cleanup: remove NULL checks before free() all over the code
[mplayer/glamo.git] / libaf / af_resample.c
blob6809c4812571a95aec445bb97792b0a836385de9
1 /*
2 * This audio filter changes the sample rate.
4 * Copyright (C) 2002 Anders Johansson ajh@atri.curtin.edu.au
6 * This file is part of MPlayer.
8 * MPlayer is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * MPlayer is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with MPlayer; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <inttypes.h>
27 #include "libavutil/common.h"
28 #include "libavutil/mathematics.h"
29 #include "af.h"
30 #include "dsp.h"
32 /* Below definition selects the length of each poly phase component.
33 Valid definitions are L8 and L16, where the number denotes the
34 length of the filter. This definition affects the computational
35 complexity (see play()), the performance (see filter.h) and the
36 memory usage. The filter length is chosen to 8 if the machine is
37 slow and to 16 if the machine is fast and has MMX.
40 #if !HAVE_MMX // This machine is slow
41 #define L8
42 #else
43 #define L16
44 #endif
46 #include "af_resample_template.c"
48 // Filtering types
49 #define RSMP_LIN (0<<0) // Linear interpolation
50 #define RSMP_INT (1<<0) // 16 bit integer
51 #define RSMP_FLOAT (2<<0) // 32 bit floating point
52 #define RSMP_MASK (3<<0)
54 // Defines for sloppy or exact resampling
55 #define FREQ_SLOPPY (0<<2)
56 #define FREQ_EXACT (1<<2)
57 #define FREQ_MASK (1<<2)
59 // Accuracy for linear interpolation
60 #define STEPACCURACY 32
62 // local data
63 typedef struct af_resample_s
65 void* w; // Current filter weights
66 void** xq; // Circular buffers
67 uint32_t xi; // Index for circular buffers
68 uint32_t wi; // Index for w
69 uint32_t i; // Number of new samples to put in x queue
70 uint32_t dn; // Down sampling factor
71 uint32_t up; // Up sampling factor
72 uint64_t step; // Step size for linear interpolation
73 uint64_t pt; // Pointer remainder for linear interpolation
74 int setup; // Setup parameters cmdline or through postcreate
75 } af_resample_t;
77 // Fast linear interpolation resample with modest audio quality
78 static int linint(af_data_t* c,af_data_t* l, af_resample_t* s)
80 uint32_t len = 0; // Number of input samples
81 uint32_t nch = l->nch; // Words pre transfer
82 uint64_t step = s->step;
83 int16_t* in16 = ((int16_t*)c->audio);
84 int16_t* out16 = ((int16_t*)l->audio);
85 int32_t* in32 = ((int32_t*)c->audio);
86 int32_t* out32 = ((int32_t*)l->audio);
87 uint64_t end = ((((uint64_t)c->len)/2LL)<<STEPACCURACY);
88 uint64_t pt = s->pt;
89 uint16_t tmp;
91 switch (nch){
92 case 1:
93 while(pt < end){
94 out16[len++]=in16[pt>>STEPACCURACY];
95 pt+=step;
97 s->pt=pt & ((1LL<<STEPACCURACY)-1);
98 break;
99 case 2:
100 end/=2;
101 while(pt < end){
102 out32[len++]=in32[pt>>STEPACCURACY];
103 pt+=step;
105 len=(len<<1);
106 s->pt=pt & ((1LL<<STEPACCURACY)-1);
107 break;
108 default:
109 end /=nch;
110 while(pt < end){
111 tmp=nch;
112 do {
113 tmp--;
114 out16[len+tmp]=in16[tmp+(pt>>STEPACCURACY)*nch];
115 } while (tmp);
116 len+=nch;
117 pt+=step;
119 s->pt=pt & ((1LL<<STEPACCURACY)-1);
121 return len;
124 /* Determine resampling type and format */
125 static int set_types(struct af_instance_s* af, af_data_t* data)
127 af_resample_t* s = af->setup;
128 int rv = AF_OK;
129 float rd = 0;
131 // Make sure this filter isn't redundant
132 if((af->data->rate == data->rate) || (af->data->rate == 0))
133 return AF_DETACH;
134 /* If sloppy and small resampling difference (2%) */
135 rd = abs((float)af->data->rate - (float)data->rate)/(float)data->rate;
136 if((((s->setup & FREQ_MASK) == FREQ_SLOPPY) && (rd < 0.02) &&
137 (data->format != (AF_FORMAT_FLOAT_NE))) ||
138 ((s->setup & RSMP_MASK) == RSMP_LIN)){
139 s->setup = (s->setup & ~RSMP_MASK) | RSMP_LIN;
140 af->data->format = AF_FORMAT_S16_NE;
141 af->data->bps = 2;
142 mp_msg(MSGT_AFILTER, MSGL_V, "[resample] Using linear interpolation. \n");
144 else{
145 /* If the input format is float or if float is explicitly selected
146 use float, otherwise use int */
147 if((data->format == (AF_FORMAT_FLOAT_NE)) ||
148 ((s->setup & RSMP_MASK) == RSMP_FLOAT)){
149 s->setup = (s->setup & ~RSMP_MASK) | RSMP_FLOAT;
150 af->data->format = AF_FORMAT_FLOAT_NE;
151 af->data->bps = 4;
153 else{
154 s->setup = (s->setup & ~RSMP_MASK) | RSMP_INT;
155 af->data->format = AF_FORMAT_S16_NE;
156 af->data->bps = 2;
158 mp_msg(MSGT_AFILTER, MSGL_V, "[resample] Using %s processing and %s frequecy"
159 " conversion.\n",
160 ((s->setup & RSMP_MASK) == RSMP_FLOAT)?"floating point":"integer",
161 ((s->setup & FREQ_MASK) == FREQ_SLOPPY)?"inexact":"exact");
164 if(af->data->format != data->format || af->data->bps != data->bps)
165 rv = AF_FALSE;
166 data->format = af->data->format;
167 data->bps = af->data->bps;
168 af->data->nch = data->nch;
169 return rv;
172 // Initialization and runtime control
173 static int control(struct af_instance_s* af, int cmd, void* arg)
175 switch(cmd){
176 case AF_CONTROL_REINIT:{
177 af_resample_t* s = af->setup;
178 af_data_t* n = arg; // New configuration
179 int i,d = 0;
180 int rv = AF_OK;
182 // Free space for circular buffers
183 if(s->xq){
184 free(s->xq[0]);
185 free(s->xq);
186 s->xq = NULL;
189 if(AF_DETACH == (rv = set_types(af,n)))
190 return AF_DETACH;
192 // If linear interpolation
193 if((s->setup & RSMP_MASK) == RSMP_LIN){
194 s->pt=0LL;
195 s->step=((uint64_t)n->rate<<STEPACCURACY)/(uint64_t)af->data->rate+1LL;
196 mp_msg(MSGT_AFILTER, MSGL_DBG2, "[resample] Linear interpolation step: 0x%016"PRIX64".\n",
197 s->step);
198 af->mul = (double)af->data->rate / n->rate;
199 return rv;
202 // Calculate up and down sampling factors
203 d=av_gcd(af->data->rate,n->rate);
205 // If sloppy resampling is enabled limit the upsampling factor
206 if(((s->setup & FREQ_MASK) == FREQ_SLOPPY) && (af->data->rate/d > 5000)){
207 int up=af->data->rate/2;
208 int dn=n->rate/2;
209 int m=2;
210 while(af->data->rate/(d*m) > 5000){
211 d=av_gcd(up,dn);
212 up/=2; dn/=2; m*=2;
214 d*=m;
217 // Create space for circular buffers
218 s->xq = malloc(n->nch*sizeof(void*));
219 s->xq[0] = calloc(n->nch, 2*L*af->data->bps);
220 for(i=1;i<n->nch;i++)
221 s->xq[i] = (uint8_t *)s->xq[i-1] + 2*L*af->data->bps;
222 s->xi = 0;
224 // Check if the design needs to be redone
225 if(s->up != af->data->rate/d || s->dn != n->rate/d){
226 float* w;
227 float* wt;
228 float fc;
229 int j;
230 s->up = af->data->rate/d;
231 s->dn = n->rate/d;
232 s->wi = 0;
233 s->i = 0;
235 // Calculate cutoff frequency for filter
236 fc = 1/(float)(max(s->up,s->dn));
237 // Allocate space for polyphase filter bank and prototype filter
238 w = malloc(sizeof(float) * s->up *L);
239 free(s->w);
240 s->w = malloc(L*s->up*af->data->bps);
242 // Design prototype filter type using Kaiser window with beta = 10
243 if(NULL == w || NULL == s->w ||
244 -1 == af_filter_design_fir(s->up*L, w, &fc, LP|KAISER , 10.0)){
245 mp_msg(MSGT_AFILTER, MSGL_ERR, "[resample] Unable to design prototype filter.\n");
246 return AF_ERROR;
248 // Copy data from prototype to polyphase filter
249 wt=w;
250 for(j=0;j<L;j++){//Columns
251 for(i=0;i<s->up;i++){//Rows
252 if((s->setup & RSMP_MASK) == RSMP_INT){
253 float t=(float)s->up*32767.0*(*wt);
254 ((int16_t*)s->w)[i*L+j] = (int16_t)((t>=0.0)?(t+0.5):(t-0.5));
256 else
257 ((float*)s->w)[i*L+j] = (float)s->up*(*wt);
258 wt++;
261 free(w);
262 mp_msg(MSGT_AFILTER, MSGL_V, "[resample] New filter designed up: %i "
263 "down: %i\n", s->up, s->dn);
266 // Set multiplier and delay
267 af->delay = 0; // not set correctly, but shouldn't be too large anyway
268 af->mul = (double)s->up / s->dn;
269 return rv;
271 case AF_CONTROL_COMMAND_LINE:{
272 af_resample_t* s = af->setup;
273 int rate=0;
274 int type=RSMP_INT;
275 int sloppy=1;
276 sscanf((char*)arg,"%i:%i:%i", &rate, &sloppy, &type);
277 s->setup = (sloppy?FREQ_SLOPPY:FREQ_EXACT) |
278 (clamp(type,RSMP_LIN,RSMP_FLOAT));
279 return af->control(af,AF_CONTROL_RESAMPLE_RATE | AF_CONTROL_SET, &rate);
281 case AF_CONTROL_POST_CREATE:
282 if((((af_cfg_t*)arg)->force & AF_INIT_FORMAT_MASK) == AF_INIT_FLOAT)
283 ((af_resample_t*)af->setup)->setup = RSMP_FLOAT;
284 return AF_OK;
285 case AF_CONTROL_RESAMPLE_RATE | AF_CONTROL_SET:
286 // Reinit must be called after this function has been called
288 // Sanity check
289 if(((int*)arg)[0] < 8000 || ((int*)arg)[0] > 192000){
290 mp_msg(MSGT_AFILTER, MSGL_ERR, "[resample] The output sample frequency "
291 "must be between 8kHz and 192kHz. Current value is %i \n",
292 ((int*)arg)[0]);
293 return AF_ERROR;
296 af->data->rate=((int*)arg)[0];
297 mp_msg(MSGT_AFILTER, MSGL_V, "[resample] Changing sample rate "
298 "to %iHz\n",af->data->rate);
299 return AF_OK;
301 return AF_UNKNOWN;
304 // Deallocate memory
305 static void uninit(struct af_instance_s* af)
307 af_resample_t *s = af->setup;
308 if (s) {
309 if (s->xq) free(s->xq[0]);
310 free(s->xq);
311 free(s->w);
312 free(s);
314 if(af->data)
315 free(af->data->audio);
316 free(af->data);
319 // Filter data through filter
320 static af_data_t* play(struct af_instance_s* af, af_data_t* data)
322 int len = 0; // Length of output data
323 af_data_t* c = data; // Current working data
324 af_data_t* l = af->data; // Local data
325 af_resample_t* s = af->setup;
327 if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
328 return NULL;
330 // Run resampling
331 switch(s->setup & RSMP_MASK){
332 case(RSMP_INT):
333 # define FORMAT_I 1
334 if(s->up>s->dn){
335 # define UP
336 # include "af_resample_template.c"
337 # undef UP
339 else{
340 # define DN
341 # include "af_resample_template.c"
342 # undef DN
344 break;
345 case(RSMP_FLOAT):
346 # undef FORMAT_I
347 # define FORMAT_F 1
348 if(s->up>s->dn){
349 # define UP
350 # include "af_resample_template.c"
351 # undef UP
353 else{
354 # define DN
355 # include "af_resample_template.c"
356 # undef DN
358 break;
359 case(RSMP_LIN):
360 len = linint(c, l, s);
361 break;
364 // Set output data
365 c->audio = l->audio;
366 c->len = len*l->bps;
367 c->rate = l->rate;
369 return c;
372 // Allocate memory and set function pointers
373 static int af_open(af_instance_t* af){
374 af->control=control;
375 af->uninit=uninit;
376 af->play=play;
377 af->mul=1;
378 af->data=calloc(1,sizeof(af_data_t));
379 af->setup=calloc(1,sizeof(af_resample_t));
380 if(af->data == NULL || af->setup == NULL)
381 return AF_ERROR;
382 ((af_resample_t*)af->setup)->setup = RSMP_INT | FREQ_SLOPPY;
383 return AF_OK;
386 // Description of this plugin
387 af_info_t af_info_resample = {
388 "Sample frequency conversion",
389 "resample",
390 "Anders",
392 AF_FLAGS_REENTRANT,
393 af_open