Ignore svn changes up to r30324
[mplayer/glamo.git] / libdvdcss / css.c
blob4e24bbf68f462f72b05170f354940f10cedb2c10
1 /*****************************************************************************
2 * css.c: Functions for DVD authentication and descrambling
3 *****************************************************************************
4 * Copyright (C) 1999-2008 VideoLAN
5 * $Id$
7 * Authors: Stéphane Borel <stef@via.ecp.fr>
8 * Håkan Hjort <d95hjort@dtek.chalmers.se>
10 * based on:
11 * - css-auth by Derek Fawcus <derek@spider.com>
12 * - DVD CSS ioctls example program by Andrew T. Veliath <andrewtv@usa.net>
13 * - The Divide and conquer attack by Frank A. Stevenson <frank@funcom.com>
14 * (see http://www-2.cs.cmu.edu/~dst/DeCSS/FrankStevenson/index.html)
15 * - DeCSSPlus by Ethan Hawke
16 * - DecVOB
17 * see http://www.lemuria.org/DeCSS/ by Tom Vogt for more information.
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA.
32 *****************************************************************************/
34 /*****************************************************************************
35 * Preamble
36 *****************************************************************************/
37 #include "config.h"
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <sys/types.h>
43 #include <sys/stat.h>
44 #ifdef HAVE_SYS_PARAM_H
45 # include <sys/param.h>
46 #endif
47 #ifdef HAVE_UNISTD_H
48 # include <unistd.h>
49 #endif
50 #include <fcntl.h>
52 #ifdef HAVE_LIMITS_H
53 # include <limits.h>
54 #endif
56 #include "dvdcss/dvdcss.h"
58 #include "common.h"
59 #include "css.h"
60 #include "libdvdcss.h"
61 #include "csstables.h"
62 #include "ioctl.h"
63 #include "device.h"
65 /*****************************************************************************
66 * Local prototypes
67 *****************************************************************************/
68 static void PrintKey ( dvdcss_t, char *, uint8_t const * );
70 static int GetBusKey ( dvdcss_t );
71 static int GetASF ( dvdcss_t );
73 static void CryptKey ( int, int, uint8_t const *, uint8_t * );
74 static void DecryptKey ( uint8_t,
75 uint8_t const *, uint8_t const *, uint8_t * );
77 static int DecryptDiscKey ( dvdcss_t, uint8_t const *, dvd_key_t );
78 static int CrackDiscKey ( dvdcss_t, uint8_t * );
80 static void DecryptTitleKey ( dvd_key_t, dvd_key_t );
81 static int RecoverTitleKey ( int, uint8_t const *,
82 uint8_t const *, uint8_t const *, uint8_t * );
83 static int CrackTitleKey ( dvdcss_t, int, int, dvd_key_t );
85 static int AttackPattern ( uint8_t const[], int, uint8_t * );
86 #if 0
87 static int AttackPadding ( uint8_t const[], int, uint8_t * );
88 #endif
90 /*****************************************************************************
91 * _dvdcss_test: check if the disc is encrypted or not
92 *****************************************************************************/
93 int _dvdcss_test( dvdcss_t dvdcss )
95 int i_ret, i_copyright;
97 i_ret = ioctl_ReadCopyright( dvdcss->i_fd, 0 /* i_layer */, &i_copyright );
99 #ifdef WIN32
100 if( i_ret < 0 )
102 /* Maybe we didn't have enough privileges to read the copyright
103 * (see ioctl_ReadCopyright comments).
104 * Apparently, on unencrypted DVDs _dvdcss_disckey() always fails, so
105 * we can check this as a workaround. */
106 i_ret = 0;
107 i_copyright = 1;
108 if( _dvdcss_disckey( dvdcss ) < 0 )
110 i_copyright = 0;
113 #endif
115 if( i_ret < 0 )
117 /* Since it's the first ioctl we try to issue, we add a notice */
118 print_error( dvdcss, "css error: ioctl_ReadCopyright failed, "
119 "make sure there is a DVD in the drive, and that "
120 "you have used the correct device node." );
122 return i_ret;
125 return i_copyright;
128 /*****************************************************************************
129 * _dvdcss_title: crack or decrypt the current title key if needed
130 *****************************************************************************
131 * This function should only be called by dvdcss->pf_seek and should eventually
132 * not be external if possible.
133 *****************************************************************************/
134 int _dvdcss_title ( dvdcss_t dvdcss, int i_block )
136 dvd_title_t *p_title;
137 dvd_title_t *p_newtitle;
138 dvd_key_t p_title_key;
139 int i_fd, i_ret = -1, b_cache = 0;
141 if( ! dvdcss->b_scrambled )
143 return 0;
146 /* Check if we've already cracked this key */
147 p_title = dvdcss->p_titles;
148 while( p_title != NULL
149 && p_title->p_next != NULL
150 && p_title->p_next->i_startlb <= i_block )
152 p_title = p_title->p_next;
155 if( p_title != NULL
156 && p_title->i_startlb == i_block )
158 /* We've already cracked this key, nothing to do */
159 memcpy( dvdcss->css.p_title_key, p_title->p_key, sizeof(dvd_key_t) );
160 return 0;
163 /* Check whether the key is in our disk cache */
164 if( dvdcss->psz_cachefile[0] )
166 /* XXX: be careful, we use sprintf and not snprintf */
167 sprintf( dvdcss->psz_block, "%.10x", i_block );
168 i_fd = open( dvdcss->psz_cachefile, O_RDONLY );
169 b_cache = 1;
171 if( i_fd >= 0 )
173 char psz_key[KEY_SIZE * 3];
174 unsigned int k0, k1, k2, k3, k4;
176 psz_key[KEY_SIZE * 3 - 1] = '\0';
178 if( read( i_fd, psz_key, KEY_SIZE * 3 - 1 ) == KEY_SIZE * 3 - 1
179 && sscanf( psz_key, "%x:%x:%x:%x:%x",
180 &k0, &k1, &k2, &k3, &k4 ) == 5 )
182 p_title_key[0] = k0;
183 p_title_key[1] = k1;
184 p_title_key[2] = k2;
185 p_title_key[3] = k3;
186 p_title_key[4] = k4;
187 PrintKey( dvdcss, "title key found in cache ", p_title_key );
189 /* Don't try to save it again */
190 b_cache = 0;
191 i_ret = 1;
194 close( i_fd );
198 /* Crack or decrypt CSS title key for current VTS */
199 if( i_ret < 0 )
201 i_ret = _dvdcss_titlekey( dvdcss, i_block, p_title_key );
203 if( i_ret < 0 )
205 print_error( dvdcss, "fatal error in vts css key" );
206 return i_ret;
209 if( i_ret == 0 )
211 print_debug( dvdcss, "unencrypted title" );
212 /* We cache this anyway, so we don't need to check again. */
216 /* Key is valid, we store it on disk. */
217 if( dvdcss->psz_cachefile[0] && b_cache )
219 i_fd = open( dvdcss->psz_cachefile, O_RDWR|O_CREAT, 0644 );
220 if( i_fd >= 0 )
222 char psz_key[KEY_SIZE * 3 + 2];
224 sprintf( psz_key, "%02x:%02x:%02x:%02x:%02x\r\n",
225 p_title_key[0], p_title_key[1], p_title_key[2],
226 p_title_key[3], p_title_key[4] );
228 write( i_fd, psz_key, KEY_SIZE * 3 + 1 );
229 close( i_fd );
233 /* Find our spot in the list */
234 p_newtitle = NULL;
235 p_title = dvdcss->p_titles;
236 while( ( p_title != NULL ) && ( p_title->i_startlb < i_block ) )
238 p_newtitle = p_title;
239 p_title = p_title->p_next;
242 /* Save the found title */
243 p_title = p_newtitle;
245 /* Write in the new title and its key */
246 p_newtitle = malloc( sizeof( dvd_title_t ) );
247 p_newtitle->i_startlb = i_block;
248 memcpy( p_newtitle->p_key, p_title_key, KEY_SIZE );
250 /* Link it at the head of the (possibly empty) list */
251 if( p_title == NULL )
253 p_newtitle->p_next = dvdcss->p_titles;
254 dvdcss->p_titles = p_newtitle;
256 /* Link the new title inside the list */
257 else
259 p_newtitle->p_next = p_title->p_next;
260 p_title->p_next = p_newtitle;
263 memcpy( dvdcss->css.p_title_key, p_title_key, KEY_SIZE );
264 return 0;
267 /*****************************************************************************
268 * _dvdcss_disckey: get disc key.
269 *****************************************************************************
270 * This function should only be called if DVD ioctls are present.
271 * It will set dvdcss->i_method = DVDCSS_METHOD_TITLE if it fails to find
272 * a valid disc key.
273 * Two decryption methods are offered:
274 * -disc key hash crack,
275 * -decryption with player keys if they are available.
276 *****************************************************************************/
277 int _dvdcss_disckey( dvdcss_t dvdcss )
279 unsigned char p_buffer[ DVD_DISCKEY_SIZE ];
280 dvd_key_t p_disc_key;
281 int i;
283 if( GetBusKey( dvdcss ) < 0 )
285 return -1;
288 /* Get encrypted disc key */
289 if( ioctl_ReadDiscKey( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0 )
291 print_error( dvdcss, "ioctl ReadDiscKey failed" );
292 return -1;
295 /* This should have invaidated the AGID and got us ASF=1. */
296 if( GetASF( dvdcss ) != 1 )
298 /* Region mismatch (or region not set) is the most likely source. */
299 print_error( dvdcss,
300 "ASF not 1 after reading disc key (region mismatch?)" );
301 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
302 return -1;
305 /* Shuffle disc key using bus key */
306 for( i = 0 ; i < DVD_DISCKEY_SIZE ; i++ )
308 p_buffer[ i ] ^= dvdcss->css.p_bus_key[ 4 - (i % KEY_SIZE) ];
311 /* Decrypt disc key */
312 switch( dvdcss->i_method )
314 case DVDCSS_METHOD_KEY:
316 /* Decrypt disc key with player key. */
317 PrintKey( dvdcss, "decrypting disc key ", p_buffer );
318 if( ! DecryptDiscKey( dvdcss, p_buffer, p_disc_key ) )
320 PrintKey( dvdcss, "decrypted disc key is ", p_disc_key );
321 break;
323 print_debug( dvdcss, "failed to decrypt the disc key, "
324 "faulty drive/kernel? "
325 "cracking title keys instead" );
327 /* Fallback, but not to DISC as the disc key might be faulty */
328 memset( p_disc_key, 0, KEY_SIZE );
329 dvdcss->i_method = DVDCSS_METHOD_TITLE;
330 break;
332 case DVDCSS_METHOD_DISC:
334 /* Crack Disc key to be able to use it */
335 memcpy( p_disc_key, p_buffer, KEY_SIZE );
336 PrintKey( dvdcss, "cracking disc key ", p_disc_key );
337 if( ! CrackDiscKey( dvdcss, p_disc_key ) )
339 PrintKey( dvdcss, "cracked disc key is ", p_disc_key );
340 break;
342 print_debug( dvdcss, "failed to crack the disc key" );
343 memset( p_disc_key, 0, KEY_SIZE );
344 dvdcss->i_method = DVDCSS_METHOD_TITLE;
345 break;
347 default:
349 print_debug( dvdcss, "disc key needs not be decrypted" );
350 memset( p_disc_key, 0, KEY_SIZE );
351 break;
354 memcpy( dvdcss->css.p_disc_key, p_disc_key, KEY_SIZE );
356 return 0;
360 /*****************************************************************************
361 * _dvdcss_titlekey: get title key.
362 *****************************************************************************/
363 int _dvdcss_titlekey( dvdcss_t dvdcss, int i_pos, dvd_key_t p_title_key )
365 static uint8_t p_garbage[ DVDCSS_BLOCK_SIZE ]; /* we never read it back */
366 uint8_t p_key[ KEY_SIZE ];
367 int i, i_ret = 0;
369 if( dvdcss->b_ioctls && ( dvdcss->i_method == DVDCSS_METHOD_KEY ||
370 dvdcss->i_method == DVDCSS_METHOD_DISC ) )
372 /* We have a decrypted Disc key and the ioctls are available,
373 * read the title key and decrypt it.
376 print_debug( dvdcss, "getting title key at block %i the classic way",
377 i_pos );
379 /* We need to authenticate again every time to get a new session key */
380 if( GetBusKey( dvdcss ) < 0 )
382 return -1;
385 /* Get encrypted title key */
386 if( ioctl_ReadTitleKey( dvdcss->i_fd, &dvdcss->css.i_agid,
387 i_pos, p_key ) < 0 )
389 print_debug( dvdcss,
390 "ioctl ReadTitleKey failed (region mismatch?)" );
391 i_ret = -1;
394 /* Test ASF, it will be reset to 0 if we got a Region error */
395 switch( GetASF( dvdcss ) )
397 case -1:
398 /* An error getting the ASF status, something must be wrong. */
399 print_debug( dvdcss, "lost ASF requesting title key" );
400 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
401 i_ret = -1;
402 break;
404 case 0:
405 /* This might either be a title that has no key,
406 * or we encountered a region error. */
407 print_debug( dvdcss, "lost ASF requesting title key" );
408 break;
410 case 1:
411 /* Drive status is ok. */
412 /* If the title key request failed, but we did not loose ASF,
413 * we might stil have the AGID. Other code assume that we
414 * will not after this so invalidate it(?). */
415 if( i_ret < 0 )
417 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
419 break;
422 if( !( i_ret < 0 ) )
424 /* Decrypt title key using the bus key */
425 for( i = 0 ; i < KEY_SIZE ; i++ )
427 p_key[ i ] ^= dvdcss->css.p_bus_key[ 4 - (i % KEY_SIZE) ];
430 /* If p_key is all zero then there really wasn't any key present
431 * even though we got to read it without an error. */
432 if( !( p_key[0] | p_key[1] | p_key[2] | p_key[3] | p_key[4] ) )
434 i_ret = 0;
436 else
438 PrintKey( dvdcss, "initial disc key ", dvdcss->css.p_disc_key );
439 DecryptTitleKey( dvdcss->css.p_disc_key, p_key );
440 PrintKey( dvdcss, "decrypted title key ", p_key );
441 i_ret = 1;
444 /* All went well either there wasn't a key or we have it now. */
445 memcpy( p_title_key, p_key, KEY_SIZE );
446 PrintKey( dvdcss, "title key is ", p_title_key );
448 return i_ret;
451 /* The title key request failed */
452 print_debug( dvdcss, "resetting drive and cracking title key" );
454 /* Read an unscrambled sector and reset the drive */
455 dvdcss->pf_seek( dvdcss, 0 );
456 dvdcss->pf_read( dvdcss, p_garbage, 1 );
457 dvdcss->pf_seek( dvdcss, 0 );
458 _dvdcss_disckey( dvdcss );
460 /* Fallback */
463 /* METHOD is TITLE, we can't use the ioctls or requesting the title key
464 * failed above. For these cases we try to crack the key instead. */
466 /* For now, the read limit is 9Gb / 2048 = 4718592 sectors. */
467 i_ret = CrackTitleKey( dvdcss, i_pos, 4718592, p_key );
469 memcpy( p_title_key, p_key, KEY_SIZE );
470 PrintKey( dvdcss, "title key is ", p_title_key );
472 return i_ret;
475 /*****************************************************************************
476 * _dvdcss_unscramble: does the actual descrambling of data
477 *****************************************************************************
478 * sec : sector to unscramble
479 * key : title key for this sector
480 *****************************************************************************/
481 int _dvdcss_unscramble( dvd_key_t p_key, uint8_t *p_sec )
483 unsigned int i_t1, i_t2, i_t3, i_t4, i_t5, i_t6;
484 uint8_t *p_end = p_sec + DVDCSS_BLOCK_SIZE;
486 /* PES_scrambling_control */
487 if( !(p_sec[0x14] & 0x30) )
489 return 0;
492 i_t1 = (p_key[0] ^ p_sec[0x54]) | 0x100;
493 i_t2 = p_key[1] ^ p_sec[0x55];
494 i_t3 = (p_key[2] | (p_key[3] << 8) |
495 (p_key[4] << 16)) ^ (p_sec[0x56] |
496 (p_sec[0x57] << 8) | (p_sec[0x58] << 16));
497 i_t4 = i_t3 & 7;
498 i_t3 = i_t3 * 2 + 8 - i_t4;
499 p_sec += 0x80;
500 i_t5 = 0;
502 while( p_sec != p_end )
504 i_t4 = p_css_tab2[i_t2] ^ p_css_tab3[i_t1];
505 i_t2 = i_t1>>1;
506 i_t1 = ( ( i_t1 & 1 ) << 8 ) ^ i_t4;
507 i_t4 = p_css_tab5[i_t4];
508 i_t6 = ((((((( i_t3 >> 3 ) ^ i_t3 ) >> 1 ) ^
509 i_t3 ) >> 8 ) ^ i_t3 ) >> 5 ) & 0xff;
510 i_t3 = (i_t3 << 8 ) | i_t6;
511 i_t6 = p_css_tab4[i_t6];
512 i_t5 += i_t6 + i_t4;
513 *p_sec = p_css_tab1[*p_sec] ^ ( i_t5 & 0xff );
514 p_sec++;
515 i_t5 >>= 8;
518 return 0;
521 /* Following functions are local */
523 /*****************************************************************************
524 * GetBusKey : Go through the CSS Authentication process
525 *****************************************************************************
526 * It simulates the mutual authentication between logical unit and host,
527 * and stops when a session key (called bus key) has been established.
528 * Always do the full auth sequence. Some drives seem to lie and always
529 * respond with ASF=1. For instance the old DVD roms on Compaq Armada says
530 * that ASF=1 from the start and then later fail with a 'read of scrambled
531 * block without authentication' error.
532 *****************************************************************************/
533 static int GetBusKey( dvdcss_t dvdcss )
535 uint8_t p_buffer[10];
536 uint8_t p_challenge[2*KEY_SIZE];
537 dvd_key_t p_key1;
538 dvd_key_t p_key2;
539 dvd_key_t p_key_check;
540 uint8_t i_variant = 0;
541 int i_ret = -1;
542 int i;
544 print_debug( dvdcss, "requesting AGID" );
545 i_ret = ioctl_ReportAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
547 /* We might have to reset hung authentication processes in the drive
548 * by invalidating the corresponding AGID'. As long as we haven't got
549 * an AGID, invalidate one (in sequence) and try again. */
550 for( i = 0; i_ret == -1 && i < 4 ; ++i )
552 print_debug( dvdcss, "ioctl ReportAgid failed, "
553 "invalidating AGID %d", i );
555 /* This is really _not good_, should be handled by the OS.
556 * Invalidating an AGID could make another process fail somewhere
557 * in its authentication process. */
558 dvdcss->css.i_agid = i;
559 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
561 print_debug( dvdcss, "requesting AGID" );
562 i_ret = ioctl_ReportAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
565 /* Unable to authenticate without AGID */
566 if( i_ret == -1 )
568 print_error( dvdcss, "ioctl ReportAgid failed, fatal" );
569 return -1;
572 /* Setup a challenge, any values should work */
573 for( i = 0 ; i < 10; ++i )
575 p_challenge[i] = i;
578 /* Get challenge from host */
579 for( i = 0 ; i < 10 ; ++i )
581 p_buffer[9-i] = p_challenge[i];
584 /* Send challenge to LU */
585 if( ioctl_SendChallenge( dvdcss->i_fd,
586 &dvdcss->css.i_agid, p_buffer ) < 0 )
588 print_error( dvdcss, "ioctl SendChallenge failed" );
589 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
590 return -1;
593 /* Get key1 from LU */
594 if( ioctl_ReportKey1( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0)
596 print_error( dvdcss, "ioctl ReportKey1 failed" );
597 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
598 return -1;
601 /* Send key1 to host */
602 for( i = 0 ; i < KEY_SIZE ; i++ )
604 p_key1[i] = p_buffer[4-i];
607 for( i = 0 ; i < 32 ; ++i )
609 CryptKey( 0, i, p_challenge, p_key_check );
611 if( memcmp( p_key_check, p_key1, KEY_SIZE ) == 0 )
613 print_debug( dvdcss, "drive authenticated, using variant %d", i );
614 i_variant = i;
615 break;
619 if( i == 32 )
621 print_error( dvdcss, "drive would not authenticate" );
622 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
623 return -1;
626 /* Get challenge from LU */
627 if( ioctl_ReportChallenge( dvdcss->i_fd,
628 &dvdcss->css.i_agid, p_buffer ) < 0 )
630 print_error( dvdcss, "ioctl ReportKeyChallenge failed" );
631 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
632 return -1;
635 /* Send challenge to host */
636 for( i = 0 ; i < 10 ; ++i )
638 p_challenge[i] = p_buffer[9-i];
641 CryptKey( 1, i_variant, p_challenge, p_key2 );
643 /* Get key2 from host */
644 for( i = 0 ; i < KEY_SIZE ; ++i )
646 p_buffer[4-i] = p_key2[i];
649 /* Send key2 to LU */
650 if( ioctl_SendKey2( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0 )
652 print_error( dvdcss, "ioctl SendKey2 failed" );
653 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
654 return -1;
657 /* The drive has accepted us as authentic. */
658 print_debug( dvdcss, "authentication established" );
660 memcpy( p_challenge, p_key1, KEY_SIZE );
661 memcpy( p_challenge + KEY_SIZE, p_key2, KEY_SIZE );
663 CryptKey( 2, i_variant, p_challenge, dvdcss->css.p_bus_key );
665 return 0;
668 /*****************************************************************************
669 * PrintKey : debug function that dumps a key value
670 *****************************************************************************/
671 static void PrintKey( dvdcss_t dvdcss, char *prefix, uint8_t const *data )
673 print_debug( dvdcss, "%s%02x:%02x:%02x:%02x:%02x", prefix,
674 data[0], data[1], data[2], data[3], data[4] );
677 /*****************************************************************************
678 * GetASF : Get Authentication success flag
679 *****************************************************************************
680 * Returns :
681 * -1 on ioctl error,
682 * 0 if the device needs to be authenticated,
683 * 1 either.
684 *****************************************************************************/
685 static int GetASF( dvdcss_t dvdcss )
687 int i_asf = 0;
689 if( ioctl_ReportASF( dvdcss->i_fd, NULL, &i_asf ) != 0 )
691 /* The ioctl process has failed */
692 print_error( dvdcss, "GetASF fatal error" );
693 return -1;
696 if( i_asf )
698 print_debug( dvdcss, "GetASF authenticated, ASF=1" );
700 else
702 print_debug( dvdcss, "GetASF not authenticated, ASF=0" );
705 return i_asf;
708 /*****************************************************************************
709 * CryptKey : shuffles bits and unencrypt keys.
710 *****************************************************************************
711 * Used during authentication and disc key negociation in GetBusKey.
712 * i_key_type : 0->key1, 1->key2, 2->buskey.
713 * i_variant : between 0 and 31.
714 *****************************************************************************/
715 static void CryptKey( int i_key_type, int i_variant,
716 uint8_t const *p_challenge, uint8_t *p_key )
718 /* Permutation table for challenge */
719 uint8_t pp_perm_challenge[3][10] =
720 { { 1, 3, 0, 7, 5, 2, 9, 6, 4, 8 },
721 { 6, 1, 9, 3, 8, 5, 7, 4, 0, 2 },
722 { 4, 0, 3, 5, 7, 2, 8, 6, 1, 9 } };
724 /* Permutation table for variant table for key2 and buskey */
725 uint8_t pp_perm_variant[2][32] =
726 { { 0x0a, 0x08, 0x0e, 0x0c, 0x0b, 0x09, 0x0f, 0x0d,
727 0x1a, 0x18, 0x1e, 0x1c, 0x1b, 0x19, 0x1f, 0x1d,
728 0x02, 0x00, 0x06, 0x04, 0x03, 0x01, 0x07, 0x05,
729 0x12, 0x10, 0x16, 0x14, 0x13, 0x11, 0x17, 0x15 },
730 { 0x12, 0x1a, 0x16, 0x1e, 0x02, 0x0a, 0x06, 0x0e,
731 0x10, 0x18, 0x14, 0x1c, 0x00, 0x08, 0x04, 0x0c,
732 0x13, 0x1b, 0x17, 0x1f, 0x03, 0x0b, 0x07, 0x0f,
733 0x11, 0x19, 0x15, 0x1d, 0x01, 0x09, 0x05, 0x0d } };
735 uint8_t p_variants[32] =
736 { 0xB7, 0x74, 0x85, 0xD0, 0xCC, 0xDB, 0xCA, 0x73,
737 0x03, 0xFE, 0x31, 0x03, 0x52, 0xE0, 0xB7, 0x42,
738 0x63, 0x16, 0xF2, 0x2A, 0x79, 0x52, 0xFF, 0x1B,
739 0x7A, 0x11, 0xCA, 0x1A, 0x9B, 0x40, 0xAD, 0x01 };
741 /* The "secret" key */
742 uint8_t p_secret[5] = { 0x55, 0xD6, 0xC4, 0xC5, 0x28 };
744 uint8_t p_bits[30], p_scratch[10], p_tmp1[5], p_tmp2[5];
745 uint8_t i_lfsr0_o; /* 1 bit used */
746 uint8_t i_lfsr1_o; /* 1 bit used */
747 uint8_t i_css_variant, i_cse, i_index, i_combined, i_carry;
748 uint8_t i_val = 0;
749 uint32_t i_lfsr0, i_lfsr1;
750 int i_term = 0;
751 int i_bit;
752 int i;
754 for (i = 9; i >= 0; --i)
755 p_scratch[i] = p_challenge[pp_perm_challenge[i_key_type][i]];
757 i_css_variant = ( i_key_type == 0 ) ? i_variant :
758 pp_perm_variant[i_key_type-1][i_variant];
761 * This encryption engine implements one of 32 variations
762 * one the same theme depending upon the choice in the
763 * variant parameter (0 - 31).
765 * The algorithm itself manipulates a 40 bit input into
766 * a 40 bit output.
767 * The parameter 'input' is 80 bits. It consists of
768 * the 40 bit input value that is to be encrypted followed
769 * by a 40 bit seed value for the pseudo random number
770 * generators.
773 /* Feed the secret into the input values such that
774 * we alter the seed to the LFSR's used above, then
775 * generate the bits to play with.
777 for( i = 5 ; --i >= 0 ; )
779 p_tmp1[i] = p_scratch[5 + i] ^ p_secret[i] ^ p_crypt_tab2[i];
783 * We use two LFSR's (seeded from some of the input data bytes) to
784 * generate two streams of pseudo-random bits. These two bit streams
785 * are then combined by simply adding with carry to generate a final
786 * sequence of pseudo-random bits which is stored in the buffer that
787 * 'output' points to the end of - len is the size of this buffer.
789 * The first LFSR is of degree 25, and has a polynomial of:
790 * x^13 + x^5 + x^4 + x^1 + 1
792 * The second LSFR is of degree 17, and has a (primitive) polynomial of:
793 * x^15 + x^1 + 1
795 * I don't know if these polynomials are primitive modulo 2, and thus
796 * represent maximal-period LFSR's.
799 * Note that we take the output of each LFSR from the new shifted in
800 * bit, not the old shifted out bit. Thus for ease of use the LFSR's
801 * are implemented in bit reversed order.
805 /* In order to ensure that the LFSR works we need to ensure that the
806 * initial values are non-zero. Thus when we initialise them from
807 * the seed, we ensure that a bit is set.
809 i_lfsr0 = ( p_tmp1[0] << 17 ) | ( p_tmp1[1] << 9 ) |
810 (( p_tmp1[2] & ~7 ) << 1 ) | 8 | ( p_tmp1[2] & 7 );
811 i_lfsr1 = ( p_tmp1[3] << 9 ) | 0x100 | p_tmp1[4];
813 i_index = sizeof(p_bits);
814 i_carry = 0;
818 for( i_bit = 0, i_val = 0 ; i_bit < 8 ; ++i_bit )
821 i_lfsr0_o = ( ( i_lfsr0 >> 24 ) ^ ( i_lfsr0 >> 21 ) ^
822 ( i_lfsr0 >> 20 ) ^ ( i_lfsr0 >> 12 ) ) & 1;
823 i_lfsr0 = ( i_lfsr0 << 1 ) | i_lfsr0_o;
825 i_lfsr1_o = ( ( i_lfsr1 >> 16 ) ^ ( i_lfsr1 >> 2 ) ) & 1;
826 i_lfsr1 = ( i_lfsr1 << 1 ) | i_lfsr1_o;
828 i_combined = !i_lfsr1_o + i_carry + !i_lfsr0_o;
829 /* taking bit 1 */
830 i_carry = ( i_combined >> 1 ) & 1;
831 i_val |= ( i_combined & 1 ) << i_bit;
834 p_bits[--i_index] = i_val;
835 } while( i_index > 0 );
837 /* This term is used throughout the following to
838 * select one of 32 different variations on the
839 * algorithm.
841 i_cse = p_variants[i_css_variant] ^ p_crypt_tab2[i_css_variant];
843 /* Now the actual blocks doing the encryption. Each
844 * of these works on 40 bits at a time and are quite
845 * similar.
847 i_index = 0;
848 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_scratch[i] )
850 i_index = p_bits[25 + i] ^ p_scratch[i];
851 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
853 p_tmp1[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
855 p_tmp1[4] ^= p_tmp1[0];
857 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp1[i] )
859 i_index = p_bits[20 + i] ^ p_tmp1[i];
860 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
862 p_tmp2[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
864 p_tmp2[4] ^= p_tmp2[0];
866 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp2[i] )
868 i_index = p_bits[15 + i] ^ p_tmp2[i];
869 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
870 i_index = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
872 p_tmp1[i] = p_crypt_tab0[i_index] ^ p_crypt_tab2[i_index];
874 p_tmp1[4] ^= p_tmp1[0];
876 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp1[i] )
878 i_index = p_bits[10 + i] ^ p_tmp1[i];
879 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
881 i_index = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
883 p_tmp2[i] = p_crypt_tab0[i_index] ^ p_crypt_tab2[i_index];
885 p_tmp2[4] ^= p_tmp2[0];
887 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp2[i] )
889 i_index = p_bits[5 + i] ^ p_tmp2[i];
890 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
892 p_tmp1[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
894 p_tmp1[4] ^= p_tmp1[0];
896 for(i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp1[i] )
898 i_index = p_bits[i] ^ p_tmp1[i];
899 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
901 p_key[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
904 return;
907 /*****************************************************************************
908 * DecryptKey: decrypt p_crypted with p_key.
909 *****************************************************************************
910 * Used to decrypt the disc key, with a player key, after requesting it
911 * in _dvdcss_disckey and to decrypt title keys, with a disc key, requested
912 * in _dvdcss_titlekey.
913 * The player keys and the resulting disc key are only used as KEKs
914 * (key encryption keys).
915 * Decryption is slightly dependant on the type of key:
916 * -for disc key, invert is 0x00,
917 * -for title key, invert if 0xff.
918 *****************************************************************************/
919 static void DecryptKey( uint8_t invert, uint8_t const *p_key,
920 uint8_t const *p_crypted, uint8_t *p_result )
922 unsigned int i_lfsr1_lo;
923 unsigned int i_lfsr1_hi;
924 unsigned int i_lfsr0;
925 unsigned int i_combined;
926 uint8_t o_lfsr0;
927 uint8_t o_lfsr1;
928 uint8_t k[5];
929 int i;
931 i_lfsr1_lo = p_key[0] | 0x100;
932 i_lfsr1_hi = p_key[1];
934 i_lfsr0 = ( ( p_key[4] << 17 )
935 | ( p_key[3] << 9 )
936 | ( p_key[2] << 1 ) )
937 + 8 - ( p_key[2] & 7 );
938 i_lfsr0 = ( p_css_tab4[i_lfsr0 & 0xff] << 24 ) |
939 ( p_css_tab4[( i_lfsr0 >> 8 ) & 0xff] << 16 ) |
940 ( p_css_tab4[( i_lfsr0 >> 16 ) & 0xff] << 8 ) |
941 p_css_tab4[( i_lfsr0 >> 24 ) & 0xff];
943 i_combined = 0;
944 for( i = 0 ; i < KEY_SIZE ; ++i )
946 o_lfsr1 = p_css_tab2[i_lfsr1_hi] ^ p_css_tab3[i_lfsr1_lo];
947 i_lfsr1_hi = i_lfsr1_lo >> 1;
948 i_lfsr1_lo = ( ( i_lfsr1_lo & 1 ) << 8 ) ^ o_lfsr1;
949 o_lfsr1 = p_css_tab4[o_lfsr1];
951 o_lfsr0 = ((((((( i_lfsr0 >> 8 ) ^ i_lfsr0 ) >> 1 )
952 ^ i_lfsr0 ) >> 3 ) ^ i_lfsr0 ) >> 7 );
953 i_lfsr0 = ( i_lfsr0 >> 8 ) | ( o_lfsr0 << 24 );
955 i_combined += ( o_lfsr0 ^ invert ) + o_lfsr1;
956 k[i] = i_combined & 0xff;
957 i_combined >>= 8;
960 p_result[4] = k[4] ^ p_css_tab1[p_crypted[4]] ^ p_crypted[3];
961 p_result[3] = k[3] ^ p_css_tab1[p_crypted[3]] ^ p_crypted[2];
962 p_result[2] = k[2] ^ p_css_tab1[p_crypted[2]] ^ p_crypted[1];
963 p_result[1] = k[1] ^ p_css_tab1[p_crypted[1]] ^ p_crypted[0];
964 p_result[0] = k[0] ^ p_css_tab1[p_crypted[0]] ^ p_result[4];
966 p_result[4] = k[4] ^ p_css_tab1[p_result[4]] ^ p_result[3];
967 p_result[3] = k[3] ^ p_css_tab1[p_result[3]] ^ p_result[2];
968 p_result[2] = k[2] ^ p_css_tab1[p_result[2]] ^ p_result[1];
969 p_result[1] = k[1] ^ p_css_tab1[p_result[1]] ^ p_result[0];
970 p_result[0] = k[0] ^ p_css_tab1[p_result[0]];
972 return;
975 /*****************************************************************************
976 * player_keys: alternate DVD player keys
977 *****************************************************************************
978 * These player keys were generated using Frank A. Stevenson's PlayerKey
979 * cracker. A copy of his article can be found here:
980 * http://www-2.cs.cmu.edu/~dst/DeCSS/FrankStevenson/mail2.txt
981 *****************************************************************************/
982 static const dvd_key_t player_keys[] =
984 { 0x01, 0xaf, 0xe3, 0x12, 0x80 },
985 { 0x12, 0x11, 0xca, 0x04, 0x3b },
986 { 0x14, 0x0c, 0x9e, 0xd0, 0x09 },
987 { 0x14, 0x71, 0x35, 0xba, 0xe2 },
988 { 0x1a, 0xa4, 0x33, 0x21, 0xa6 },
989 { 0x26, 0xec, 0xc4, 0xa7, 0x4e },
990 { 0x2c, 0xb2, 0xc1, 0x09, 0xee },
991 { 0x2f, 0x25, 0x9e, 0x96, 0xdd },
992 { 0x33, 0x2f, 0x49, 0x6c, 0xe0 },
993 { 0x35, 0x5b, 0xc1, 0x31, 0x0f },
994 { 0x36, 0x67, 0xb2, 0xe3, 0x85 },
995 { 0x39, 0x3d, 0xf1, 0xf1, 0xbd },
996 { 0x3b, 0x31, 0x34, 0x0d, 0x91 },
997 { 0x45, 0xed, 0x28, 0xeb, 0xd3 },
998 { 0x48, 0xb7, 0x6c, 0xce, 0x69 },
999 { 0x4b, 0x65, 0x0d, 0xc1, 0xee },
1000 { 0x4c, 0xbb, 0xf5, 0x5b, 0x23 },
1001 { 0x51, 0x67, 0x67, 0xc5, 0xe0 },
1002 { 0x53, 0x94, 0xe1, 0x75, 0xbf },
1003 { 0x57, 0x2c, 0x8b, 0x31, 0xae },
1004 { 0x63, 0xdb, 0x4c, 0x5b, 0x4a },
1005 { 0x7b, 0x1e, 0x5e, 0x2b, 0x57 },
1006 { 0x85, 0xf3, 0x85, 0xa0, 0xe0 },
1007 { 0xab, 0x1e, 0xe7, 0x7b, 0x72 },
1008 { 0xab, 0x36, 0xe3, 0xeb, 0x76 },
1009 { 0xb1, 0xb8, 0xf9, 0x38, 0x03 },
1010 { 0xb8, 0x5d, 0xd8, 0x53, 0xbd },
1011 { 0xbf, 0x92, 0xc3, 0xb0, 0xe2 },
1012 { 0xcf, 0x1a, 0xb2, 0xf8, 0x0a },
1013 { 0xec, 0xa0, 0xcf, 0xb3, 0xff },
1014 { 0xfc, 0x95, 0xa9, 0x87, 0x35 }
1017 /*****************************************************************************
1018 * DecryptDiscKey
1019 *****************************************************************************
1020 * Decryption of the disc key with player keys: try to decrypt the disc key
1021 * from every position with every player key.
1022 * p_struct_disckey: the 2048 byte DVD_STRUCT_DISCKEY data
1023 * p_disc_key: result, the 5 byte disc key
1024 *****************************************************************************/
1025 static int DecryptDiscKey( dvdcss_t dvdcss, uint8_t const *p_struct_disckey,
1026 dvd_key_t p_disc_key )
1028 uint8_t p_verify[KEY_SIZE];
1029 unsigned int i, n = 0;
1031 /* Decrypt disc key with the above player keys */
1032 for( n = 0; n < sizeof(player_keys) / sizeof(dvd_key_t); n++ )
1034 PrintKey( dvdcss, "trying player key ", player_keys[n] );
1036 for( i = 1; i < 409; i++ )
1038 /* Check if player key n is the right key for position i. */
1039 DecryptKey( 0, player_keys[n], p_struct_disckey + 5 * i,
1040 p_disc_key );
1042 /* The first part in the struct_disckey block is the
1043 * 'disc key' encrypted with itself. Using this we
1044 * can check if we decrypted the correct key. */
1045 DecryptKey( 0, p_disc_key, p_struct_disckey, p_verify );
1047 /* If the position / player key pair worked then return. */
1048 if( memcmp( p_disc_key, p_verify, KEY_SIZE ) == 0 )
1050 return 0;
1055 /* Have tried all combinations of positions and keys,
1056 * and we still didn't succeed. */
1057 memset( p_disc_key, 0, KEY_SIZE );
1058 return -1;
1061 /*****************************************************************************
1062 * DecryptTitleKey
1063 *****************************************************************************
1064 * Decrypt the title key using the disc key.
1065 * p_disc_key: result, the 5 byte disc key
1066 * p_titlekey: the encrypted title key, gets overwritten by the decrypted key
1067 *****************************************************************************/
1068 static void DecryptTitleKey( dvd_key_t p_disc_key, dvd_key_t p_titlekey )
1070 DecryptKey( 0xff, p_disc_key, p_titlekey, p_titlekey );
1073 /*****************************************************************************
1074 * CrackDiscKey: brute force disc key
1075 * CSS hash reversal function designed by Frank Stevenson
1076 *****************************************************************************
1077 * This function uses a big amount of memory to crack the disc key from the
1078 * disc key hash, if player keys are not available.
1079 *****************************************************************************/
1080 #define K1TABLEWIDTH 10
1083 * Simple function to test if a candidate key produces the given hash
1085 static int investigate( unsigned char *hash, unsigned char *ckey )
1087 unsigned char key[KEY_SIZE];
1089 DecryptKey( 0, ckey, hash, key );
1091 return memcmp( key, ckey, KEY_SIZE );
1094 static int CrackDiscKey( dvdcss_t dvdcss, uint8_t *p_disc_key )
1096 unsigned char B[5] = { 0,0,0,0,0 }; /* Second Stage of mangle cipher */
1097 unsigned char C[5] = { 0,0,0,0,0 }; /* Output Stage of mangle cipher
1098 * IntermediateKey */
1099 unsigned char k[5] = { 0,0,0,0,0 }; /* Mangling cipher key
1100 * Also output from CSS( C ) */
1101 unsigned char out1[5]; /* five first output bytes of LFSR1 */
1102 unsigned char out2[5]; /* five first output bytes of LFSR2 */
1103 unsigned int lfsr1a; /* upper 9 bits of LFSR1 */
1104 unsigned int lfsr1b; /* lower 8 bits of LFSR1 */
1105 unsigned int tmp, tmp2, tmp3, tmp4,tmp5;
1106 int i,j;
1107 unsigned int nStepA; /* iterator for LFSR1 start state */
1108 unsigned int nStepB; /* iterator for possible B[0] */
1109 unsigned int nTry; /* iterator for K[1] possibilities */
1110 unsigned int nPossibleK1; /* #of possible K[1] values */
1111 unsigned char* K1table; /* Lookup table for possible K[1] */
1112 unsigned int* BigTable; /* LFSR2 startstate indexed by
1113 * 1,2,5 output byte */
1116 * Prepare tables for hash reversal
1119 /* initialize lookup tables for k[1] */
1120 K1table = malloc( 65536 * K1TABLEWIDTH );
1121 memset( K1table, 0 , 65536 * K1TABLEWIDTH );
1122 if( K1table == NULL )
1124 return -1;
1127 tmp = p_disc_key[0] ^ p_css_tab1[ p_disc_key[1] ];
1128 for( i = 0 ; i < 256 ; i++ ) /* k[1] */
1130 tmp2 = p_css_tab1[ tmp ^ i ]; /* p_css_tab1[ B[1] ]*/
1132 for( j = 0 ; j < 256 ; j++ ) /* B[0] */
1134 tmp3 = j ^ tmp2 ^ i; /* C[1] */
1135 tmp4 = K1table[ K1TABLEWIDTH * ( 256 * j + tmp3 ) ]; /* count of entries here */
1136 tmp4++;
1138 if( tmp4 == K1TABLEWIDTH )
1140 print_debug( dvdcss, "Table disaster %d", tmp4 );
1143 if( tmp4 < K1TABLEWIDTH )
1145 K1table[ K1TABLEWIDTH * ( 256 * j + tmp3 ) + tmp4 ] = i;
1147 K1table[ K1TABLEWIDTH * ( 256 * j + tmp3 ) ] = tmp4;
1151 /* Initing our Really big table */
1152 BigTable = malloc( 16777216 * sizeof(int) );
1153 memset( BigTable, 0 , 16777216 * sizeof(int) );
1154 if( BigTable == NULL )
1156 return -1;
1159 tmp3 = 0;
1161 print_debug( dvdcss, "initializing the big table" );
1163 for( i = 0 ; i < 16777216 ; i++ )
1165 tmp = (( i + i ) & 0x1fffff0 ) | 0x8 | ( i & 0x7 );
1167 for( j = 0 ; j < 5 ; j++ )
1169 tmp2=((((((( tmp >> 3 ) ^ tmp ) >> 1 ) ^ tmp ) >> 8 )
1170 ^ tmp ) >> 5 ) & 0xff;
1171 tmp = ( tmp << 8) | tmp2;
1172 out2[j] = p_css_tab4[ tmp2 ];
1175 j = ( out2[0] << 16 ) | ( out2[1] << 8 ) | out2[4];
1176 BigTable[j] = i;
1180 * We are done initing, now reverse hash
1182 tmp5 = p_disc_key[0] ^ p_css_tab1[ p_disc_key[1] ];
1184 for( nStepA = 0 ; nStepA < 65536 ; nStepA ++ )
1186 lfsr1a = 0x100 | ( nStepA >> 8 );
1187 lfsr1b = nStepA & 0xff;
1189 /* Generate 5 first output bytes from lfsr1 */
1190 for( i = 0 ; i < 5 ; i++ )
1192 tmp = p_css_tab2[ lfsr1b ] ^ p_css_tab3[ lfsr1a ];
1193 lfsr1b = lfsr1a >> 1;
1194 lfsr1a = ((lfsr1a&1)<<8) ^ tmp;
1195 out1[ i ] = p_css_tab4[ tmp ];
1198 /* cumpute and cache some variables */
1199 C[0] = nStepA >> 8;
1200 C[1] = nStepA & 0xff;
1201 tmp = p_disc_key[3] ^ p_css_tab1[ p_disc_key[4] ];
1202 tmp2 = p_css_tab1[ p_disc_key[0] ];
1204 /* Search through all possible B[0] */
1205 for( nStepB = 0 ; nStepB < 256 ; nStepB++ )
1207 /* reverse parts of the mangling cipher */
1208 B[0] = nStepB;
1209 k[0] = p_css_tab1[ B[0] ] ^ C[0];
1210 B[4] = B[0] ^ k[0] ^ tmp2;
1211 k[4] = B[4] ^ tmp;
1212 nPossibleK1 = K1table[ K1TABLEWIDTH * (256 * B[0] + C[1]) ];
1214 /* Try out all possible values for k[1] */
1215 for( nTry = 0 ; nTry < nPossibleK1 ; nTry++ )
1217 k[1] = K1table[ K1TABLEWIDTH * (256 * B[0] + C[1]) + nTry + 1 ];
1218 B[1] = tmp5 ^ k[1];
1220 /* reconstruct output from LFSR2 */
1221 tmp3 = ( 0x100 + k[0] - out1[0] );
1222 out2[0] = tmp3 & 0xff;
1223 tmp3 = tmp3 & 0x100 ? 0x100 : 0xff;
1224 tmp3 = ( tmp3 + k[1] - out1[1] );
1225 out2[1] = tmp3 & 0xff;
1226 tmp3 = ( 0x100 + k[4] - out1[4] );
1227 out2[4] = tmp3 & 0xff; /* Can be 1 off */
1229 /* test first possible out2[4] */
1230 tmp4 = ( out2[0] << 16 ) | ( out2[1] << 8 ) | out2[4];
1231 tmp4 = BigTable[ tmp4 ];
1232 C[2] = tmp4 & 0xff;
1233 C[3] = ( tmp4 >> 8 ) & 0xff;
1234 C[4] = ( tmp4 >> 16 ) & 0xff;
1235 B[3] = p_css_tab1[ B[4] ] ^ k[4] ^ C[4];
1236 k[3] = p_disc_key[2] ^ p_css_tab1[ p_disc_key[3] ] ^ B[3];
1237 B[2] = p_css_tab1[ B[3] ] ^ k[3] ^ C[3];
1238 k[2] = p_disc_key[1] ^ p_css_tab1[ p_disc_key[2] ] ^ B[2];
1240 if( ( B[1] ^ p_css_tab1[ B[2] ] ^ k[ 2 ] ) == C[ 2 ] )
1242 if( ! investigate( &p_disc_key[0] , &C[0] ) )
1244 goto end;
1248 /* Test second possible out2[4] */
1249 out2[4] = ( out2[4] + 0xff ) & 0xff;
1250 tmp4 = ( out2[0] << 16 ) | ( out2[1] << 8 ) | out2[4];
1251 tmp4 = BigTable[ tmp4 ];
1252 C[2] = tmp4 & 0xff;
1253 C[3] = ( tmp4 >> 8 ) & 0xff;
1254 C[4] = ( tmp4 >> 16 ) & 0xff;
1255 B[3] = p_css_tab1[ B[4] ] ^ k[4] ^ C[4];
1256 k[3] = p_disc_key[2] ^ p_css_tab1[ p_disc_key[3] ] ^ B[3];
1257 B[2] = p_css_tab1[ B[3] ] ^ k[3] ^ C[3];
1258 k[2] = p_disc_key[1] ^ p_css_tab1[ p_disc_key[2] ] ^ B[2];
1260 if( ( B[1] ^ p_css_tab1[ B[2] ] ^ k[ 2 ] ) == C[ 2 ] )
1262 if( ! investigate( &p_disc_key[0] , &C[0] ) )
1264 goto end;
1271 end:
1273 memcpy( p_disc_key, &C[0], KEY_SIZE );
1275 free( K1table );
1276 free( BigTable );
1278 return 0;
1281 /*****************************************************************************
1282 * RecoverTitleKey: (title) key recovery from cipher and plain text
1283 * Function designed by Frank Stevenson
1284 *****************************************************************************
1285 * Called from Attack* which are in turn called by CrackTitleKey. Given
1286 * a guessed(?) plain text and the cipher text. Returns -1 on failure.
1287 *****************************************************************************/
1288 static int RecoverTitleKey( int i_start, uint8_t const *p_crypted,
1289 uint8_t const *p_decrypted,
1290 uint8_t const *p_sector_seed, uint8_t *p_key )
1292 uint8_t p_buffer[10];
1293 unsigned int i_t1, i_t2, i_t3, i_t4, i_t5, i_t6;
1294 unsigned int i_try;
1295 unsigned int i_candidate;
1296 unsigned int i, j;
1297 int i_exit = -1;
1299 for( i = 0 ; i < 10 ; i++ )
1301 p_buffer[i] = p_css_tab1[p_crypted[i]] ^ p_decrypted[i];
1304 for( i_try = i_start ; i_try < 0x10000 ; i_try++ )
1306 i_t1 = i_try >> 8 | 0x100;
1307 i_t2 = i_try & 0xff;
1308 i_t3 = 0; /* not needed */
1309 i_t5 = 0;
1311 /* iterate cipher 4 times to reconstruct LFSR2 */
1312 for( i = 0 ; i < 4 ; i++ )
1314 /* advance LFSR1 normaly */
1315 i_t4 = p_css_tab2[i_t2] ^ p_css_tab3[i_t1];
1316 i_t2 = i_t1 >> 1;
1317 i_t1 = ( ( i_t1 & 1 ) << 8 ) ^ i_t4;
1318 i_t4 = p_css_tab5[i_t4];
1319 /* deduce i_t6 & i_t5 */
1320 i_t6 = p_buffer[i];
1321 if( i_t5 )
1323 i_t6 = ( i_t6 + 0xff ) & 0x0ff;
1325 if( i_t6 < i_t4 )
1327 i_t6 += 0x100;
1329 i_t6 -= i_t4;
1330 i_t5 += i_t6 + i_t4;
1331 i_t6 = p_css_tab4[ i_t6 ];
1332 /* feed / advance i_t3 / i_t5 */
1333 i_t3 = ( i_t3 << 8 ) | i_t6;
1334 i_t5 >>= 8;
1337 i_candidate = i_t3;
1339 /* iterate 6 more times to validate candidate key */
1340 for( ; i < 10 ; i++ )
1342 i_t4 = p_css_tab2[i_t2] ^ p_css_tab3[i_t1];
1343 i_t2 = i_t1 >> 1;
1344 i_t1 = ( ( i_t1 & 1 ) << 8 ) ^ i_t4;
1345 i_t4 = p_css_tab5[i_t4];
1346 i_t6 = ((((((( i_t3 >> 3 ) ^ i_t3 ) >> 1 ) ^
1347 i_t3 ) >> 8 ) ^ i_t3 ) >> 5 ) & 0xff;
1348 i_t3 = ( i_t3 << 8 ) | i_t6;
1349 i_t6 = p_css_tab4[i_t6];
1350 i_t5 += i_t6 + i_t4;
1351 if( ( i_t5 & 0xff ) != p_buffer[i] )
1353 break;
1356 i_t5 >>= 8;
1359 if( i == 10 )
1361 /* Do 4 backwards steps of iterating t3 to deduce initial state */
1362 i_t3 = i_candidate;
1363 for( i = 0 ; i < 4 ; i++ )
1365 i_t1 = i_t3 & 0xff;
1366 i_t3 = ( i_t3 >> 8 );
1367 /* easy to code, and fast enough bruteforce
1368 * search for byte shifted in */
1369 for( j = 0 ; j < 256 ; j++ )
1371 i_t3 = ( i_t3 & 0x1ffff ) | ( j << 17 );
1372 i_t6 = ((((((( i_t3 >> 3 ) ^ i_t3 ) >> 1 ) ^
1373 i_t3 ) >> 8 ) ^ i_t3 ) >> 5 ) & 0xff;
1374 if( i_t6 == i_t1 )
1376 break;
1381 i_t4 = ( i_t3 >> 1 ) - 4;
1382 for( i_t5 = 0 ; i_t5 < 8; i_t5++ )
1384 if( ( ( i_t4 + i_t5 ) * 2 + 8 - ( (i_t4 + i_t5 ) & 7 ) )
1385 == i_t3 )
1387 p_key[0] = i_try>>8;
1388 p_key[1] = i_try & 0xFF;
1389 p_key[2] = ( ( i_t4 + i_t5 ) >> 0 ) & 0xFF;
1390 p_key[3] = ( ( i_t4 + i_t5 ) >> 8 ) & 0xFF;
1391 p_key[4] = ( ( i_t4 + i_t5 ) >> 16 ) & 0xFF;
1392 i_exit = i_try + 1;
1398 if( i_exit >= 0 )
1400 p_key[0] ^= p_sector_seed[0];
1401 p_key[1] ^= p_sector_seed[1];
1402 p_key[2] ^= p_sector_seed[2];
1403 p_key[3] ^= p_sector_seed[3];
1404 p_key[4] ^= p_sector_seed[4];
1407 return i_exit;
1411 /******************************************************************************
1412 * Various pieces for the title crack engine.
1413 ******************************************************************************
1414 * The length of the PES packet is located at 0x12-0x13.
1415 * The the copyrigth protection bits are located at 0x14 (bits 0x20 and 0x10).
1416 * The data of the PES packet begins at 0x15 (if there isn't any PTS/DTS)
1417 * or at 0x?? if there are both PTS and DTS's.
1418 * The seed value used with the unscrambling key is the 5 bytes at 0x54-0x58.
1419 * The scrabled part of a sector begins at 0x80.
1420 *****************************************************************************/
1422 /* Statistics */
1423 static int i_tries = 0, i_success = 0;
1425 /*****************************************************************************
1426 * CrackTitleKey: try to crack title key from the contents of a VOB.
1427 *****************************************************************************
1428 * This function is called by _dvdcss_titlekey to find a title key, if we've
1429 * chosen to crack title key instead of decrypting it with the disc key.
1430 * The DVD should have been opened and be in an authenticated state.
1431 * i_pos is the starting sector, i_len is the maximum number of sectors to read
1432 *****************************************************************************/
1433 static int CrackTitleKey( dvdcss_t dvdcss, int i_pos, int i_len,
1434 dvd_key_t p_titlekey )
1436 uint8_t p_buf[ DVDCSS_BLOCK_SIZE ];
1437 const uint8_t p_packstart[4] = { 0x00, 0x00, 0x01, 0xba };
1438 int i_reads = 0;
1439 int i_encrypted = 0;
1440 int b_stop_scanning = 0;
1441 int b_read_error = 0;
1442 int i_ret;
1444 print_debug( dvdcss, "cracking title key at block %i", i_pos );
1446 i_tries = 0;
1447 i_success = 0;
1451 i_ret = dvdcss->pf_seek( dvdcss, i_pos );
1453 if( i_ret != i_pos )
1455 print_error( dvdcss, "seek failed" );
1458 i_ret = dvdcss_read( dvdcss, p_buf, 1, DVDCSS_NOFLAGS );
1460 /* Either we are at the end of the physical device or the auth
1461 * have failed / were not done and we got a read error. */
1462 if( i_ret <= 0 )
1464 if( i_ret == 0 )
1466 print_debug( dvdcss, "read returned 0 (end of device?)" );
1468 else if( !b_read_error )
1470 print_debug( dvdcss, "read error at block %i, resorting to "
1471 "secret arcanes to recover", i_pos );
1473 /* Reset the drive before trying to continue */
1474 _dvdcss_close( dvdcss );
1475 _dvdcss_open( dvdcss );
1477 b_read_error = 1;
1478 continue;
1480 break;
1483 /* Stop when we find a non MPEG stream block.
1484 * (We must have reached the end of the stream).
1485 * For now, allow all blocks that begin with a start code. */
1486 if( memcmp( p_buf, p_packstart, 3 ) )
1488 print_debug( dvdcss, "non MPEG block found at block %i "
1489 "(end of title)", i_pos );
1490 break;
1493 if( p_buf[0x0d] & 0x07 )
1494 print_debug( dvdcss, "stuffing in pack header" );
1496 /* PES_scrambling_control does not exist in a system_header,
1497 * a padding_stream or a private_stream2 (and others?). */
1498 if( p_buf[0x14] & 0x30 && ! ( p_buf[0x11] == 0xbb
1499 || p_buf[0x11] == 0xbe
1500 || p_buf[0x11] == 0xbf ) )
1502 i_encrypted++;
1504 if( AttackPattern(p_buf, i_reads, p_titlekey) > 0 )
1506 b_stop_scanning = 1;
1508 #if 0
1509 if( AttackPadding(p_buf, i_reads, p_titlekey) > 0 )
1511 b_stop_scanning = 1;
1513 #endif
1516 i_pos++;
1517 i_len--;
1518 i_reads++;
1520 /* Emit a progress indication now and then. */
1521 if( !( i_reads & 0xfff ) )
1523 print_debug( dvdcss, "at block %i, still cracking...", i_pos );
1526 /* Stop after 2000 blocks if we haven't seen any encrypted blocks. */
1527 if( i_reads >= 2000 && i_encrypted == 0 ) break;
1529 } while( !b_stop_scanning && i_len > 0);
1531 if( !b_stop_scanning )
1533 print_debug( dvdcss, "end of title reached" );
1536 /* Print some statistics. */
1537 print_debug( dvdcss, "successful attempts %d/%d, scrambled blocks %d/%d",
1538 i_success, i_tries, i_encrypted, i_reads );
1540 if( i_success > 0 /* b_stop_scanning */ )
1542 print_debug( dvdcss, "vts key initialized" );
1543 return 1;
1546 if( i_encrypted == 0 && i_reads > 0 )
1548 memset( p_titlekey, 0, KEY_SIZE );
1549 print_debug( dvdcss, "no scrambled sectors found" );
1550 return 0;
1553 memset( p_titlekey, 0, KEY_SIZE );
1554 return -1;
1558 /******************************************************************************
1559 * The original Ethan Hawke (DeCSSPlus) attack (modified).
1560 ******************************************************************************
1561 * Tries to find a repeating pattern just before the encrypted part starts.
1562 * Then it guesses that the plain text for first encrypted bytes are
1563 * a contiuation of that pattern.
1564 *****************************************************************************/
1565 static int AttackPattern( uint8_t const p_sec[ DVDCSS_BLOCK_SIZE ],
1566 int i_pos, uint8_t *p_key )
1568 unsigned int i_best_plen = 0;
1569 unsigned int i_best_p = 0;
1570 unsigned int i, j;
1572 /* For all cycle length from 2 to 48 */
1573 for( i = 2 ; i < 0x30 ; i++ )
1575 /* Find the number of bytes that repeats in cycles. */
1576 for( j = i + 1;
1577 j < 0x80 && ( p_sec[0x7F - (j%i)] == p_sec[0x7F - j] );
1578 j++ )
1580 /* We have found j repeating bytes with a cycle length i. */
1581 if( j > i_best_plen )
1583 i_best_plen = j;
1584 i_best_p = i;
1589 /* We need at most 10 plain text bytes?, so a make sure that we
1590 * have at least 20 repeated bytes and that they have cycled at
1591 * least one time. */
1592 if( ( i_best_plen > 3 ) && ( i_best_plen / i_best_p >= 2) )
1594 int res;
1596 i_tries++;
1597 memset( p_key, 0, KEY_SIZE );
1598 res = RecoverTitleKey( 0, &p_sec[0x80],
1599 &p_sec[ 0x80 - (i_best_plen / i_best_p) * i_best_p ],
1600 &p_sec[0x54] /* key_seed */, p_key );
1601 i_success += ( res >= 0 );
1602 #if 0
1603 if( res >= 0 )
1605 fprintf( stderr, "key is %02x:%02x:%02x:%02x:%02x ",
1606 p_key[0], p_key[1], p_key[2], p_key[3], p_key[4] );
1607 fprintf( stderr, "at block %5d pattern len %3d period %3d %s\n",
1608 i_pos, i_best_plen, i_best_p, (res>=0?"y":"n") );
1610 #endif
1611 return ( res >= 0 );
1614 return 0;
1618 #if 0
1619 /******************************************************************************
1620 * Encrypted Padding_stream attack.
1621 ******************************************************************************
1622 * DVD specifies that there must only be one type of data in every sector.
1623 * Every sector is one pack and so must obviously be 2048 bytes long.
1624 * For the last pice of video data before a VOBU boundary there might not
1625 * be exactly the right amount of data to fill a sector. Then one has to
1626 * pad the pack to 2048 bytes. For just a few bytes this is done in the
1627 * header but for any large amount you insert a PES packet from the
1628 * Padding stream. This looks like 0x00 00 01 be xx xx ff ff ...
1629 * where xx xx is the length of the padding stream.
1630 *****************************************************************************/
1631 static int AttackPadding( uint8_t const p_sec[ DVDCSS_BLOCK_SIZE ],
1632 int i_pos, uint8_t *p_key )
1634 unsigned int i_pes_length;
1635 /*static int i_tries = 0, i_success = 0;*/
1637 i_pes_length = (p_sec[0x12]<<8) | p_sec[0x13];
1639 /* Coverd by the test below but usfull for debuging. */
1640 if( i_pes_length == DVDCSS_BLOCK_SIZE - 0x14 ) return 0;
1642 /* There must be room for at least 4? bytes of padding stream,
1643 * and it must be encrypted.
1644 * sector size - pack/pes header - padding startcode - padding length */
1645 if( ( DVDCSS_BLOCK_SIZE - 0x14 - 4 - 2 - i_pes_length < 4 ) ||
1646 ( p_sec[0x14 + i_pes_length + 0] == 0x00 &&
1647 p_sec[0x14 + i_pes_length + 1] == 0x00 &&
1648 p_sec[0x14 + i_pes_length + 2] == 0x01 ) )
1650 fprintf( stderr, "plain %d %02x:%02x:%02x:%02x (type %02x sub %02x)\n",
1651 DVDCSS_BLOCK_SIZE - 0x14 - 4 - 2 - i_pes_length,
1652 p_sec[0x14 + i_pes_length + 0],
1653 p_sec[0x14 + i_pes_length + 1],
1654 p_sec[0x14 + i_pes_length + 2],
1655 p_sec[0x14 + i_pes_length + 3],
1656 p_sec[0x11], p_sec[0x17 + p_sec[0x16]]);
1657 return 0;
1660 /* If we are here we know that there is a where in the pack a
1661 encrypted PES header is (startcode + length). It's never more
1662 than two packets in the pack, so we 'know' the length. The
1663 plaintext at offset (0x14 + i_pes_length) will then be
1664 00 00 01 e0/bd/be xx xx, in the case of be the following bytes
1665 are also known. */
1667 /* An encrypted SPU PES packet with another encrypted PES packet following.
1668 Normaly if the following was a padding stream that would be in plain
1669 text. So it will be another SPU PES packet. */
1670 if( p_sec[0x11] == 0xbd &&
1671 p_sec[0x17 + p_sec[0x16]] >= 0x20 &&
1672 p_sec[0x17 + p_sec[0x16]] <= 0x3f )
1674 i_tries++;
1677 /* A Video PES packet with another encrypted PES packet following.
1678 * No reason execpt for time stamps to break the data into two packets.
1679 * So it's likely that the following PES packet is a padding stream. */
1680 if( p_sec[0x11] == 0xe0 )
1682 i_tries++;
1685 if( 1 )
1687 /*fprintf( stderr, "key is %02x:%02x:%02x:%02x:%02x ",
1688 p_key[0], p_key[1], p_key[2], p_key[3], p_key[4] );*/
1689 fprintf( stderr, "at block %5d padding len %4d "
1690 "type %02x sub %02x\n", i_pos, i_pes_length,
1691 p_sec[0x11], p_sec[0x17 + p_sec[0x16]]);
1694 return 0;
1696 #endif