Add a comment that explains why this header has no multiple inclusion guards.
[mplayer/greg.git] / libfaad2 / sbr_fbt.c
blob751afea72b922592656cd5131e6e1331099a6d58
1 /*
2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
4 **
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
9 **
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ** GNU General Public License for more details.
14 **
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 ** Any non-GPL usage of this software or parts of this software is strictly
20 ** forbidden.
22 ** Commercial non-GPL licensing of this software is possible.
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
25 ** $Id: sbr_fbt.c,v 1.17 2004/09/08 09:43:11 gcp Exp $
26 **/
28 /* Calculate frequency band tables */
30 #include "common.h"
31 #include "structs.h"
33 #ifdef SBR_DEC
35 #include <stdlib.h>
37 #include "sbr_syntax.h"
38 #include "sbr_fbt.h"
40 /* static function declarations */
41 static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1);
44 /* calculate the start QMF channel for the master frequency band table */
45 /* parameter is also called k0 */
46 uint8_t qmf_start_channel(uint8_t bs_start_freq, uint8_t bs_samplerate_mode,
47 uint32_t sample_rate)
49 static const uint8_t startMinTable[12] = { 7, 7, 10, 11, 12, 16, 16,
50 17, 24, 32, 35, 48 };
51 static const uint8_t offsetIndexTable[12] = { 5, 5, 4, 4, 4, 3, 2, 1, 0,
52 6, 6, 6 };
53 static const int8_t offset[7][16] = {
54 { -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 },
55 { -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 },
56 { -5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
57 { -6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
58 { -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20 },
59 { -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24 },
60 { 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 }
62 uint8_t startMin = startMinTable[get_sr_index(sample_rate)];
63 uint8_t offsetIndex = offsetIndexTable[get_sr_index(sample_rate)];
65 #if 0 /* replaced with table (startMinTable) */
66 if (sample_rate >= 64000)
68 startMin = (uint8_t)((5000.*128.)/(float)sample_rate + 0.5);
69 } else if (sample_rate < 32000) {
70 startMin = (uint8_t)((3000.*128.)/(float)sample_rate + 0.5);
71 } else {
72 startMin = (uint8_t)((4000.*128.)/(float)sample_rate + 0.5);
74 #endif
76 if (bs_samplerate_mode)
78 return startMin + offset[offsetIndex][bs_start_freq];
80 #if 0 /* replaced by offsetIndexTable */
81 switch (sample_rate)
83 case 16000:
84 return startMin + offset[0][bs_start_freq];
85 case 22050:
86 return startMin + offset[1][bs_start_freq];
87 case 24000:
88 return startMin + offset[2][bs_start_freq];
89 case 32000:
90 return startMin + offset[3][bs_start_freq];
91 default:
92 if (sample_rate > 64000)
94 return startMin + offset[5][bs_start_freq];
95 } else { /* 44100 <= sample_rate <= 64000 */
96 return startMin + offset[4][bs_start_freq];
99 #endif
100 } else {
101 return startMin + offset[6][bs_start_freq];
105 static int longcmp(const void *a, const void *b)
107 return ((int)(*(int32_t*)a - *(int32_t*)b));
110 /* calculate the stop QMF channel for the master frequency band table */
111 /* parameter is also called k2 */
112 uint8_t qmf_stop_channel(uint8_t bs_stop_freq, uint32_t sample_rate,
113 uint8_t k0)
115 if (bs_stop_freq == 15)
117 return min(64, k0 * 3);
118 } else if (bs_stop_freq == 14) {
119 return min(64, k0 * 2);
120 } else {
121 static const uint8_t stopMinTable[12] = { 13, 15, 20, 21, 23,
122 32, 32, 35, 48, 64, 70, 96 };
123 static const int8_t offset[12][14] = {
124 { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 37, 44, 51 },
125 { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 49 },
126 { 0, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44 },
127 { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43 },
128 { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 41 },
129 { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
130 { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
131 { 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 26, 29 },
132 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 },
133 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
134 { 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6 },
135 { 0, -3, -6, -9, -12, -15, -18, -20, -22, -24, -26, -28, -30, -32 }
137 #if 0
138 uint8_t i;
139 int32_t stopDk[13], stopDk_t[14], k2;
140 #endif
141 uint8_t stopMin = stopMinTable[get_sr_index(sample_rate)];
143 #if 0 /* replaced by table lookup */
144 if (sample_rate >= 64000)
146 stopMin = (uint8_t)((10000.*128.)/(float)sample_rate + 0.5);
147 } else if (sample_rate < 32000) {
148 stopMin = (uint8_t)((6000.*128.)/(float)sample_rate + 0.5);
149 } else {
150 stopMin = (uint8_t)((8000.*128.)/(float)sample_rate + 0.5);
152 #endif
154 #if 0 /* replaced by table lookup */
155 /* diverging power series */
156 for (i = 0; i <= 13; i++)
158 stopDk_t[i] = (int32_t)(stopMin*pow(64.0/stopMin, i/13.0) + 0.5);
160 for (i = 0; i < 13; i++)
162 stopDk[i] = stopDk_t[i+1] - stopDk_t[i];
165 /* needed? */
166 qsort(stopDk, 13, sizeof(stopDk[0]), longcmp);
168 k2 = stopMin;
169 for (i = 0; i < bs_stop_freq; i++)
171 k2 += stopDk[i];
173 return min(64, k2);
174 #endif
175 /* bs_stop_freq <= 13 */
176 return min(64, stopMin + offset[get_sr_index(sample_rate)][min(bs_stop_freq, 13)]);
179 return 0;
182 /* calculate the master frequency table from k0, k2, bs_freq_scale
183 and bs_alter_scale
185 version for bs_freq_scale = 0
187 uint8_t master_frequency_table_fs0(sbr_info *sbr, uint8_t k0, uint8_t k2,
188 uint8_t bs_alter_scale)
190 int8_t incr;
191 uint8_t k;
192 uint8_t dk;
193 uint32_t nrBands, k2Achieved;
194 int32_t k2Diff, vDk[64] = {0};
196 /* mft only defined for k2 > k0 */
197 if (k2 <= k0)
199 sbr->N_master = 0;
200 return 1;
203 dk = bs_alter_scale ? 2 : 1;
205 #if 0 /* replaced by float-less design */
206 nrBands = 2 * (int32_t)((float)(k2-k0)/(dk*2) + (-1+dk)/2.0f);
207 #else
208 if (bs_alter_scale)
210 nrBands = (((k2-k0+2)>>2)<<1);
211 } else {
212 nrBands = (((k2-k0)>>1)<<1);
214 #endif
215 nrBands = min(nrBands, 63);
216 if (nrBands <= 0)
217 return 1;
219 k2Achieved = k0 + nrBands * dk;
220 k2Diff = k2 - k2Achieved;
221 for (k = 0; k < nrBands; k++)
222 vDk[k] = dk;
224 if (k2Diff)
226 incr = (k2Diff > 0) ? -1 : 1;
227 k = (uint8_t) ((k2Diff > 0) ? (nrBands-1) : 0);
229 while (k2Diff != 0)
231 vDk[k] -= incr;
232 k += incr;
233 k2Diff += incr;
237 sbr->f_master[0] = k0;
238 for (k = 1; k <= nrBands; k++)
239 sbr->f_master[k] = (uint8_t)(sbr->f_master[k-1] + vDk[k-1]);
241 sbr->N_master = (uint8_t)nrBands;
242 sbr->N_master = (min(sbr->N_master, 64));
244 #if 0
245 printf("f_master[%d]: ", nrBands);
246 for (k = 0; k <= nrBands; k++)
248 printf("%d ", sbr->f_master[k]);
250 printf("\n");
251 #endif
253 return 0;
257 This function finds the number of bands using this formula:
258 bands * log(a1/a0)/log(2.0) + 0.5
260 static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1)
262 #ifdef FIXED_POINT
263 /* table with log2() values */
264 static const real_t log2Table[65] = {
265 COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007),
266 COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221),
267 COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186),
268 COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956),
269 COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134),
270 COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561),
271 COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022),
272 COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104),
273 COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169),
274 COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189),
275 COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547),
276 COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517),
277 COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420),
278 COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135),
279 COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494),
280 COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235),
281 COEF_CONST(6.0)
283 real_t r0 = log2Table[a0]; /* coef */
284 real_t r1 = log2Table[a1]; /* coef */
285 real_t r2 = (r1 - r0); /* coef */
287 if (warp)
288 r2 = MUL_C(r2, COEF_CONST(1.0/1.3));
290 /* convert r2 to real and then multiply and round */
291 r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1));
293 return (r2 >> REAL_BITS);
294 #else
295 real_t div = (real_t)log(2.0);
296 if (warp) div *= (real_t)1.3;
298 return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5);
299 #endif
302 static real_t find_initial_power(uint8_t bands, uint8_t a0, uint8_t a1)
304 #ifdef FIXED_POINT
305 /* table with log() values */
306 static const real_t logTable[65] = {
307 COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887),
308 COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491),
309 COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728),
310 COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011),
311 COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792),
312 COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159),
313 COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660),
314 COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045),
315 COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615),
316 COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461),
317 COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157),
318 COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017),
319 COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327),
320 COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852),
321 COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439),
322 COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264),
323 COEF_CONST(4.158883083)
325 /* standard Taylor polynomial coefficients for exp(x) around 0 */
326 /* a polynomial around x=1 is more precise, as most values are around 1.07,
327 but this is just fine already */
328 static const real_t c1 = COEF_CONST(1.0);
329 static const real_t c2 = COEF_CONST(1.0/2.0);
330 static const real_t c3 = COEF_CONST(1.0/6.0);
331 static const real_t c4 = COEF_CONST(1.0/24.0);
333 real_t r0 = logTable[a0]; /* coef */
334 real_t r1 = logTable[a1]; /* coef */
335 real_t r2 = (r1 - r0) / bands; /* coef */
336 real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2);
338 return (rexp >> (COEF_BITS-REAL_BITS)); /* real */
339 #else
340 return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands);
341 #endif
345 version for bs_freq_scale > 0
347 uint8_t master_frequency_table(sbr_info *sbr, uint8_t k0, uint8_t k2,
348 uint8_t bs_freq_scale, uint8_t bs_alter_scale)
350 uint8_t k, bands, twoRegions;
351 uint8_t k1;
352 uint8_t nrBand0, nrBand1;
353 int32_t vDk0[64] = {0}, vDk1[64] = {0};
354 int32_t vk0[64] = {0}, vk1[64] = {0};
355 uint8_t temp1[] = { 6, 5, 4 };
356 real_t q, qk;
357 int32_t A_1;
358 #ifdef FIXED_POINT
359 real_t rk2, rk0;
360 #endif
362 /* mft only defined for k2 > k0 */
363 if (k2 <= k0)
365 sbr->N_master = 0;
366 return 1;
369 bands = temp1[bs_freq_scale-1];
371 #ifdef FIXED_POINT
372 rk0 = (real_t)k0 << REAL_BITS;
373 rk2 = (real_t)k2 << REAL_BITS;
374 if (rk2 > MUL_C(rk0, COEF_CONST(2.2449)))
375 #else
376 if ((float)k2/(float)k0 > 2.2449)
377 #endif
379 twoRegions = 1;
380 k1 = k0 << 1;
381 } else {
382 twoRegions = 0;
383 k1 = k2;
386 nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1));
387 nrBand0 = min(nrBand0, 63);
388 if (nrBand0 <= 0)
389 return 1;
391 q = find_initial_power(nrBand0, k0, k1);
392 #ifdef FIXED_POINT
393 qk = (real_t)k0 << REAL_BITS;
394 //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
395 A_1 = k0;
396 #else
397 qk = REAL_CONST(k0);
398 A_1 = (int32_t)(qk + .5);
399 #endif
400 for (k = 0; k <= nrBand0; k++)
402 int32_t A_0 = A_1;
403 #ifdef FIXED_POINT
404 qk = MUL_R(qk,q);
405 A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
406 #else
407 qk *= q;
408 A_1 = (int32_t)(qk + 0.5);
409 #endif
410 vDk0[k] = A_1 - A_0;
413 /* needed? */
414 qsort(vDk0, nrBand0, sizeof(vDk0[0]), longcmp);
416 vk0[0] = k0;
417 for (k = 1; k <= nrBand0; k++)
419 vk0[k] = vk0[k-1] + vDk0[k-1];
420 if (vDk0[k-1] == 0)
421 return 1;
424 if (!twoRegions)
426 for (k = 0; k <= nrBand0; k++)
427 sbr->f_master[k] = (uint8_t) vk0[k];
429 sbr->N_master = nrBand0;
430 sbr->N_master = min(sbr->N_master, 64);
431 return 0;
434 nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2));
435 nrBand1 = min(nrBand1, 63);
437 q = find_initial_power(nrBand1, k1, k2);
438 #ifdef FIXED_POINT
439 qk = (real_t)k1 << REAL_BITS;
440 //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
441 A_1 = k1;
442 #else
443 qk = REAL_CONST(k1);
444 A_1 = (int32_t)(qk + .5);
445 #endif
446 for (k = 0; k <= nrBand1 - 1; k++)
448 int32_t A_0 = A_1;
449 #ifdef FIXED_POINT
450 qk = MUL_R(qk,q);
451 A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
452 #else
453 qk *= q;
454 A_1 = (int32_t)(qk + 0.5);
455 #endif
456 vDk1[k] = A_1 - A_0;
459 if (vDk1[0] < vDk0[nrBand0 - 1])
461 int32_t change;
463 /* needed? */
464 qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), longcmp);
465 change = vDk0[nrBand0 - 1] - vDk1[0];
466 vDk1[0] = vDk0[nrBand0 - 1];
467 vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change;
470 /* needed? */
471 qsort(vDk1, nrBand1, sizeof(vDk1[0]), longcmp);
472 vk1[0] = k1;
473 for (k = 1; k <= nrBand1; k++)
475 vk1[k] = vk1[k-1] + vDk1[k-1];
476 if (vDk1[k-1] == 0)
477 return 1;
480 sbr->N_master = nrBand0 + nrBand1;
481 sbr->N_master = min(sbr->N_master, 64);
482 for (k = 0; k <= nrBand0; k++)
484 sbr->f_master[k] = (uint8_t) vk0[k];
486 for (k = nrBand0 + 1; k <= sbr->N_master; k++)
488 sbr->f_master[k] = (uint8_t) vk1[k - nrBand0];
491 #if 0
492 printf("f_master[%d]: ", sbr->N_master);
493 for (k = 0; k <= sbr->N_master; k++)
495 printf("%d ", sbr->f_master[k]);
497 printf("\n");
498 #endif
500 return 0;
503 /* calculate the derived frequency border tables from f_master */
504 uint8_t derived_frequency_table(sbr_info *sbr, uint8_t bs_xover_band,
505 uint8_t k2)
507 uint8_t k, i;
508 uint32_t minus;
510 /* The following relation shall be satisfied: bs_xover_band < N_Master */
511 if (sbr->N_master <= bs_xover_band)
512 return 1;
514 sbr->N_high = sbr->N_master - bs_xover_band;
515 sbr->N_low = (sbr->N_high>>1) + (sbr->N_high - ((sbr->N_high>>1)<<1));
517 sbr->n[0] = sbr->N_low;
518 sbr->n[1] = sbr->N_high;
520 for (k = 0; k <= sbr->N_high; k++)
522 sbr->f_table_res[HI_RES][k] = sbr->f_master[k + bs_xover_band];
525 sbr->M = sbr->f_table_res[HI_RES][sbr->N_high] - sbr->f_table_res[HI_RES][0];
526 sbr->kx = sbr->f_table_res[HI_RES][0];
527 if (sbr->kx > 32)
528 return 1;
529 if (sbr->kx + sbr->M > 64)
530 return 1;
532 minus = (sbr->N_high & 1) ? 1 : 0;
534 for (k = 0; k <= sbr->N_low; k++)
536 if (k == 0)
537 i = 0;
538 else
539 i = (uint8_t)(2*k - minus);
540 sbr->f_table_res[LO_RES][k] = sbr->f_table_res[HI_RES][i];
543 #if 0
544 printf("bs_freq_scale: %d\n", sbr->bs_freq_scale);
545 printf("bs_limiter_bands: %d\n", sbr->bs_limiter_bands);
546 printf("f_table_res[HI_RES][%d]: ", sbr->N_high);
547 for (k = 0; k <= sbr->N_high; k++)
549 printf("%d ", sbr->f_table_res[HI_RES][k]);
551 printf("\n");
552 #endif
553 #if 0
554 printf("f_table_res[LO_RES][%d]: ", sbr->N_low);
555 for (k = 0; k <= sbr->N_low; k++)
557 printf("%d ", sbr->f_table_res[LO_RES][k]);
559 printf("\n");
560 #endif
562 sbr->N_Q = 0;
563 if (sbr->bs_noise_bands == 0)
565 sbr->N_Q = 1;
566 } else {
567 #if 0
568 sbr->N_Q = max(1, (int32_t)(sbr->bs_noise_bands*(log(k2/(float)sbr->kx)/log(2.0)) + 0.5));
569 #else
570 sbr->N_Q = (uint8_t)(max(1, find_bands(0, sbr->bs_noise_bands, sbr->kx, k2)));
571 #endif
572 sbr->N_Q = min(5, sbr->N_Q);
575 for (k = 0; k <= sbr->N_Q; k++)
577 if (k == 0)
579 i = 0;
580 } else {
581 /* i = i + (int32_t)((sbr->N_low - i)/(sbr->N_Q + 1 - k)); */
582 i = i + (sbr->N_low - i)/(sbr->N_Q + 1 - k);
584 sbr->f_table_noise[k] = sbr->f_table_res[LO_RES][i];
587 /* build table for mapping k to g in hf patching */
588 for (k = 0; k < 64; k++)
590 uint8_t g;
591 for (g = 0; g < sbr->N_Q; g++)
593 if ((sbr->f_table_noise[g] <= k) &&
594 (k < sbr->f_table_noise[g+1]))
596 sbr->table_map_k_to_g[k] = g;
597 break;
602 #if 0
603 printf("f_table_noise[%d]: ", sbr->N_Q);
604 for (k = 0; k <= sbr->N_Q; k++)
606 printf("%d ", sbr->f_table_noise[k] - sbr->kx);
608 printf("\n");
609 #endif
611 return 0;
614 /* TODO: blegh, ugly */
615 /* Modified to calculate for all possible bs_limiter_bands always
616 * This reduces the number calls to this functions needed (now only on
617 * header reset)
619 void limiter_frequency_table(sbr_info *sbr)
621 #if 0
622 static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2),
623 REAL_CONST(2), REAL_CONST(3) };
624 #else
625 static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152),
626 REAL_CONST(1.185093), REAL_CONST(1.119872) };
627 #endif
628 uint8_t k, s;
629 int8_t nrLim;
630 #if 0
631 real_t limBands;
632 #endif
634 sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx;
635 sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx;
636 sbr->N_L[0] = 1;
638 #if 0
639 printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]);
640 for (k = 0; k <= sbr->N_L[0]; k++)
642 printf("%d ", sbr->f_table_lim[0][k]);
644 printf("\n");
645 #endif
647 for (s = 1; s < 4; s++)
649 int32_t limTable[100 /*TODO*/] = {0};
650 uint8_t patchBorders[64/*??*/] = {0};
652 #if 0
653 limBands = limiterBandsPerOctave[s - 1];
654 #endif
656 patchBorders[0] = sbr->kx;
657 for (k = 1; k <= sbr->noPatches; k++)
659 patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1];
662 for (k = 0; k <= sbr->N_low; k++)
664 limTable[k] = sbr->f_table_res[LO_RES][k];
666 for (k = 1; k < sbr->noPatches; k++)
668 limTable[k+sbr->N_low] = patchBorders[k];
671 /* needed */
672 qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp);
673 k = 1;
674 nrLim = sbr->noPatches + sbr->N_low - 1;
676 if (nrLim < 0) // TODO: BIG FAT PROBLEM
677 return;
679 restart:
680 if (k <= nrLim)
682 real_t nOctaves;
684 if (limTable[k-1] != 0)
685 #if 0
686 nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0));
687 #else
688 #ifdef FIXED_POINT
689 nOctaves = DIV_R((limTable[k]<<REAL_BITS),REAL_CONST(limTable[k-1]));
690 #else
691 nOctaves = (real_t)limTable[k]/(real_t)limTable[k-1];
692 #endif
693 #endif
694 else
695 nOctaves = 0;
697 #if 0
698 if ((MUL_R(nOctaves,limBands)) < REAL_CONST(0.49))
699 #else
700 if (nOctaves < limiterBandsCompare[s - 1])
701 #endif
703 uint8_t i;
704 if (limTable[k] != limTable[k-1])
706 uint8_t found = 0, found2 = 0;
707 for (i = 0; i <= sbr->noPatches; i++)
709 if (limTable[k] == patchBorders[i])
710 found = 1;
712 if (found)
714 found2 = 0;
715 for (i = 0; i <= sbr->noPatches; i++)
717 if (limTable[k-1] == patchBorders[i])
718 found2 = 1;
720 if (found2)
722 k++;
723 goto restart;
724 } else {
725 /* remove (k-1)th element */
726 limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low];
727 qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp);
728 nrLim--;
729 goto restart;
733 /* remove kth element */
734 limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low];
735 qsort(limTable, nrLim, sizeof(limTable[0]), longcmp);
736 nrLim--;
737 goto restart;
738 } else {
739 k++;
740 goto restart;
744 sbr->N_L[s] = nrLim;
745 for (k = 0; k <= nrLim; k++)
747 sbr->f_table_lim[s][k] = limTable[k] - sbr->kx;
750 #if 0
751 printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]);
752 for (k = 0; k <= sbr->N_L[s]; k++)
754 printf("%d ", sbr->f_table_lim[s][k]);
756 printf("\n");
757 #endif
761 #endif