synced with r26729
[mplayer/greg.git] / libaf / af_volnorm.c
blobd067e78db70935b5b36503d8c955ac9c1f1edf5b
1 /*=============================================================================
2 //
3 // This software has been released under the terms of the GNU General Public
4 // license. See http://www.gnu.org/copyleft/gpl.html for details.
5 //
6 // Copyright 2004 Alex Beregszaszi & Pierre Lombard
7 //
8 //=============================================================================
9 */
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
15 #include <inttypes.h>
16 #include <math.h>
17 #include <limits.h>
19 #include "af.h"
21 // Methods:
22 // 1: uses a 1 value memory and coefficients new=a*old+b*cur (with a+b=1)
23 // 2: uses several samples to smooth the variations (standard weighted mean
24 // on past samples)
26 // Size of the memory array
27 // FIXME: should depend on the frequency of the data (should be a few seconds)
28 #define NSAMPLES 128
30 // If summing all the mem[].len is lower than MIN_SAMPLE_SIZE bytes, then we
31 // choose to ignore the computed value as it's not significant enough
32 // FIXME: should depend on the frequency of the data (0.5s maybe)
33 #define MIN_SAMPLE_SIZE 32000
35 // mul is the value by which the samples are scaled
36 // and has to be in [MUL_MIN, MUL_MAX]
37 #define MUL_INIT 1.0
38 #define MUL_MIN 0.1
39 #define MUL_MAX 5.0
41 // Silence level
42 // FIXME: should be relative to the level of the samples
43 #define SIL_S16 (SHRT_MAX * 0.01)
44 #define SIL_FLOAT (INT_MAX * 0.01) // FIXME
46 // smooth must be in ]0.0, 1.0[
47 #define SMOOTH_MUL 0.06
48 #define SMOOTH_LASTAVG 0.06
50 #define DEFAULT_TARGET 0.25
52 // Data for specific instances of this filter
53 typedef struct af_volume_s
55 int method; // method used
56 float mul;
57 // method 1
58 float lastavg; // history value of the filter
59 // method 2
60 int idx;
61 struct {
62 float avg; // average level of the sample
63 int len; // sample size (weight)
64 } mem[NSAMPLES];
65 // "Ideal" level
66 float mid_s16;
67 float mid_float;
68 }af_volnorm_t;
70 // Initialization and runtime control
71 static int control(struct af_instance_s* af, int cmd, void* arg)
73 af_volnorm_t* s = (af_volnorm_t*)af->setup;
75 switch(cmd){
76 case AF_CONTROL_REINIT:
77 // Sanity check
78 if(!arg) return AF_ERROR;
80 af->data->rate = ((af_data_t*)arg)->rate;
81 af->data->nch = ((af_data_t*)arg)->nch;
83 if(((af_data_t*)arg)->format == (AF_FORMAT_S16_NE)){
84 af->data->format = AF_FORMAT_S16_NE;
85 af->data->bps = 2;
86 }else{
87 af->data->format = AF_FORMAT_FLOAT_NE;
88 af->data->bps = 4;
90 return af_test_output(af,(af_data_t*)arg);
91 case AF_CONTROL_COMMAND_LINE:{
92 int i = 0;
93 float target = DEFAULT_TARGET;
94 sscanf((char*)arg,"%d:%f", &i, &target);
95 if (i != 1 && i != 2)
96 return AF_ERROR;
97 s->method = i-1;
98 s->mid_s16 = ((float)SHRT_MAX) * target;
99 s->mid_float = ((float)INT_MAX) * target;
100 return AF_OK;
103 return AF_UNKNOWN;
106 // Deallocate memory
107 static void uninit(struct af_instance_s* af)
109 if(af->data)
110 free(af->data);
111 if(af->setup)
112 free(af->setup);
115 static void method1_int16(af_volnorm_t *s, af_data_t *c)
117 register int i = 0;
118 int16_t *data = (int16_t*)c->audio; // Audio data
119 int len = c->len/2; // Number of samples
120 float curavg = 0.0, newavg, neededmul;
121 int tmp;
123 for (i = 0; i < len; i++)
125 tmp = data[i];
126 curavg += tmp * tmp;
128 curavg = sqrt(curavg / (float) len);
130 // Evaluate an adequate 'mul' coefficient based on previous state, current
131 // samples level, etc
133 if (curavg > SIL_S16)
135 neededmul = s->mid_s16 / (curavg * s->mul);
136 s->mul = (1.0 - SMOOTH_MUL) * s->mul + SMOOTH_MUL * neededmul;
138 // clamp the mul coefficient
139 s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
142 // Scale & clamp the samples
143 for (i = 0; i < len; i++)
145 tmp = s->mul * data[i];
146 tmp = clamp(tmp, SHRT_MIN, SHRT_MAX);
147 data[i] = tmp;
150 // Evaulation of newavg (not 100% accurate because of values clamping)
151 newavg = s->mul * curavg;
153 // Stores computed values for future smoothing
154 s->lastavg = (1.0 - SMOOTH_LASTAVG) * s->lastavg + SMOOTH_LASTAVG * newavg;
157 static void method1_float(af_volnorm_t *s, af_data_t *c)
159 register int i = 0;
160 float *data = (float*)c->audio; // Audio data
161 int len = c->len/4; // Number of samples
162 float curavg = 0.0, newavg, neededmul, tmp;
164 for (i = 0; i < len; i++)
166 tmp = data[i];
167 curavg += tmp * tmp;
169 curavg = sqrt(curavg / (float) len);
171 // Evaluate an adequate 'mul' coefficient based on previous state, current
172 // samples level, etc
174 if (curavg > SIL_FLOAT) // FIXME
176 neededmul = s->mid_float / (curavg * s->mul);
177 s->mul = (1.0 - SMOOTH_MUL) * s->mul + SMOOTH_MUL * neededmul;
179 // clamp the mul coefficient
180 s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
183 // Scale & clamp the samples
184 for (i = 0; i < len; i++)
185 data[i] *= s->mul;
187 // Evaulation of newavg (not 100% accurate because of values clamping)
188 newavg = s->mul * curavg;
190 // Stores computed values for future smoothing
191 s->lastavg = (1.0 - SMOOTH_LASTAVG) * s->lastavg + SMOOTH_LASTAVG * newavg;
194 static void method2_int16(af_volnorm_t *s, af_data_t *c)
196 register int i = 0;
197 int16_t *data = (int16_t*)c->audio; // Audio data
198 int len = c->len/2; // Number of samples
199 float curavg = 0.0, newavg, avg = 0.0;
200 int tmp, totallen = 0;
202 for (i = 0; i < len; i++)
204 tmp = data[i];
205 curavg += tmp * tmp;
207 curavg = sqrt(curavg / (float) len);
209 // Evaluate an adequate 'mul' coefficient based on previous state, current
210 // samples level, etc
211 for (i = 0; i < NSAMPLES; i++)
213 avg += s->mem[i].avg * (float)s->mem[i].len;
214 totallen += s->mem[i].len;
217 if (totallen > MIN_SAMPLE_SIZE)
219 avg /= (float)totallen;
220 if (avg >= SIL_S16)
222 s->mul = s->mid_s16 / avg;
223 s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
227 // Scale & clamp the samples
228 for (i = 0; i < len; i++)
230 tmp = s->mul * data[i];
231 tmp = clamp(tmp, SHRT_MIN, SHRT_MAX);
232 data[i] = tmp;
235 // Evaulation of newavg (not 100% accurate because of values clamping)
236 newavg = s->mul * curavg;
238 // Stores computed values for future smoothing
239 s->mem[s->idx].len = len;
240 s->mem[s->idx].avg = newavg;
241 s->idx = (s->idx + 1) % NSAMPLES;
244 static void method2_float(af_volnorm_t *s, af_data_t *c)
246 register int i = 0;
247 float *data = (float*)c->audio; // Audio data
248 int len = c->len/4; // Number of samples
249 float curavg = 0.0, newavg, avg = 0.0, tmp;
250 int totallen = 0;
252 for (i = 0; i < len; i++)
254 tmp = data[i];
255 curavg += tmp * tmp;
257 curavg = sqrt(curavg / (float) len);
259 // Evaluate an adequate 'mul' coefficient based on previous state, current
260 // samples level, etc
261 for (i = 0; i < NSAMPLES; i++)
263 avg += s->mem[i].avg * (float)s->mem[i].len;
264 totallen += s->mem[i].len;
267 if (totallen > MIN_SAMPLE_SIZE)
269 avg /= (float)totallen;
270 if (avg >= SIL_FLOAT)
272 s->mul = s->mid_float / avg;
273 s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
277 // Scale & clamp the samples
278 for (i = 0; i < len; i++)
279 data[i] *= s->mul;
281 // Evaulation of newavg (not 100% accurate because of values clamping)
282 newavg = s->mul * curavg;
284 // Stores computed values for future smoothing
285 s->mem[s->idx].len = len;
286 s->mem[s->idx].avg = newavg;
287 s->idx = (s->idx + 1) % NSAMPLES;
290 // Filter data through filter
291 static af_data_t* play(struct af_instance_s* af, af_data_t* data)
293 af_volnorm_t *s = af->setup;
295 if(af->data->format == (AF_FORMAT_S16_NE))
297 if (s->method)
298 method2_int16(s, data);
299 else
300 method1_int16(s, data);
302 else if(af->data->format == (AF_FORMAT_FLOAT_NE))
304 if (s->method)
305 method2_float(s, data);
306 else
307 method1_float(s, data);
309 return data;
312 // Allocate memory and set function pointers
313 static int af_open(af_instance_t* af){
314 int i = 0;
315 af->control=control;
316 af->uninit=uninit;
317 af->play=play;
318 af->mul=1;
319 af->data=calloc(1,sizeof(af_data_t));
320 af->setup=calloc(1,sizeof(af_volnorm_t));
321 if(af->data == NULL || af->setup == NULL)
322 return AF_ERROR;
324 ((af_volnorm_t*)af->setup)->mul = MUL_INIT;
325 ((af_volnorm_t*)af->setup)->lastavg = ((float)SHRT_MAX) * DEFAULT_TARGET;
326 ((af_volnorm_t*)af->setup)->idx = 0;
327 ((af_volnorm_t*)af->setup)->mid_s16 = ((float)SHRT_MAX) * DEFAULT_TARGET;
328 ((af_volnorm_t*)af->setup)->mid_float = ((float)INT_MAX) * DEFAULT_TARGET;
329 for (i = 0; i < NSAMPLES; i++)
331 ((af_volnorm_t*)af->setup)->mem[i].len = 0;
332 ((af_volnorm_t*)af->setup)->mem[i].avg = 0;
334 return AF_OK;
337 // Description of this filter
338 af_info_t af_info_volnorm = {
339 "Volume normalizer filter",
340 "volnorm",
341 "Alex Beregszaszi & Pierre Lombard",
343 AF_FLAGS_NOT_REENTRANT,
344 af_open