synced with 1.183
[mplayer/greg.git] / libfaad2 / common.c
blob7b60c80b15f3f0e81d4e1061a2e0f244b0412490
1 /*
2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
4 **
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
9 **
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ** GNU General Public License for more details.
14 **
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 ** Any non-GPL usage of this software or parts of this software is strictly
20 ** forbidden.
22 ** Commercial non-GPL licensing of this software is possible.
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
25 ** $Id: common.c,v 1.19 2004/06/30 12:45:56 menno Exp $
26 **/
28 /* just some common functions that could be used anywhere */
30 #include "common.h"
31 #include "structs.h"
33 #include <stdlib.h>
34 #include "syntax.h"
36 #ifdef USE_SSE
37 __declspec(naked) static int32_t __fastcall test_cpuid(void)
39 __asm
41 pushf
42 pop eax
43 mov ecx,eax
44 xor eax,(1<<21)
45 push eax
46 popf
47 pushf
48 pop eax
49 push ecx
50 popf
51 cmp eax,ecx
52 mov eax,0
53 setne al
54 ret
58 __declspec(naked) static void __fastcall run_cpuid(int32_t param, int32_t out[4])
60 __asm
62 pushad
63 push edx
64 mov eax,ecx
65 cpuid
66 pop edi
67 mov [edi+0],eax
68 mov [edi+4],ebx
69 mov [edi+8],ecx
70 mov [edi+12],edx
71 popad
72 ret
76 uint8_t cpu_has_sse()
78 int32_t features[4];
80 if (test_cpuid())
82 run_cpuid(1, features);
85 /* check for SSE */
86 if (features[3] & 0x02000000)
87 return 1;
89 return 0;
91 #else
92 uint8_t cpu_has_sse()
94 return 0;
96 #endif
98 /* Returns the sample rate index based on the samplerate */
99 uint8_t get_sr_index(const uint32_t samplerate)
101 if (92017 <= samplerate) return 0;
102 if (75132 <= samplerate) return 1;
103 if (55426 <= samplerate) return 2;
104 if (46009 <= samplerate) return 3;
105 if (37566 <= samplerate) return 4;
106 if (27713 <= samplerate) return 5;
107 if (23004 <= samplerate) return 6;
108 if (18783 <= samplerate) return 7;
109 if (13856 <= samplerate) return 8;
110 if (11502 <= samplerate) return 9;
111 if (9391 <= samplerate) return 10;
112 if (16428320 <= samplerate) return 11;
114 return 11;
117 /* Returns the sample rate based on the sample rate index */
118 uint32_t get_sample_rate(const uint8_t sr_index)
120 static const uint32_t sample_rates[] =
122 96000, 88200, 64000, 48000, 44100, 32000,
123 24000, 22050, 16000, 12000, 11025, 8000
126 if (sr_index < 12)
127 return sample_rates[sr_index];
129 return 0;
132 uint8_t max_pred_sfb(const uint8_t sr_index)
134 static const uint8_t pred_sfb_max[] =
136 33, 33, 38, 40, 40, 40, 41, 41, 37, 37, 37, 34
140 if (sr_index < 12)
141 return pred_sfb_max[sr_index];
143 return 0;
146 uint8_t max_tns_sfb(const uint8_t sr_index, const uint8_t object_type,
147 const uint8_t is_short)
149 /* entry for each sampling rate
150 * 1 Main/LC long window
151 * 2 Main/LC short window
152 * 3 SSR long window
153 * 4 SSR short window
155 static const uint8_t tns_sbf_max[][4] =
157 {31, 9, 28, 7}, /* 96000 */
158 {31, 9, 28, 7}, /* 88200 */
159 {34, 10, 27, 7}, /* 64000 */
160 {40, 14, 26, 6}, /* 48000 */
161 {42, 14, 26, 6}, /* 44100 */
162 {51, 14, 26, 6}, /* 32000 */
163 {46, 14, 29, 7}, /* 24000 */
164 {46, 14, 29, 7}, /* 22050 */
165 {42, 14, 23, 8}, /* 16000 */
166 {42, 14, 23, 8}, /* 12000 */
167 {42, 14, 23, 8}, /* 11025 */
168 {39, 14, 19, 7}, /* 8000 */
169 {39, 14, 19, 7}, /* 7350 */
170 {0,0,0,0},
171 {0,0,0,0},
172 {0,0,0,0}
174 uint8_t i = 0;
176 if (is_short) i++;
177 if (object_type == SSR) i += 2;
179 return tns_sbf_max[sr_index][i];
182 /* Returns 0 if an object type is decodable, otherwise returns -1 */
183 int8_t can_decode_ot(const uint8_t object_type)
185 switch (object_type)
187 case LC:
188 return 0;
189 case MAIN:
190 #ifdef MAIN_DEC
191 return 0;
192 #else
193 return -1;
194 #endif
195 case SSR:
196 #ifdef SSR_DEC
197 return 0;
198 #else
199 return -1;
200 #endif
201 case LTP:
202 #ifdef LTP_DEC
203 return 0;
204 #else
205 return -1;
206 #endif
208 /* ER object types */
209 #ifdef ERROR_RESILIENCE
210 case ER_LC:
211 #ifdef DRM
212 case DRM_ER_LC:
213 #endif
214 return 0;
215 case ER_LTP:
216 #ifdef LTP_DEC
217 return 0;
218 #else
219 return -1;
220 #endif
221 case LD:
222 #ifdef LD_DEC
223 return 0;
224 #else
225 return -1;
226 #endif
227 #endif
230 return -1;
233 /* common malloc function */
234 void *faad_malloc(size_t size)
236 #if 0 // defined(_WIN32) && !defined(_WIN32_WCE)
237 return _aligned_malloc(size, 16);
238 #else
239 return malloc(size);
240 #endif
243 /* common free function */
244 void faad_free(void *b)
246 #if 0 // defined(_WIN32) && !defined(_WIN32_WCE)
247 _aligned_free(b);
248 #else
249 free(b);
250 #endif
253 static const uint8_t Parity [256] = { // parity
254 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
255 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
256 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
257 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
258 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
259 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
260 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
261 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
264 static uint32_t __r1 = 1;
265 static uint32_t __r2 = 1;
269 * This is a simple random number generator with good quality for audio purposes.
270 * It consists of two polycounters with opposite rotation direction and different
271 * periods. The periods are coprime, so the total period is the product of both.
273 * -------------------------------------------------------------------------------------------------
274 * +-> |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0|
275 * | -------------------------------------------------------------------------------------------------
276 * | | | | | | |
277 * | +--+--+--+-XOR-+--------+
278 * | |
279 * +--------------------------------------------------------------------------------------+
281 * -------------------------------------------------------------------------------------------------
282 * |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| <-+
283 * ------------------------------------------------------------------------------------------------- |
284 * | | | | |
285 * +--+----XOR----+--+ |
286 * | |
287 * +----------------------------------------------------------------------------------------+
290 * The first has an period of 3*5*17*257*65537, the second of 7*47*73*178481,
291 * which gives a period of 18.410.713.077.675.721.215. The result is the
292 * XORed values of both generators.
294 uint32_t random_int(void)
296 uint32_t t1, t2, t3, t4;
298 t3 = t1 = __r1; t4 = t2 = __r2; // Parity calculation is done via table lookup, this is also available
299 t1 &= 0xF5; t2 >>= 25; // on CPUs without parity, can be implemented in C and avoid unpredictable
300 t1 = Parity [t1]; t2 &= 0x63; // jumps and slow rotate through the carry flag operations.
301 t1 <<= 31; t2 = Parity [t2];
303 return (__r1 = (t3 >> 1) | t1 ) ^ (__r2 = (t4 + t4) | t2 );
306 uint32_t ones32(uint32_t x)
308 x -= ((x >> 1) & 0x55555555);
309 x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
310 x = (((x >> 4) + x) & 0x0f0f0f0f);
311 x += (x >> 8);
312 x += (x >> 16);
314 return (x & 0x0000003f);
317 uint32_t floor_log2(uint32_t x)
319 #if 1
320 x |= (x >> 1);
321 x |= (x >> 2);
322 x |= (x >> 4);
323 x |= (x >> 8);
324 x |= (x >> 16);
326 return (ones32(x) - 1);
327 #else
328 uint32_t count = 0;
330 while (x >>= 1)
331 count++;
333 return count;
334 #endif
337 /* returns position of first bit that is not 0 from msb,
338 * starting count at lsb */
339 uint32_t wl_min_lzc(uint32_t x)
341 #if 1
342 x |= (x >> 1);
343 x |= (x >> 2);
344 x |= (x >> 4);
345 x |= (x >> 8);
346 x |= (x >> 16);
348 return (ones32(x));
349 #else
350 uint32_t count = 0;
352 while (x >>= 1)
353 count++;
355 return (count + 1);
356 #endif
359 #ifdef FIXED_POINT
361 #define TABLE_BITS 6
362 /* just take the maximum number of bits for interpolation */
363 #define INTERP_BITS (REAL_BITS-TABLE_BITS)
365 static const real_t pow2_tab[] = {
366 REAL_CONST(1.000000000000000), REAL_CONST(1.010889286051701), REAL_CONST(1.021897148654117),
367 REAL_CONST(1.033024879021228), REAL_CONST(1.044273782427414), REAL_CONST(1.055645178360557),
368 REAL_CONST(1.067140400676824), REAL_CONST(1.078760797757120), REAL_CONST(1.090507732665258),
369 REAL_CONST(1.102382583307841), REAL_CONST(1.114386742595892), REAL_CONST(1.126521618608242),
370 REAL_CONST(1.138788634756692), REAL_CONST(1.151189229952983), REAL_CONST(1.163724858777578),
371 REAL_CONST(1.176396991650281), REAL_CONST(1.189207115002721), REAL_CONST(1.202156731452703),
372 REAL_CONST(1.215247359980469), REAL_CONST(1.228480536106870), REAL_CONST(1.241857812073484),
373 REAL_CONST(1.255380757024691), REAL_CONST(1.269050957191733), REAL_CONST(1.282870016078778),
374 REAL_CONST(1.296839554651010), REAL_CONST(1.310961211524764), REAL_CONST(1.325236643159741),
375 REAL_CONST(1.339667524053303), REAL_CONST(1.354255546936893), REAL_CONST(1.369002422974591),
376 REAL_CONST(1.383909881963832), REAL_CONST(1.398979672538311), REAL_CONST(1.414213562373095),
377 REAL_CONST(1.429613338391970), REAL_CONST(1.445180806977047), REAL_CONST(1.460917794180647),
378 REAL_CONST(1.476826145939499), REAL_CONST(1.492907728291265), REAL_CONST(1.509164427593423),
379 REAL_CONST(1.525598150744538), REAL_CONST(1.542210825407941), REAL_CONST(1.559004400237837),
380 REAL_CONST(1.575980845107887), REAL_CONST(1.593142151342267), REAL_CONST(1.610490331949254),
381 REAL_CONST(1.628027421857348), REAL_CONST(1.645755478153965), REAL_CONST(1.663676580326736),
382 REAL_CONST(1.681792830507429), REAL_CONST(1.700106353718524), REAL_CONST(1.718619298122478),
383 REAL_CONST(1.737333835273706), REAL_CONST(1.756252160373300), REAL_CONST(1.775376492526521),
384 REAL_CONST(1.794709075003107), REAL_CONST(1.814252175500399), REAL_CONST(1.834008086409342),
385 REAL_CONST(1.853979125083386), REAL_CONST(1.874167634110300), REAL_CONST(1.894575981586966),
386 REAL_CONST(1.915206561397147), REAL_CONST(1.936061793492294), REAL_CONST(1.957144124175400),
387 REAL_CONST(1.978456026387951), REAL_CONST(2.000000000000000)
390 static const real_t log2_tab[] = {
391 REAL_CONST(0.000000000000000), REAL_CONST(0.022367813028455), REAL_CONST(0.044394119358453),
392 REAL_CONST(0.066089190457772), REAL_CONST(0.087462841250339), REAL_CONST(0.108524456778169),
393 REAL_CONST(0.129283016944966), REAL_CONST(0.149747119504682), REAL_CONST(0.169925001442312),
394 REAL_CONST(0.189824558880017), REAL_CONST(0.209453365628950), REAL_CONST(0.228818690495881),
395 REAL_CONST(0.247927513443585), REAL_CONST(0.266786540694901), REAL_CONST(0.285402218862248),
396 REAL_CONST(0.303780748177103), REAL_CONST(0.321928094887362), REAL_CONST(0.339850002884625),
397 REAL_CONST(0.357552004618084), REAL_CONST(0.375039431346925), REAL_CONST(0.392317422778760),
398 REAL_CONST(0.409390936137702), REAL_CONST(0.426264754702098), REAL_CONST(0.442943495848728),
399 REAL_CONST(0.459431618637297), REAL_CONST(0.475733430966398), REAL_CONST(0.491853096329675),
400 REAL_CONST(0.507794640198696), REAL_CONST(0.523561956057013), REAL_CONST(0.539158811108031),
401 REAL_CONST(0.554588851677637), REAL_CONST(0.569855608330948), REAL_CONST(0.584962500721156),
402 REAL_CONST(0.599912842187128), REAL_CONST(0.614709844115208), REAL_CONST(0.629356620079610),
403 REAL_CONST(0.643856189774725), REAL_CONST(0.658211482751795), REAL_CONST(0.672425341971496),
404 REAL_CONST(0.686500527183218), REAL_CONST(0.700439718141092), REAL_CONST(0.714245517666123),
405 REAL_CONST(0.727920454563199), REAL_CONST(0.741466986401147), REAL_CONST(0.754887502163469),
406 REAL_CONST(0.768184324776926), REAL_CONST(0.781359713524660), REAL_CONST(0.794415866350106),
407 REAL_CONST(0.807354922057604), REAL_CONST(0.820178962415188), REAL_CONST(0.832890014164742),
408 REAL_CONST(0.845490050944375), REAL_CONST(0.857980995127572), REAL_CONST(0.870364719583405),
409 REAL_CONST(0.882643049361841), REAL_CONST(0.894817763307943), REAL_CONST(0.906890595608519),
410 REAL_CONST(0.918863237274595), REAL_CONST(0.930737337562886), REAL_CONST(0.942514505339240),
411 REAL_CONST(0.954196310386875), REAL_CONST(0.965784284662087), REAL_CONST(0.977279923499917),
412 REAL_CONST(0.988684686772166), REAL_CONST(1.000000000000000)
415 real_t pow2_fix(real_t val)
417 uint32_t x1, x2;
418 uint32_t errcorr;
419 uint32_t index_frac;
420 real_t retval;
421 int32_t whole = (val >> REAL_BITS);
423 /* rest = [0..1] */
424 int32_t rest = val - (whole << REAL_BITS);
426 /* index into pow2_tab */
427 int32_t index = rest >> (REAL_BITS-TABLE_BITS);
430 if (val == 0)
431 return (1<<REAL_BITS);
433 /* leave INTERP_BITS bits */
434 index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
435 index_frac = index_frac & ((1<<INTERP_BITS)-1);
437 if (whole > 0)
439 retval = 1 << whole;
440 } else {
441 retval = REAL_CONST(1) >> -whole;
444 x1 = pow2_tab[index & ((1<<TABLE_BITS)-1)];
445 x2 = pow2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
446 errcorr = ( (index_frac*(x2-x1))) >> INTERP_BITS;
448 if (whole > 0)
450 retval = retval * (errcorr + x1);
451 } else {
452 retval = MUL_R(retval, (errcorr + x1));
455 return retval;
458 int32_t pow2_int(real_t val)
460 uint32_t x1, x2;
461 uint32_t errcorr;
462 uint32_t index_frac;
463 real_t retval;
464 int32_t whole = (val >> REAL_BITS);
466 /* rest = [0..1] */
467 int32_t rest = val - (whole << REAL_BITS);
469 /* index into pow2_tab */
470 int32_t index = rest >> (REAL_BITS-TABLE_BITS);
473 if (val == 0)
474 return 1;
476 /* leave INTERP_BITS bits */
477 index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
478 index_frac = index_frac & ((1<<INTERP_BITS)-1);
480 if (whole > 0)
481 retval = 1 << whole;
482 else
483 retval = 0;
485 x1 = pow2_tab[index & ((1<<TABLE_BITS)-1)];
486 x2 = pow2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
487 errcorr = ( (index_frac*(x2-x1))) >> INTERP_BITS;
489 retval = MUL_R(retval, (errcorr + x1));
491 return retval;
494 /* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */
495 int32_t log2_int(uint32_t val)
497 uint32_t frac;
498 uint32_t whole = (val);
499 int8_t exp = 0;
500 uint32_t index;
501 uint32_t index_frac;
502 uint32_t x1, x2;
503 uint32_t errcorr;
505 /* error */
506 if (val == 0)
507 return -10000;
509 exp = floor_log2(val);
510 exp -= REAL_BITS;
512 /* frac = [1..2] */
513 if (exp >= 0)
514 frac = val >> exp;
515 else
516 frac = val << -exp;
518 /* index in the log2 table */
519 index = frac >> (REAL_BITS-TABLE_BITS);
521 /* leftover part for linear interpolation */
522 index_frac = frac & ((1<<(REAL_BITS-TABLE_BITS))-1);
524 /* leave INTERP_BITS bits */
525 index_frac = index_frac >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
527 x1 = log2_tab[index & ((1<<TABLE_BITS)-1)];
528 x2 = log2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
530 /* linear interpolation */
531 /* retval = exp + ((index_frac)*x2 + (1-index_frac)*x1) */
533 errcorr = (index_frac * (x2-x1)) >> INTERP_BITS;
535 return ((exp+REAL_BITS) << REAL_BITS) + errcorr + x1;
537 #endif