Comment out the correct #endif directive.
[mplayer/greg.git] / libvo / jpeg_enc.c
blob8a5d6e072fa7a1b73a36fcbfe0cbce5f7e3b3fdb
1 /* Straightforward (to be) optimized JPEG encoder for the YUV422 format
2 * based on mjpeg code from ffmpeg.
4 * Copyright (c) 2002, Rik Snel
5 * Parts from ffmpeg Copyright (c) 2000-2002 Fabrice Bellard
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 * For an excellent introduction to the JPEG format, see:
22 * http://www.ece.purdue.edu/~bouman/grad-labs/lab8/pdf/lab.pdf
27 #include <sys/types.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include "config.h"
31 #include "mp_msg.h"
32 /* We need this #define because we need ../libavcodec/common.h to #define
33 * be2me_32, otherwise the linker will complain that it doesn't exist */
34 #define HAVE_AV_CONFIG_H
35 #include "libavcodec/avcodec.h"
36 #include "libavcodec/dsputil.h"
37 #include "libavcodec/mpegvideo.h"
38 #include "libavcodec/mjpegenc.h"
40 #include "jpeg_enc.h"
42 extern int avcodec_inited;
45 /* Begin excessive code duplication ************************************/
46 /* Code coming from mpegvideo.c and mjpeg.c in ../libavcodec ***********/
48 static const unsigned short aanscales[64] = {
49 /* precomputed values scaled up by 14 bits */
50 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
51 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
52 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
53 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
54 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
55 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
56 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
57 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
60 static void convert_matrix(MpegEncContext *s, int (*qmat)[64],
61 uint16_t (*qmat16)[2][64], const uint16_t *quant_matrix,
62 int bias, int qmin, int qmax)
64 int qscale;
66 for(qscale=qmin; qscale<=qmax; qscale++){
67 int i;
68 if (s->dsp.fdct == ff_jpeg_fdct_islow) {
69 for (i = 0; i < 64; i++) {
70 const int j = s->dsp.idct_permutation[i];
71 /* 16 <= qscale * quant_matrix[i] <= 7905
72 * 19952 <= aanscales[i] * \
73 * qscale * quant_matrix[i] <= 205026
74 * (1<<36)/19952 >= (1<<36)/(aanscales[i] * \
75 * qscale * quant_matrix[i]) >= (1<<36)/249205025
76 * 3444240 >= (1<<36)/(aanscales[i] *
77 * qscale * quant_matrix[i]) >= 275 */
78 qmat[qscale][i] = (int)((UINT64_C(1) << (QMAT_SHIFT-3))/
79 (qscale * quant_matrix[j]));
81 } else if (s->dsp.fdct == fdct_ifast) {
82 for(i=0;i<64;i++) {
83 const int j = s->dsp.idct_permutation[i];
84 /* 16 <= qscale * quant_matrix[i] <= 7905 */
85 /* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */
86 /* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= (1<<36)/249205026 */
87 /* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
89 qmat[qscale][i] = (int)((UINT64_C(1) << (QMAT_SHIFT + 11)) /
90 (aanscales[i] * qscale * quant_matrix[j]));
92 } else {
93 for(i=0;i<64;i++) {
94 const int j = s->dsp.idct_permutation[i];
95 /* We can safely suppose that 16 <= quant_matrix[i] <= 255
96 So 16 <= qscale * quant_matrix[i] <= 7905
97 so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
98 so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67
100 qmat [qscale][i] = (int)((UINT64_C(1) << QMAT_SHIFT_MMX) / (qscale * quant_matrix[j]));
101 qmat16[qscale][0][i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[j]);
103 if(qmat16[qscale][0][i]==0 || qmat16[qscale][0][i]==128*256) qmat16[qscale][0][i]=128*256-1;
104 qmat16[qscale][1][i]= ROUNDED_DIV(bias<<(16-QUANT_BIAS_SHIFT), qmat16[qscale][0][i]);
110 static inline void encode_dc(MpegEncContext *s, int val,
111 uint8_t *huff_size, uint16_t *huff_code)
113 int mant, nbits;
115 if (val == 0) {
116 put_bits(&s->pb, huff_size[0], huff_code[0]);
117 } else {
118 mant = val;
119 if (val < 0) {
120 val = -val;
121 mant--;
124 /* compute the log (XXX: optimize) */
125 nbits = 0;
126 while (val != 0) {
127 val = val >> 1;
128 nbits++;
131 put_bits(&s->pb, huff_size[nbits], huff_code[nbits]);
133 put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
137 static void encode_block(MpegEncContext *s, DCTELEM *block, int n)
139 int mant, nbits, code, i, j;
140 int component, dc, run, last_index, val;
141 MJpegContext *m = s->mjpeg_ctx;
142 uint8_t *huff_size_ac;
143 uint16_t *huff_code_ac;
145 /* DC coef */
146 component = (n <= 3 ? 0 : n - 4 + 1);
147 dc = block[0]; /* overflow is impossible */
148 val = dc - s->last_dc[component];
149 if (n < 4) {
150 encode_dc(s, val, m->huff_size_dc_luminance, m->huff_code_dc_luminance);
151 huff_size_ac = m->huff_size_ac_luminance;
152 huff_code_ac = m->huff_code_ac_luminance;
153 } else {
154 encode_dc(s, val, m->huff_size_dc_chrominance, m->huff_code_dc_chrominance);
155 huff_size_ac = m->huff_size_ac_chrominance;
156 huff_code_ac = m->huff_code_ac_chrominance;
158 s->last_dc[component] = dc;
160 /* AC coefs */
162 run = 0;
163 last_index = s->block_last_index[n];
164 for(i=1;i<=last_index;i++) {
165 j = s->intra_scantable.permutated[i];
166 val = block[j];
167 if (val == 0) {
168 run++;
169 } else {
170 while (run >= 16) {
171 put_bits(&s->pb, huff_size_ac[0xf0], huff_code_ac[0xf0]);
172 run -= 16;
174 mant = val;
175 if (val < 0) {
176 val = -val;
177 mant--;
180 /* compute the log (XXX: optimize) */
181 nbits = 0;
182 while (val != 0) {
183 val = val >> 1;
184 nbits++;
186 code = (run << 4) | nbits;
188 put_bits(&s->pb, huff_size_ac[code], huff_code_ac[code]);
190 put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
191 run = 0;
195 /* output EOB only if not already 64 values */
196 if (last_index < 63 || run != 0)
197 put_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]);
200 static inline void clip_coeffs(MpegEncContext *s, DCTELEM *block, int last_index)
202 int i;
203 const int maxlevel= s->max_qcoeff;
204 const int minlevel= s->min_qcoeff;
206 for(i=0; i<=last_index; i++){
207 const int j = s->intra_scantable.permutated[i];
208 int level = block[j];
210 if (level>maxlevel) level=maxlevel;
211 else if(level<minlevel) level=minlevel;
212 block[j]= level;
216 /* End excessive code duplication **************************************/
218 /* this function is a reproduction of the one in mjpeg, it includes two
219 * changes, it allows for black&white encoding (it skips the U and V
220 * macroblocks and it outputs the huffman code for 'no change' (dc) and
221 * 'all zero' (ac)) and it takes 4 macroblocks (422) instead of 6 (420) */
222 static void zr_mjpeg_encode_mb(jpeg_enc_t *j) {
224 MJpegContext *m = j->s->mjpeg_ctx;
226 encode_block(j->s, j->s->block[0], 0);
227 encode_block(j->s, j->s->block[1], 1);
228 if (j->bw) {
229 /* U */
230 put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
231 m->huff_code_dc_chrominance[0]);
232 put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
233 m->huff_code_ac_chrominance[0]);
234 /* V */
235 put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
236 m->huff_code_dc_chrominance[0]);
237 put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
238 m->huff_code_ac_chrominance[0]);
239 } else {
240 /* we trick encode_block here so that it uses
241 * chrominance huffman tables instead of luminance ones
242 * (see the effect of second argument of encode_block) */
243 encode_block(j->s, j->s->block[2], 4);
244 encode_block(j->s, j->s->block[3], 5);
248 /* this function can take all kinds of YUV colorspaces
249 * YV12, YVYU, UYVY. The necesary parameters must be set up by the caller
250 * y_ps means "y pixel size", y_rs means "y row size".
251 * For YUYV, for example, is u_buf = y_buf + 1, v_buf = y_buf + 3,
252 * y_ps = 2, u_ps = 4, v_ps = 4, y_rs = u_rs = v_rs.
254 * The actual buffers must be passed with mjpeg_encode_frame, this is
255 * to make it possible to call encode on the buffer provided by the
256 * codec in draw_frame.
258 * The data is straightened out at the moment it is put in DCT
259 * blocks, there are therefore no spurious memcopies involved */
260 /* Notice that w must be a multiple of 16 and h must be a multiple of 8 */
261 /* We produce YUV422 jpegs, the colors must be subsampled horizontally,
262 * if the colors are also subsampled vertically, then this function
263 * performs cheap upsampling (better solution will be: a DCT that is
264 * optimized in the case that every two rows are the same) */
265 /* cu = 0 means 'No cheap upsampling'
266 * cu = 1 means 'perform cheap upsampling' */
267 /* The encoder doesn't know anything about interlacing, the halve height
268 * needs to be passed and the double rowstride. Which field gets encoded
269 * is decided by what buffers are passed to mjpeg_encode_frame */
270 jpeg_enc_t *jpeg_enc_init(int w, int h, int y_psize, int y_rsize,
271 int u_psize, int u_rsize, int v_psize, int v_rsize,
272 int cu, int q, int b) {
273 jpeg_enc_t *j;
274 int i = 0;
275 mp_msg(MSGT_VO, MSGL_V, "JPEnc init: %dx%d %d %d %d %d %d %d\n",
276 w, h, y_psize, y_rsize, u_psize,
277 u_rsize, v_psize, v_rsize);
279 j = av_malloc(sizeof(jpeg_enc_t));
280 if (j == NULL) return NULL;
282 j->s = av_malloc(sizeof(MpegEncContext));
283 memset(j->s,0x00,sizeof(MpegEncContext));
284 if (j->s == NULL) {
285 av_free(j);
286 return NULL;
289 /* info on how to access the pixels */
290 j->y_ps = y_psize;
291 j->u_ps = u_psize;
292 j->v_ps = v_psize;
293 j->y_rs = y_rsize;
294 j->u_rs = u_rsize;
295 j->v_rs = v_rsize;
297 j->s->width = w;
298 j->s->height = h;
299 j->s->qscale = q;
301 j->s->out_format = FMT_MJPEG;
302 j->s->intra_only = 1;
303 j->s->encoding = 1;
304 j->s->pict_type = I_TYPE;
305 j->s->y_dc_scale = 8;
306 j->s->c_dc_scale = 8;
308 //FIXME j->s->mjpeg_write_tables = 1;
309 j->s->mjpeg_vsample[0] = 1;
310 j->s->mjpeg_vsample[1] = 1;
311 j->s->mjpeg_vsample[2] = 1;
312 j->s->mjpeg_hsample[0] = 2;
313 j->s->mjpeg_hsample[1] = 1;
314 j->s->mjpeg_hsample[2] = 1;
316 j->cheap_upsample = cu;
317 j->bw = b;
319 /* if libavcodec is used by the decoder then we must not
320 * initialize again, but if it is not initialized then we must
321 * initialize it here. */
322 if (!avcodec_inited) {
323 /* we need to initialize libavcodec */
324 avcodec_init();
325 avcodec_register_all();
326 avcodec_inited=1;
329 if (ff_mjpeg_encode_init(j->s) < 0) {
330 av_free(j->s);
331 av_free(j);
332 return NULL;
335 /* alloc bogus avctx to keep MPV_common_init from segfaulting */
336 j->s->avctx = calloc(sizeof(*j->s->avctx), 1);
337 /* Set up to encode mjpeg */
338 j->s->avctx->codec_id = CODEC_ID_MJPEG;
340 /* make MPV_common_init allocate important buffers, like s->block */
341 j->s->avctx->thread_count = 1;
343 if (MPV_common_init(j->s) < 0) {
344 av_free(j->s);
345 av_free(j);
346 return NULL;
349 /* correct the value for sc->mb_height */
350 j->s->mb_height = j->s->height/8;
351 j->s->mb_intra = 1;
353 j->s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0];
354 for (i = 1; i < 64; i++)
355 j->s->intra_matrix[i] = av_clip_uint8(
356 (ff_mpeg1_default_intra_matrix[i]*j->s->qscale) >> 3);
357 convert_matrix(j->s, j->s->q_intra_matrix, j->s->q_intra_matrix16,
358 j->s->intra_matrix, j->s->intra_quant_bias, 8, 8);
359 return j;
362 int jpeg_enc_frame(jpeg_enc_t *j, unsigned char *y_data,
363 unsigned char *u_data, unsigned char *v_data, char *bufr) {
364 int i, k, mb_x, mb_y, overflow;
365 short int *dest;
366 unsigned char *source;
367 /* initialize the buffer */
369 init_put_bits(&j->s->pb, bufr, 1024*256);
371 ff_mjpeg_encode_picture_header(j->s);
373 j->s->header_bits = put_bits_count(&j->s->pb);
375 j->s->last_dc[0] = 128;
376 j->s->last_dc[1] = 128;
377 j->s->last_dc[2] = 128;
379 for (mb_y = 0; mb_y < j->s->mb_height; mb_y++) {
380 for (mb_x = 0; mb_x < j->s->mb_width; mb_x++) {
381 /* conversion 8 to 16 bit and filling of blocks
382 * must be mmx optimized */
383 /* fill 2 Y macroblocks and one U and one V */
384 source = mb_y * 8 * j->y_rs +
385 16 * j->y_ps * mb_x + y_data;
386 dest = j->s->block[0];
387 for (i = 0; i < 8; i++) {
388 for (k = 0; k < 8; k++) {
389 dest[k] = source[k*j->y_ps];
391 dest += 8;
392 source += j->y_rs;
394 source = mb_y * 8 * j->y_rs +
395 (16*mb_x + 8)*j->y_ps + y_data;
396 dest = j->s->block[1];
397 for (i = 0; i < 8; i++) {
398 for (k = 0; k < 8; k++) {
399 dest[k] = source[k*j->y_ps];
401 dest += 8;
402 source += j->y_rs;
404 if (!j->bw && j->cheap_upsample) {
405 source = mb_y*4*j->u_rs +
406 8*mb_x*j->u_ps + u_data;
407 dest = j->s->block[2];
408 for (i = 0; i < 4; i++) {
409 for (k = 0; k < 8; k++) {
410 dest[k] = source[k*j->u_ps];
411 dest[k+8] = source[k*j->u_ps];
413 dest += 16;
414 source += j->u_rs;
416 source = mb_y*4*j->v_rs +
417 8*mb_x*j->v_ps + v_data;
418 dest = j->s->block[3];
419 for (i = 0; i < 4; i++) {
420 for (k = 0; k < 8; k++) {
421 dest[k] = source[k*j->v_ps];
422 dest[k+8] = source[k*j->v_ps];
424 dest += 16;
425 source += j->u_rs;
427 } else if (!j->bw && !j->cheap_upsample) {
428 source = mb_y*8*j->u_rs +
429 8*mb_x*j->u_ps + u_data;
430 dest = j->s->block[2];
431 for (i = 0; i < 8; i++) {
432 for (k = 0; k < 8; k++)
433 dest[k] = source[k*j->u_ps];
434 dest += 8;
435 source += j->u_rs;
437 source = mb_y*8*j->v_rs +
438 8*mb_x*j->v_ps + v_data;
439 dest = j->s->block[3];
440 for (i = 0; i < 8; i++) {
441 for (k = 0; k < 8; k++)
442 dest[k] = source[k*j->v_ps];
443 dest += 8;
444 source += j->u_rs;
447 emms_c(); /* is this really needed? */
449 j->s->block_last_index[0] =
450 j->s->dct_quantize(j->s, j->s->block[0],
451 0, 8, &overflow);
452 if (overflow) clip_coeffs(j->s, j->s->block[0],
453 j->s->block_last_index[0]);
454 j->s->block_last_index[1] =
455 j->s->dct_quantize(j->s, j->s->block[1],
456 1, 8, &overflow);
457 if (overflow) clip_coeffs(j->s, j->s->block[1],
458 j->s->block_last_index[1]);
460 if (!j->bw) {
461 j->s->block_last_index[4] =
462 j->s->dct_quantize(j->s, j->s->block[2],
463 4, 8, &overflow);
464 if (overflow) clip_coeffs(j->s, j->s->block[2],
465 j->s->block_last_index[2]);
466 j->s->block_last_index[5] =
467 j->s->dct_quantize(j->s, j->s->block[3],
468 5, 8, &overflow);
469 if (overflow) clip_coeffs(j->s, j->s->block[3],
470 j->s->block_last_index[3]);
472 zr_mjpeg_encode_mb(j);
475 emms_c();
476 ff_mjpeg_encode_picture_trailer(j->s);
477 flush_put_bits(&j->s->pb);
479 //FIXME
480 //if (j->s->mjpeg_write_tables == 1)
481 // j->s->mjpeg_write_tables = 0;
483 return pbBufPtr(&(j->s->pb)) - j->s->pb.buf;
486 void jpeg_enc_uninit(jpeg_enc_t *j) {
487 ff_mjpeg_encode_close(j->s);
488 av_free(j->s);
489 av_free(j);
492 #if 0
494 #define W 32
495 #define H 32
497 int quant_store[MBR+1][MBC+1];
498 unsigned char buf[W*H*3/2];
499 char code[256*1024];
502 main(void) {
503 int i, size;
504 FILE *fp;
506 memset(buf, 0, W*H);
507 memset(buf+W*H, 255, W*H/4);
508 memset(buf+5*W*H/4, 0, W*H/4);
509 mjpeg_encoder_init(W, H, 1, W, 1, W/2, 1, W/2, 1, 1, 0);
511 size = mjpeg_encode_frame(buf, buf+W*H, buf+5*W*H/4, code);
512 fp = fopen("test.jpg", "w");
513 fwrite(code, 1, size, fp);
514 fclose(fp);
516 #endif