(j=0; j<b->length; j++)
2605 coeff[i+j]+= a->coeff[i]*b->coeff[j];
2609 return vec;
2612 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2613 int length= FFMAX(a->length, b->length);
2614 double *coeff= av_malloc(length*sizeof(double));
2615 int i;
2616 SwsVector *vec= av_malloc(sizeof(SwsVector));
2618 vec->coeff= coeff;
2619 vec->length= length;
2621 for(i=0; i<length; i++) coeff[i]= 0.0;
2623 for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2624 for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2626 return vec;
2629 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2630 int length= FFMAX(a->length, b->length);
2631 double *coeff= av_malloc(length*sizeof(double));
2632 int i;
2633 SwsVector *vec= av_malloc(sizeof(SwsVector));
2635 vec->coeff= coeff;
2636 vec->length= length;
2638 for(i=0; i<length; i++) coeff[i]= 0.0;
2640 for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2641 for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2643 return vec;
2646 /* shift left / or right if "shift" is negative */
2647 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2648 int length= a->length + FFABS(shift)*2;
2649 double *coeff= av_malloc(length*sizeof(double));
2650 int i;
2651 SwsVector *vec= av_malloc(sizeof(SwsVector));
2653 vec->coeff= coeff;
2654 vec->length= length;
2656 for(i=0; i<length; i++) coeff[i]= 0.0;
2658 for(i=0; i<a->length; i++)
2660 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2663 return vec;
2666 void sws_shiftVec(SwsVector *a, int shift){
2667 SwsVector *shifted= sws_getShiftedVec(a, shift);
2668 av_free(a->coeff);
2669 a->coeff= shifted->coeff;
2670 a->length= shifted->length;
2671 av_free(shifted);
2674 void sws_addVec(SwsVector *a, SwsVector *b){
2675 SwsVector *sum= sws_sumVec(a, b);
2676 av_free(a->coeff);
2677 a->coeff= sum->coeff;
2678 a->length= sum->length;
2679 av_free(sum);
2682 void sws_subVec(SwsVector *a, SwsVector *b){
2683 SwsVector *diff= sws_diffVec(a, b);
2684 av_free(a->coeff);
2685 a->coeff= diff->coeff;
2686 a->length= diff->length;
2687 av_free(diff);
2690 void sws_convVec(SwsVector *a, SwsVector *b){
2691 SwsVector *conv= sws_getConvVec(a, b);
2692 av_free(a->coeff);
2693 a->coeff= conv->coeff;
2694 a->length= conv->length;
2695 av_free(conv);
2698 SwsVector *sws_cloneVec(SwsVector *a){
2699 double *coeff= av_malloc(a->length*sizeof(double));
2700 int i;
2701 SwsVector *vec= av_malloc(sizeof(SwsVector));
2703 vec->coeff= coeff;
2704 vec->length= a->length;
2706 for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2708 return vec;
2711 void sws_printVec(SwsVector *a){
2712 int i;
2713 double max=0;
2714 double min=0;
2715 double range;
2717 for(i=0; i<a->length; i++)
2718 if(a->coeff[i]>max) max= a->coeff[i];
2720 for(i=0; i<a->length; i++)
2721 if(a->coeff[i]<min) min= a->coeff[i];
2723 range= max - min;
2725 for(i=0; i<a->length; i++)
2727 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2728 av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
2729 for(;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
2730 av_log(NULL, AV_LOG_DEBUG, "|\n");
2734 void sws_freeVec(SwsVector *a){
2735 if(!a) return;
2736 av_free(a->coeff);
2737 a->coeff=NULL;
2738 a->length=0;
2739 av_free(a);
2742 void sws_freeFilter(SwsFilter *filter){
2743 if(!filter) return;
2745 if(filter->lumH) sws_freeVec(filter->lumH);
2746 if(filter->lumV) sws_freeVec(filter->lumV);
2747 if(filter->chrH) sws_freeVec(filter->chrH);
2748 if(filter->chrV) sws_freeVec(filter->chrV);
2749 av_free(filter);
2753 void sws_freeContext(SwsContext *c){
2754 int i;
2755 if(!c) return;
2757 if(c->lumPixBuf)
2759 for(i=0; i<c->vLumBufSize; i++)
2761 av_free(c->lumPixBuf[i]);
2762 c->lumPixBuf[i]=NULL;
2764 av_free(c->lumPixBuf);
2765 c->lumPixBuf=NULL;
2768 if(c->chrPixBuf)
2770 for(i=0; i<c->vChrBufSize; i++)
2772 av_free(c->chrPixBuf[i]);
2773 c->chrPixBuf[i]=NULL;
2775 av_free(c->chrPixBuf);
2776 c->chrPixBuf=NULL;
2779 av_free(c->vLumFilter);
2780 c->vLumFilter = NULL;
2781 av_free(c->vChrFilter);
2782 c->vChrFilter = NULL;
2783 av_free(c->hLumFilter);
2784 c->hLumFilter = NULL;
2785 av_free(c->hChrFilter);
2786 c->hChrFilter = NULL;
2787 #ifdef HAVE_ALTIVEC
2788 av_free(c->vYCoeffsBank);
2789 c->vYCoeffsBank = NULL;
2790 av_free(c->vCCoeffsBank);
2791 c->vCCoeffsBank = NULL;
2792 #endif
2794 av_free(c->vLumFilterPos);
2795 c->vLumFilterPos = NULL;
2796 av_free(c->vChrFilterPos);
2797 c->vChrFilterPos = NULL;
2798 av_free(c->hLumFilterPos);
2799 c->hLumFilterPos = NULL;
2800 av_free(c->hChrFilterPos);
2801 c->hChrFilterPos = NULL;
2803 #if defined(ARCH_X86) && defined(CONFIG_GPL)
2804 #ifdef MAP_ANONYMOUS
2805 if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2806 if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2807 #else
2808 av_free(c->funnyYCode);
2809 av_free(c->funnyUVCode);
2810 #endif
2811 c->funnyYCode=NULL;
2812 c->funnyUVCode=NULL;
2813 #endif /* defined(ARCH_X86) */
2815 av_free(c->lumMmx2Filter);
2816 c->lumMmx2Filter=NULL;
2817 av_free(c->chrMmx2Filter);
2818 c->chrMmx2Filter=NULL;
2819 av_free(c->lumMmx2FilterPos);
2820 c->lumMmx2FilterPos=NULL;
2821 av_free(c->chrMmx2FilterPos);
2822 c->chrMmx2FilterPos=NULL;
2823 av_free(c->yuvTable);
2824 c->yuvTable=NULL;
2826 av_free(c);
2830 * Checks if context is valid or reallocs a new one instead.
2831 * If context is NULL, just calls sws_getContext() to get a new one.
2832 * Otherwise, checks if the parameters are the same already saved in context.
2833 * If that is the case, returns the current context.
2834 * Otherwise, frees context and gets a new one.
2836 * Be warned that srcFilter, dstFilter are not checked, they are
2837 * asumed to remain valid.
2839 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
2840 int srcW, int srcH, int srcFormat,
2841 int dstW, int dstH, int dstFormat, int flags,
2842 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
2844 if (context != NULL) {
2845 if ((context->srcW != srcW) || (context->srcH != srcH) ||
2846 (context->srcFormat != srcFormat) ||
2847 (context->dstW != dstW) || (context->dstH != dstH) ||
2848 (context->dstFormat != dstFormat) || (context->flags != flags) ||
2849 (context->param != param))
2851 sws_freeContext(context);
2852 context = NULL;
2855 if (context == NULL) {
2856 return sws_getContext(srcW, srcH, srcFormat,
2857 dstW, dstH, dstFormat, flags,
2858 srcFilter, dstFilter, param);
2860 return context;