vesa_lvo.c: make functions static
[mplayer/glamo.git] / mp3lib / layer3.c
blob91943a8f18db28178c67811b5f06207848f82127
1 /*
2 * Modified for use with MPlayer, for details see the changelog at
3 * http://svn.mplayerhq.hu/mplayer/trunk/
4 * $Id$
5 */
7 /*
8 * Mpeg Layer-3 audio decoder
9 * --------------------------
10 * copyright (c) 1995-1999 by Michael Hipp.
11 * All rights reserved. See also 'README'
13 * Optimize-TODO: put short bands into the band-field without the stride
14 * of 3 reals
15 * Length-optimze: unify long and short band code where it is possible
18 #include "mpg123.h"
20 #if 0
21 #define L3_DEBUG 1
22 #endif
24 #if 0
25 #define CUT_HF
26 #endif
28 #define REAL_MUL(x, y) ((x) * (y))
30 static real ispow[8207];
31 static real aa_ca[8],aa_cs[8];
32 static real COS1[12][6];
33 static real win[4][36];
34 static real win1[4][36];
35 static real gainpow2[256+118+4];
37 /* non static for external 3dnow functions */
38 real COS9[9];
39 static real COS6_1,COS6_2;
40 real tfcos36[9];
42 static real tfcos12[3];
43 #define NEW_DCT9
44 #ifdef NEW_DCT9
45 static real cos9[3],cos18[3];
46 #endif
48 struct bandInfoStruct {
49 uint16_t longIdx[23];
50 uint8_t longDiff[22];
51 uint16_t shortIdx[14];
52 uint8_t shortDiff[13];
55 static int longLimit[9][23];
56 static int shortLimit[9][14];
58 static const struct bandInfoStruct bandInfo[9] = {
60 /* MPEG 1.0 */
61 { {0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576},
62 {4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158},
63 {0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3},
64 {4,4,4,4,6,8,10,12,14,18,22,30,56} } ,
66 { {0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576},
67 {4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192},
68 {0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3},
69 {4,4,4,4,6,6,10,12,14,16,20,26,66} } ,
71 { {0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576} ,
72 {4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26} ,
73 {0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3} ,
74 {4,4,4,4,6,8,12,16,20,26,34,42,12} } ,
76 /* MPEG 2.0 */
77 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
78 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } ,
79 {0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} ,
80 {4,4,4,6,6,8,10,14,18,26,32,42,18 } } ,
81 /* changed 19th value fropm 330 to 332 */
82 { {0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,332,394,464,540,576},
83 {6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36 } ,
84 {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3} ,
85 {4,4,4,6,8,10,12,14,18,24,32,44,12 } } ,
87 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
88 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 },
89 {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3},
90 {4,4,4,6,8,10,12,14,18,24,30,40,18 } } ,
91 /* MPEG 2.5 */
92 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
93 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
94 {0,12,24,36,54,78,108,144,186,240,312,402,522,576},
95 {4,4,4,6,8,10,12,14,18,24,30,40,18} },
96 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
97 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
98 {0,12,24,36,54,78,108,144,186,240,312,402,522,576},
99 {4,4,4,6,8,10,12,14,18,24,30,40,18} },
100 { {0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576},
101 {12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2},
102 {0, 24, 48, 72,108,156,216,288,372,480,486,492,498,576},
103 {8,8,8,12,16,20,24,28,36,2,2,2,26} } ,
106 static int mapbuf0[9][152];
107 static int mapbuf1[9][156];
108 static int mapbuf2[9][44];
109 static int *map[9][3];
110 static int *mapend[9][3];
112 static unsigned int n_slen2[512]; /* MPEG 2.0 slen for 'normal' mode */
113 static unsigned int i_slen2[256]; /* MPEG 2.0 slen for intensity stereo */
115 static real tan1_1[16],tan2_1[16],tan1_2[16],tan2_2[16];
116 static real pow1_1[2][16],pow2_1[2][16],pow1_2[2][16],pow2_2[2][16];
119 * init tables for layer-3
121 static void init_layer3(int down_sample_sblimit)
123 int i,j,k,l;
125 for(i=-256;i<118+4;i++)
127 if(_has_mmx)
128 gainpow2[i+256] = 16384.0 * pow((double)2.0,-0.25 * (double) (i+210) );
129 else
130 gainpow2[i+256] = pow((double)2.0,-0.25 * (double) (i+210) );
132 for(i=0;i<8207;i++)
133 ispow[i] = pow((double)i,(double)4.0/3.0);
135 for (i=0;i<8;i++)
137 static const double Ci[8]={-0.6,-0.535,-0.33,-0.185,-0.095,-0.041,-0.0142,-0.0037};
138 double sq=sqrt(1.0+Ci[i]*Ci[i]);
139 aa_cs[i] = 1.0/sq;
140 aa_ca[i] = Ci[i]/sq;
143 for(i=0;i<18;i++)
145 win[0][i] = win[1][i] = 0.5 * sin( M_PI / 72.0 * (double) (2*(i+0) +1) ) / cos ( M_PI * (double) (2*(i+0) +19) / 72.0 );
146 win[0][i+18] = win[3][i+18] = 0.5 * sin( M_PI / 72.0 * (double) (2*(i+18)+1) ) / cos ( M_PI * (double) (2*(i+18)+19) / 72.0 );
148 for(i=0;i<6;i++)
150 win[1][i+18] = 0.5 / cos ( M_PI * (double) (2*(i+18)+19) / 72.0 );
151 win[3][i+12] = 0.5 / cos ( M_PI * (double) (2*(i+12)+19) / 72.0 );
152 win[1][i+24] = 0.5 * sin( M_PI / 24.0 * (double) (2*i+13) ) / cos ( M_PI * (double) (2*(i+24)+19) / 72.0 );
153 win[1][i+30] = win[3][i] = 0.0;
154 win[3][i+6 ] = 0.5 * sin( M_PI / 24.0 * (double) (2*i+1) ) / cos ( M_PI * (double) (2*(i+6 )+19) / 72.0 );
157 for(i=0;i<9;i++)
158 COS9[i] = cos( M_PI / 18.0 * (double) i);
160 for(i=0;i<9;i++)
161 tfcos36[i] = 0.5 / cos ( M_PI * (double) (i*2+1) / 36.0 );
162 for(i=0;i<3;i++)
163 tfcos12[i] = 0.5 / cos ( M_PI * (double) (i*2+1) / 12.0 );
165 COS6_1 = cos( M_PI / 6.0 * (double) 1);
166 COS6_2 = cos( M_PI / 6.0 * (double) 2);
168 #ifdef NEW_DCT9
169 cos9[0] = cos(1.0*M_PI/9.0);
170 cos9[1] = cos(5.0*M_PI/9.0);
171 cos9[2] = cos(7.0*M_PI/9.0);
172 cos18[0] = cos(1.0*M_PI/18.0);
173 cos18[1] = cos(11.0*M_PI/18.0);
174 cos18[2] = cos(13.0*M_PI/18.0);
175 #endif
177 for(i=0;i<12;i++)
179 win[2][i] = 0.5 * sin( M_PI / 24.0 * (double) (2*i+1) ) / cos ( M_PI * (double) (2*i+7) / 24.0 );
180 for(j=0;j<6;j++)
181 COS1[i][j] = cos( M_PI / 24.0 * (double) ((2*i+7)*(2*j+1)) );
184 for(j=0;j<4;j++) {
185 static const int len[4] = { 36,36,12,36 };
186 for(i=0;i<len[j];i+=2)
187 win1[j][i] = + win[j][i];
188 for(i=1;i<len[j];i+=2)
189 win1[j][i] = - win[j][i];
192 for(i=0;i<16;i++)
194 double t = tan( (double) i * M_PI / 12.0 );
195 tan1_1[i] = t / (1.0+t);
196 tan2_1[i] = 1.0 / (1.0 + t);
197 tan1_2[i] = M_SQRT2 * t / (1.0+t);
198 tan2_2[i] = M_SQRT2 / (1.0 + t);
200 for(j=0;j<2;j++) {
201 double base = pow(2.0,-0.25*(j+1.0));
202 double p1=1.0,p2=1.0;
203 if(i > 0) {
204 if( i & 1 )
205 p1 = pow(base,(i+1.0)*0.5);
206 else
207 p2 = pow(base,i*0.5);
209 pow1_1[j][i] = p1;
210 pow2_1[j][i] = p2;
211 pow1_2[j][i] = M_SQRT2 * p1;
212 pow2_2[j][i] = M_SQRT2 * p2;
216 for(j=0;j<9;j++)
218 const struct bandInfoStruct *bi = &bandInfo[j];
219 int *mp;
220 int cb,lwin;
221 const uint8_t *bdf;
223 mp = map[j][0] = mapbuf0[j];
224 bdf = bi->longDiff;
225 for(i=0,cb = 0; cb < 8 ; cb++,i+=*bdf++) {
226 *mp++ = (*bdf) >> 1;
227 *mp++ = i;
228 *mp++ = 3;
229 *mp++ = cb;
231 bdf = bi->shortDiff+3;
232 for(cb=3;cb<13;cb++) {
233 int l = (*bdf++) >> 1;
234 for(lwin=0;lwin<3;lwin++) {
235 *mp++ = l;
236 *mp++ = i + lwin;
237 *mp++ = lwin;
238 *mp++ = cb;
240 i += 6*l;
242 mapend[j][0] = mp;
244 mp = map[j][1] = mapbuf1[j];
245 bdf = bi->shortDiff+0;
246 for(i=0,cb=0;cb<13;cb++) {
247 int l = (*bdf++) >> 1;
248 for(lwin=0;lwin<3;lwin++) {
249 *mp++ = l;
250 *mp++ = i + lwin;
251 *mp++ = lwin;
252 *mp++ = cb;
254 i += 6*l;
256 mapend[j][1] = mp;
258 mp = map[j][2] = mapbuf2[j];
259 bdf = bi->longDiff;
260 for(cb = 0; cb < 22 ; cb++) {
261 *mp++ = (*bdf++) >> 1;
262 *mp++ = cb;
264 mapend[j][2] = mp;
268 for(j=0;j<9;j++) {
269 for(i=0;i<23;i++) {
270 longLimit[j][i] = (bandInfo[j].longIdx[i] - 1 + 8) / 18 + 1;
271 if(longLimit[j][i] > (down_sample_sblimit) )
272 longLimit[j][i] = down_sample_sblimit;
274 for(i=0;i<14;i++) {
275 shortLimit[j][i] = (bandInfo[j].shortIdx[i] - 1) / 18 + 1;
276 if(shortLimit[j][i] > (down_sample_sblimit) )
277 shortLimit[j][i] = down_sample_sblimit;
281 for(i=0;i<5;i++) {
282 for(j=0;j<6;j++) {
283 for(k=0;k<6;k++) {
284 int n = k + j * 6 + i * 36;
285 i_slen2[n] = i|(j<<3)|(k<<6)|(3<<12);
289 for(i=0;i<4;i++) {
290 for(j=0;j<4;j++) {
291 for(k=0;k<4;k++) {
292 int n = k + j * 4 + i * 16;
293 i_slen2[n+180] = i|(j<<3)|(k<<6)|(4<<12);
297 for(i=0;i<4;i++) {
298 for(j=0;j<3;j++) {
299 int n = j + i * 3;
300 i_slen2[n+244] = i|(j<<3) | (5<<12);
301 n_slen2[n+500] = i|(j<<3) | (2<<12) | (1<<15);
305 for(i=0;i<5;i++) {
306 for(j=0;j<5;j++) {
307 for(k=0;k<4;k++) {
308 for(l=0;l<4;l++) {
309 int n = l + k * 4 + j * 16 + i * 80;
310 n_slen2[n] = i|(j<<3)|(k<<6)|(l<<9)|(0<<12);
315 for(i=0;i<5;i++) {
316 for(j=0;j<5;j++) {
317 for(k=0;k<4;k++) {
318 int n = k + j * 4 + i * 20;
319 n_slen2[n+400] = i|(j<<3)|(k<<6)|(1<<12);
326 * read additional side information (for MPEG 1 and MPEG 2)
328 static int III_get_side_info(struct III_sideinfo *si,int stereo,
329 int ms_stereo,int sfreq,int single,int lsf)
331 int ch, gr;
332 int powdiff = (single == 3) ? 4 : 0;
334 static const int tabs[2][5] = { { 2,9,5,3,4 } , { 1,8,1,2,9 } };
335 const int *tab = tabs[lsf];
337 si->main_data_begin = getbits(tab[1]);
338 if (stereo == 1)
339 si->private_bits = getbits_fast(tab[2]);
340 else
341 si->private_bits = getbits_fast(tab[3]);
343 if(!lsf) {
344 for (ch=0; ch<stereo; ch++) {
345 si->ch[ch].gr[0].scfsi = -1;
346 si->ch[ch].gr[1].scfsi = getbits_fast(4);
350 for (gr=0; gr<tab[0]; gr++) {
351 for (ch=0; ch<stereo; ch++) {
352 register struct gr_info_s *gr_info = &(si->ch[ch].gr[gr]);
354 gr_info->part2_3_length = getbits(12);
355 gr_info->big_values = getbits(9);
356 if(gr_info->big_values > 288) {
357 fprintf(stderr,"big_values too large!\n");
358 gr_info->big_values = 288;
360 gr_info->pow2gain = gainpow2+256 - getbits_fast(8) + powdiff;
361 if(ms_stereo)
362 gr_info->pow2gain += 2;
363 gr_info->scalefac_compress = getbits(tab[4]);
365 if(get1bit()) { /* window switch flag */
366 int i;
367 #ifdef L3_DEBUG
368 if(2*gr_info->big_values > bandInfo[sfreq].shortIdx[12])
369 fprintf(stderr,"L3: BigValues too large, doesn't make sense %d %d\n",2*gr_info->big_values,bandInfo[sfreq].shortIdx[12]);
370 #endif
372 gr_info->block_type = getbits_fast(2);
373 gr_info->mixed_block_flag = get1bit();
374 gr_info->table_select[0] = getbits_fast(5);
375 gr_info->table_select[1] = getbits_fast(5);
377 * table_select[2] not needed, because there is no region2,
378 * but to satisfy some verifications tools we set it either.
380 gr_info->table_select[2] = 0;
381 for(i=0;i<3;i++)
382 gr_info->full_gain[i] = gr_info->pow2gain + (getbits_fast(3)<<3);
384 if(gr_info->block_type == 0) {
385 fprintf(stderr,"Blocktype == 0 and window-switching == 1 not allowed.\n");
386 return 0;
389 /* region_count/start parameters are implicit in this case. */
390 if(!lsf || gr_info->block_type == 2)
391 gr_info->region1start = 36>>1;
392 else {
393 /* check this again for 2.5 and sfreq=8 */
394 if(sfreq == 8)
395 gr_info->region1start = 108>>1;
396 else
397 gr_info->region1start = 54>>1;
399 gr_info->region2start = 576>>1;
401 else {
402 int i,r0c,r1c;
403 #ifdef L3_DEBUG
404 if(2*gr_info->big_values > bandInfo[sfreq].longIdx[21])
405 fprintf(stderr,"L3: BigValues too large, doesn't make sense %d %d\n",2*gr_info->big_values,bandInfo[sfreq].longIdx[21]);
406 #endif
407 for (i=0; i<3; i++)
408 gr_info->table_select[i] = getbits_fast(5);
409 r0c = getbits_fast(4);
410 r1c = getbits_fast(3);
411 gr_info->region1start = bandInfo[sfreq].longIdx[r0c+1] >> 1 ;
412 if(r0c + r1c + 2 > 22)
413 gr_info->region2start = 576>>1;
414 else
415 gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1;
416 gr_info->block_type = 0;
417 gr_info->mixed_block_flag = 0;
419 if(!lsf)
420 gr_info->preflag = get1bit();
421 gr_info->scalefac_scale = get1bit();
422 gr_info->count1table_select = get1bit();
426 return !0;
430 * read scalefactors
432 static int III_get_scale_factors_1(int *scf,struct gr_info_s *gr_info)
434 static const unsigned char slen[2][16] = {
435 {0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4},
436 {0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3}
438 int numbits;
439 int num0 = slen[0][gr_info->scalefac_compress];
440 int num1 = slen[1][gr_info->scalefac_compress];
442 if (gr_info->block_type == 2) {
443 int i=18;
444 numbits = (num0 + num1) * 18;
446 if (gr_info->mixed_block_flag) {
447 for (i=8;i;i--)
448 *scf++ = getbits_fast(num0);
449 i = 9;
450 numbits -= num0; /* num0 * 17 + num1 * 18 */
453 for (;i;i--)
454 *scf++ = getbits_fast(num0);
455 for (i = 18; i; i--)
456 *scf++ = getbits_fast(num1);
457 *scf++ = 0; *scf++ = 0; *scf++ = 0; /* short[13][0..2] = 0 */
459 else {
460 int i;
461 int scfsi = gr_info->scfsi;
463 if(scfsi < 0) { /* scfsi < 0 => granule == 0 */
464 for(i=11;i;i--)
465 *scf++ = getbits_fast(num0);
466 for(i=10;i;i--)
467 *scf++ = getbits_fast(num1);
468 numbits = (num0 + num1) * 10 + num0;
469 *scf++ = 0;
471 else {
472 numbits = 0;
473 if(!(scfsi & 0x8)) {
474 for (i=0;i<6;i++)
475 *scf++ = getbits_fast(num0);
476 numbits += num0 * 6;
478 else {
479 scf += 6;
482 if(!(scfsi & 0x4)) {
483 for (i=0;i<5;i++)
484 *scf++ = getbits_fast(num0);
485 numbits += num0 * 5;
487 else {
488 scf += 5;
491 if(!(scfsi & 0x2)) {
492 for(i=0;i<5;i++)
493 *scf++ = getbits_fast(num1);
494 numbits += num1 * 5;
496 else {
497 scf += 5;
500 if(!(scfsi & 0x1)) {
501 for (i=0;i<5;i++)
502 *scf++ = getbits_fast(num1);
503 numbits += num1 * 5;
505 else {
506 scf += 5;
508 *scf++ = 0; /* no l[21] in original sources */
511 return numbits;
514 static int III_get_scale_factors_2(int *scf,struct gr_info_s *gr_info,int i_stereo)
516 unsigned char *pnt;
517 int i,j;
518 unsigned int slen;
519 int n = 0;
520 int numbits = 0;
522 static unsigned char stab[3][6][4] = {
523 { { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} ,
524 { 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } ,
525 { { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} ,
526 {12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } ,
527 { { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} ,
528 { 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } };
530 if(i_stereo) /* i_stereo AND second channel -> do_layer3() checks this */
531 slen = i_slen2[gr_info->scalefac_compress>>1];
532 else
533 slen = n_slen2[gr_info->scalefac_compress];
535 gr_info->preflag = (slen>>15) & 0x1;
537 n = 0;
538 if( gr_info->block_type == 2 ) {
539 n++;
540 if(gr_info->mixed_block_flag) n++;
543 pnt = stab[n][(slen>>12)&0x7];
545 for(i=0;i<4;i++) {
546 int num = slen & 0x7;
547 slen >>= 3;
548 if(num) {
549 for(j=0;j<(int)(pnt[i]);j++) *scf++ = getbits_fast(num);
550 numbits += pnt[i] * num;
552 else {
553 for(j=0;j<(int)(pnt[i]);j++) *scf++ = 0;
557 n = (n << 1) + 1;
558 for(i=0;i<n;i++) *scf++ = 0;
560 return numbits;
563 static int pretab1[22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0};
564 static int pretab2[22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
566 #define getbitoffset() ((-bitindex)&0x7)
567 #define getbyte() (*wordpointer++)
570 * Dequantize samples (includes huffman decoding)
572 /* 24 is enough because tab13 has max. a 19 bit huffvector */
573 #define BITSHIFT ((sizeof(long)-1)*8)
574 #define REFRESH_MASK \
575 while(num < BITSHIFT) { \
576 mask |= ((unsigned long)getbyte())<<(BITSHIFT-num); \
577 num += 8; \
578 part2remain -= 8; }
580 static int III_dequantize_sample(real xr[SBLIMIT][SSLIMIT],int *scf,
581 struct gr_info_s *gr_info,int sfreq,int part2bits)
583 int shift = 1 + gr_info->scalefac_scale;
584 real *xrpnt = (real *) xr;
585 int l[3],l3;
586 int part2remain = gr_info->part2_3_length - part2bits;
587 int *me;
589 int num=getbitoffset();
590 long mask;
591 /* we must split this, because for num==0 the shift is undefined if you do it in one step */
592 mask = ((unsigned long) getbits(num))<<BITSHIFT;
593 mask <<= 8-num;
594 part2remain -= num;
597 int bv = gr_info->big_values;
598 int region1 = gr_info->region1start;
599 int region2 = gr_info->region2start;
601 l3 = ((576>>1)-bv)>>1;
603 * we may lose the 'odd' bit here !!
604 * check this later again
606 if(bv <= region1) {
607 l[0] = bv; l[1] = l[2] = 0;
609 else {
610 l[0] = region1;
611 if(bv <= region2) {
612 l[1] = bv - l[0]; l[2] = 0;
614 else {
615 l[1] = region2 - l[0]; l[2] = bv - region2;
620 if(gr_info->block_type == 2) {
622 * decoding with short or mixed mode BandIndex table
624 int i,max[4];
625 int step=0,lwin=3,cb=0;
626 register real v = 0.0;
627 register int *m,mc;
629 if(gr_info->mixed_block_flag) {
630 max[3] = -1;
631 max[0] = max[1] = max[2] = 2;
632 m = map[sfreq][0];
633 me = mapend[sfreq][0];
635 else {
636 max[0] = max[1] = max[2] = max[3] = -1;
637 /* max[3] not really needed in this case */
638 m = map[sfreq][1];
639 me = mapend[sfreq][1];
642 mc = 0;
643 for(i=0;i<2;i++) {
644 int lp = l[i];
645 struct newhuff *h = ht+gr_info->table_select[i];
646 for(;lp;lp--,mc--) {
647 register int x,y;
648 if( (!mc) ) {
649 mc = *m++;
650 xrpnt = ((real *) xr) + (*m++);
651 lwin = *m++;
652 cb = *m++;
653 if(lwin == 3) {
654 v = gr_info->pow2gain[(*scf++) << shift];
655 step = 1;
657 else {
658 v = gr_info->full_gain[lwin][(*scf++) << shift];
659 step = 3;
663 register short *val = h->table;
664 REFRESH_MASK;
665 while((y=*val++)<0) {
666 if (mask < 0)
667 val -= y;
668 num--;
669 mask <<= 1;
671 x = y >> 4;
672 y &= 0xf;
674 if(x == 15 && h->linbits) {
675 max[lwin] = cb;
676 REFRESH_MASK;
677 x += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
678 num -= h->linbits+1;
679 mask <<= h->linbits;
680 if(mask < 0)
681 *xrpnt = REAL_MUL(-ispow[x], v);
682 else
683 *xrpnt = REAL_MUL(ispow[x], v);
684 mask <<= 1;
686 else if(x) {
687 max[lwin] = cb;
688 if(mask < 0)
689 *xrpnt = REAL_MUL(-ispow[x], v);
690 else
691 *xrpnt = REAL_MUL(ispow[x], v);
692 num--;
693 mask <<= 1;
695 else
696 *xrpnt = 0.0;
697 xrpnt += step;
698 if(y == 15 && h->linbits) {
699 max[lwin] = cb;
700 REFRESH_MASK;
701 y += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
702 num -= h->linbits+1;
703 mask <<= h->linbits;
704 if(mask < 0)
705 *xrpnt = REAL_MUL(-ispow[y], v);
706 else
707 *xrpnt = REAL_MUL(ispow[y], v);
708 mask <<= 1;
710 else if(y) {
711 max[lwin] = cb;
712 if(mask < 0)
713 *xrpnt = REAL_MUL(-ispow[y], v);
714 else
715 *xrpnt = REAL_MUL(ispow[y], v);
716 num--;
717 mask <<= 1;
719 else
720 *xrpnt = 0.0;
721 xrpnt += step;
725 for(;l3 && (part2remain+num > 0);l3--) {
726 struct newhuff *h = htc+gr_info->count1table_select;
727 register short *val = h->table,a;
729 REFRESH_MASK;
730 while((a=*val++)<0) {
731 if (mask < 0)
732 val -= a;
733 num--;
734 mask <<= 1;
736 if(part2remain+num <= 0) {
737 num -= part2remain+num;
738 break;
741 for(i=0;i<4;i++) {
742 if(!(i & 1)) {
743 if(!mc) {
744 mc = *m++;
745 xrpnt = ((real *) xr) + (*m++);
746 lwin = *m++;
747 cb = *m++;
748 if(lwin == 3) {
749 v = gr_info->pow2gain[(*scf++) << shift];
750 step = 1;
752 else {
753 v = gr_info->full_gain[lwin][(*scf++) << shift];
754 step = 3;
757 mc--;
759 if( (a & (0x8>>i)) ) {
760 max[lwin] = cb;
761 if(part2remain+num <= 0) {
762 break;
764 if(mask < 0)
765 *xrpnt = -v;
766 else
767 *xrpnt = v;
768 num--;
769 mask <<= 1;
771 else
772 *xrpnt = 0.0;
773 xrpnt += step;
777 if(lwin < 3) { /* short band? */
778 while(1) {
779 for(;mc > 0;mc--) {
780 *xrpnt = 0.0; xrpnt += 3; /* short band -> step=3 */
781 *xrpnt = 0.0; xrpnt += 3;
783 if(m >= me)
784 break;
785 mc = *m++;
786 xrpnt = ((real *) xr) + *m++;
787 if(*m++ == 0)
788 break; /* optimize: field will be set to zero at the end of the function */
789 m++; /* cb */
793 gr_info->maxband[0] = max[0]+1;
794 gr_info->maxband[1] = max[1]+1;
795 gr_info->maxband[2] = max[2]+1;
796 gr_info->maxbandl = max[3]+1;
799 int rmax = max[0] > max[1] ? max[0] : max[1];
800 rmax = (rmax > max[2] ? rmax : max[2]) + 1;
801 gr_info->maxb = rmax ? shortLimit[sfreq][rmax] : longLimit[sfreq][max[3]+1];
805 else {
807 * decoding with 'long' BandIndex table (block_type != 2)
809 int *pretab = gr_info->preflag ? pretab1 : pretab2;
810 int i,max = -1;
811 int cb = 0;
812 int *m = map[sfreq][2];
813 register real v = 0.0;
814 int mc = 0;
817 * long hash table values
819 for(i=0;i<3;i++) {
820 int lp = l[i];
821 struct newhuff *h = ht+gr_info->table_select[i];
823 for(;lp;lp--,mc--) {
824 int x,y;
826 if(!mc) {
827 mc = *m++;
828 cb = *m++;
829 #ifdef CUT_HF
830 if(cb == 21) {
831 fprintf(stderr,"c");
832 v = 0.0;
834 else
835 #endif
836 v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift];
840 register short *val = h->table;
841 REFRESH_MASK;
842 while((y=*val++)<0) {
843 if (mask < 0)
844 val -= y;
845 num--;
846 mask <<= 1;
848 x = y >> 4;
849 y &= 0xf;
852 if (x == 15 && h->linbits) {
853 max = cb;
854 REFRESH_MASK;
855 x += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
856 num -= h->linbits+1;
857 mask <<= h->linbits;
858 if(mask < 0)
859 *xrpnt++ = REAL_MUL(-ispow[x], v);
860 else
861 *xrpnt++ = REAL_MUL(ispow[x], v);
862 mask <<= 1;
864 else if(x) {
865 max = cb;
866 if(mask < 0)
867 *xrpnt++ = REAL_MUL(-ispow[x], v);
868 else
869 *xrpnt++ = REAL_MUL(ispow[x], v);
870 num--;
871 mask <<= 1;
873 else
874 *xrpnt++ = 0.0;
876 if (y == 15 && h->linbits) {
877 max = cb;
878 REFRESH_MASK;
879 y += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
880 num -= h->linbits+1;
881 mask <<= h->linbits;
882 if(mask < 0)
883 *xrpnt++ = REAL_MUL(-ispow[y], v);
884 else
885 *xrpnt++ = REAL_MUL(ispow[y], v);
886 mask <<= 1;
888 else if(y) {
889 max = cb;
890 if(mask < 0)
891 *xrpnt++ = REAL_MUL(-ispow[y], v);
892 else
893 *xrpnt++ = REAL_MUL(ispow[y], v);
894 num--;
895 mask <<= 1;
897 else
898 *xrpnt++ = 0.0;
903 * short (count1table) values
905 for(;l3 && (part2remain+num > 0);l3--) {
906 struct newhuff *h = htc+gr_info->count1table_select;
907 register short *val = h->table,a;
909 REFRESH_MASK;
910 while((a=*val++)<0) {
911 if (mask < 0)
912 val -= a;
913 num--;
914 mask <<= 1;
916 if(part2remain+num <= 0) {
917 num -= part2remain+num;
918 break;
921 for(i=0;i<4;i++) {
922 if(!(i & 1)) {
923 if(!mc) {
924 mc = *m++;
925 cb = *m++;
926 #ifdef CUT_HF
927 if(cb == 21) {
928 fprintf(stderr,"c");
929 v = 0.0;
931 else
932 #endif
933 v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift];
935 mc--;
937 if ( (a & (0x8>>i)) ) {
938 max = cb;
939 if(part2remain+num <= 0) {
940 break;
942 if(mask < 0)
943 *xrpnt++ = -v;
944 else
945 *xrpnt++ = v;
946 num--;
947 mask <<= 1;
949 else
950 *xrpnt++ = 0.0;
954 gr_info->maxbandl = max+1;
955 gr_info->maxb = longLimit[sfreq][gr_info->maxbandl];
958 part2remain += num;
959 // backbits(num);
960 bitindex -= num; wordpointer += (bitindex>>3); bitindex &= 0x7;
961 num = 0;
963 while(xrpnt < &xr[SBLIMIT][0])
964 *xrpnt++ = 0.0;
966 while( part2remain > 16 ) {
967 getbits(16); /* Dismiss stuffing Bits */
968 part2remain -= 16;
970 if(part2remain > 0)
971 getbits(part2remain);
972 else if(part2remain < 0) {
973 fprintf(stderr,"mpg123: Can't rewind stream by %d bits!\n",-part2remain);
974 return 1; /* -> error */
976 return 0;
983 * III_stereo: calculate real channel values for Joint-I-Stereo-mode
985 static void III_i_stereo(real xr_buf[2][SBLIMIT][SSLIMIT],int *scalefac,
986 struct gr_info_s *gr_info,int sfreq,int ms_stereo,int lsf)
988 real (*xr)[SBLIMIT*SSLIMIT] = (real (*)[SBLIMIT*SSLIMIT] ) xr_buf;
989 const struct bandInfoStruct *bi = &bandInfo[sfreq];
991 const real *tab1,*tab2;
993 int tab;
994 static const real *tabs[3][2][2] = {
995 { { tan1_1,tan2_1 } , { tan1_2,tan2_2 } },
996 { { pow1_1[0],pow2_1[0] } , { pow1_2[0],pow2_2[0] } } ,
997 { { pow1_1[1],pow2_1[1] } , { pow1_2[1],pow2_2[1] } }
1000 tab = lsf + (gr_info->scalefac_compress & lsf);
1001 tab1 = tabs[tab][ms_stereo][0];
1002 tab2 = tabs[tab][ms_stereo][1];
1003 #if 0
1004 if(lsf) {
1005 int p = gr_info->scalefac_compress & 0x1;
1006 if(ms_stereo) {
1007 tab1 = pow1_2[p]; tab2 = pow2_2[p];
1009 else {
1010 tab1 = pow1_1[p]; tab2 = pow2_1[p];
1013 else {
1014 if(ms_stereo) {
1015 tab1 = tan1_2; tab2 = tan2_2;
1017 else {
1018 tab1 = tan1_1; tab2 = tan2_1;
1021 #endif
1023 // printf("III_i_st: tab1=%p tab2=%p tab=%d ms=%d \n", tab1, tab2, tab, ms_stereo);
1025 if (gr_info->block_type == 2) {
1026 int lwin,do_l = 0;
1027 if( gr_info->mixed_block_flag )
1028 do_l = 1;
1030 for (lwin=0;lwin<3;lwin++) { /* process each window */
1031 /* get first band with zero values */
1032 int is_p,sb,idx,sfb = gr_info->maxband[lwin]; /* sfb is minimal 3 for mixed mode */
1033 if(sfb > 3)
1034 do_l = 0;
1036 for(;sfb<12;sfb++) {
1037 is_p = scalefac[sfb*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
1038 if(is_p != 7) {
1039 real t1,t2;
1040 sb = bi->shortDiff[sfb];
1041 idx = bi->shortIdx[sfb] + lwin;
1042 t1 = tab1[is_p]; t2 = tab2[is_p];
1043 for (; sb > 0; sb--,idx+=3) {
1044 real v = xr[0][idx];
1045 xr[0][idx] = REAL_MUL(v, t1);
1046 xr[1][idx] = REAL_MUL(v, t2);
1051 #if 1
1052 /* in the original: copy 10 to 11 , here: copy 11 to 12
1053 maybe still wrong??? (copy 12 to 13?) */
1054 is_p = scalefac[11*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
1055 sb = bi->shortDiff[12];
1056 idx = bi->shortIdx[12] + lwin;
1057 #else
1058 is_p = scalefac[10*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
1059 sb = bi->shortDiff[11];
1060 idx = bi->shortIdx[11] + lwin;
1061 #endif
1062 if(is_p != 7) {
1063 real t1,t2;
1064 t1 = tab1[is_p]; t2 = tab2[is_p];
1065 for ( ; sb > 0; sb--,idx+=3 ) {
1066 real v = xr[0][idx];
1067 xr[0][idx] = REAL_MUL(v, t1);
1068 xr[1][idx] = REAL_MUL(v, t2);
1071 } /* end for(lwin; .. ; . ) */
1073 /* also check l-part, if ALL bands in the three windows are 'empty'
1074 * and mode = mixed_mode
1076 if (do_l) {
1077 int sfb = gr_info->maxbandl;
1078 int idx = bi->longIdx[sfb];
1080 for ( ; sfb<8; sfb++ ) {
1081 int sb = bi->longDiff[sfb];
1082 int is_p = scalefac[sfb]; /* scale: 0-15 */
1083 if(is_p != 7) {
1084 real t1,t2;
1085 t1 = tab1[is_p]; t2 = tab2[is_p];
1086 for ( ; sb > 0; sb--,idx++) {
1087 real v = xr[0][idx];
1088 xr[0][idx] = REAL_MUL(v, t1);
1089 xr[1][idx] = REAL_MUL(v, t2);
1092 else
1093 idx += sb;
1097 else { /* ((gr_info->block_type != 2)) */
1098 int sfb = gr_info->maxbandl;
1099 int is_p,idx = bi->longIdx[sfb];
1101 /* hmm ... maybe the maxbandl stuff for i-stereo is buggy? */
1102 if(sfb <= 21) {
1103 for ( ; sfb<21; sfb++) {
1104 int sb = bi->longDiff[sfb];
1105 is_p = scalefac[sfb]; /* scale: 0-15 */
1106 if(is_p != 7) {
1107 real t1,t2;
1108 t1 = tab1[is_p]; t2 = tab2[is_p];
1109 for ( ; sb > 0; sb--,idx++) {
1110 real v = xr[0][idx];
1111 xr[0][idx] = REAL_MUL(v, t1);
1112 xr[1][idx] = REAL_MUL(v, t2);
1115 else
1116 idx += sb;
1119 is_p = scalefac[20];
1120 if(is_p != 7) { /* copy l-band 20 to l-band 21 */
1121 int sb;
1122 real t1 = tab1[is_p],t2 = tab2[is_p];
1124 for ( sb = bi->longDiff[21]; sb > 0; sb--,idx++ ) {
1125 real v = xr[0][idx];
1126 xr[0][idx] = REAL_MUL(v, t1);
1127 xr[1][idx] = REAL_MUL(v, t2);
1130 } /* end: if(sfb <= 21) */
1131 } /* ... */
1134 static void III_antialias(real xr[SBLIMIT][SSLIMIT],struct gr_info_s *gr_info) {
1135 int sblim;
1137 if(gr_info->block_type == 2) {
1138 if(!gr_info->mixed_block_flag)
1139 return;
1140 sblim = 1;
1142 else {
1143 sblim = gr_info->maxb-1;
1146 /* 31 alias-reduction operations between each pair of sub-bands */
1147 /* with 8 butterflies between each pair */
1150 int sb;
1151 real *xr1=(real *) xr[1];
1153 for(sb=sblim;sb;sb--,xr1+=10) {
1154 int ss;
1155 real *cs=aa_cs,*ca=aa_ca;
1156 real *xr2 = xr1;
1158 for(ss=7;ss>=0;ss--) { /* upper and lower butterfly inputs */
1159 register real bu = *--xr2,bd = *xr1;
1160 *xr2 = (bu * (*cs) ) - (bd * (*ca) );
1161 *xr1++ = (bd * (*cs++) ) + (bu * (*ca++) );
1168 #include "dct64.c"
1169 #include "dct36.c"
1170 #include "dct12.c"
1172 #include "decod386.c"
1175 * III_hybrid
1178 static dct36_func_t dct36_func;
1180 static void III_hybrid(real fsIn[SBLIMIT][SSLIMIT],real tsOut[SSLIMIT][SBLIMIT],
1181 int ch,struct gr_info_s *gr_info)
1183 real *tspnt = (real *) tsOut;
1184 static real block[2][2][SBLIMIT*SSLIMIT] = { { { 0, } } };
1185 static int blc[2]={0,0};
1186 real *rawout1,*rawout2;
1187 int bt;
1188 int sb = 0;
1191 int b = blc[ch];
1192 rawout1=block[b][ch];
1193 b=-b+1;
1194 rawout2=block[b][ch];
1195 blc[ch] = b;
1198 if(gr_info->mixed_block_flag) {
1199 sb = 2;
1200 (*dct36_func)(fsIn[0],rawout1,rawout2,win[0],tspnt);
1201 (*dct36_func)(fsIn[1],rawout1+18,rawout2+18,win1[0],tspnt+1);
1202 rawout1 += 36; rawout2 += 36; tspnt += 2;
1205 bt = gr_info->block_type;
1206 if(bt == 2) {
1207 for (; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36) {
1208 dct12(fsIn[sb],rawout1,rawout2,win[2],tspnt);
1209 dct12(fsIn[sb+1],rawout1+18,rawout2+18,win1[2],tspnt+1);
1212 else {
1213 for (; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36) {
1214 (*dct36_func)(fsIn[sb],rawout1,rawout2,win[bt],tspnt);
1215 (*dct36_func)(fsIn[sb+1],rawout1+18,rawout2+18,win1[bt],tspnt+1);
1219 for(;sb<SBLIMIT;sb++,tspnt++) {
1220 int i;
1221 for(i=0;i<SSLIMIT;i++) {
1222 tspnt[i*SBLIMIT] = *rawout1++;
1223 *rawout2++ = 0.0;
1229 * main layer3 handler
1231 /* int do_layer3(struct frame *fr,int outmode,struct audio_info_struct *ai) */
1232 static int do_layer3(struct frame *fr,int single){
1233 int gr, ch, ss,clip=0;
1234 int scalefacs[2][39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */
1235 struct III_sideinfo sideinfo;
1236 int stereo = fr->stereo;
1237 int ms_stereo,i_stereo;
1238 int sfreq = fr->sampling_frequency;
1239 int stereo1,granules;
1241 // if (fr->error_protection) getbits(16); /* skip crc */
1243 if(stereo == 1) { /* stream is mono */
1244 stereo1 = 1;
1245 single = 0;
1246 } else
1247 if(single >= 0) /* stream is stereo, but force to mono */
1248 stereo1 = 1;
1249 else
1250 stereo1 = 2;
1252 if(fr->mode == MPG_MD_JOINT_STEREO) {
1253 ms_stereo = (fr->mode_ext & 0x2)>>1;
1254 i_stereo = fr->mode_ext & 0x1;
1255 } else
1256 ms_stereo = i_stereo = 0;
1258 if(!III_get_side_info(&sideinfo,stereo,ms_stereo,sfreq,single,fr->lsf))
1259 return -1;
1261 set_pointer(sideinfo.main_data_begin);
1263 granules = (fr->lsf) ? 1 : 2;
1264 for (gr=0;gr<granules;gr++){
1265 DECLARE_ALIGNED(16, real, hybridIn[2][SBLIMIT][SSLIMIT]);
1266 DECLARE_ALIGNED(16, real, hybridOut[2][SSLIMIT][SBLIMIT]);
1268 { struct gr_info_s *gr_info = &(sideinfo.ch[0].gr[gr]);
1269 int part2bits;
1270 if(fr->lsf)
1271 part2bits = III_get_scale_factors_2(scalefacs[0],gr_info,0);
1272 else
1273 part2bits = III_get_scale_factors_1(scalefacs[0],gr_info);
1274 if(III_dequantize_sample(hybridIn[0], scalefacs[0],gr_info,sfreq,part2bits))
1275 return clip;
1278 if(stereo == 2) {
1279 struct gr_info_s *gr_info = &(sideinfo.ch[1].gr[gr]);
1281 int part2bits;
1282 if(fr->lsf)
1283 part2bits = III_get_scale_factors_2(scalefacs[1],gr_info,i_stereo);
1284 else
1285 part2bits = III_get_scale_factors_1(scalefacs[1],gr_info);
1287 if(III_dequantize_sample(hybridIn[1],scalefacs[1],gr_info,sfreq,part2bits))
1288 return clip;
1290 if(ms_stereo) {
1291 int i;
1292 int maxb = sideinfo.ch[0].gr[gr].maxb;
1293 if(sideinfo.ch[1].gr[gr].maxb > maxb)
1294 maxb = sideinfo.ch[1].gr[gr].maxb;
1295 for(i=0;i<SSLIMIT*maxb;i++) {
1296 real tmp0 = ((real *)hybridIn[0])[i];
1297 real tmp1 = ((real *)hybridIn[1])[i];
1298 ((real *)hybridIn[0])[i] = tmp0 + tmp1;
1299 ((real *)hybridIn[1])[i] = tmp0 - tmp1;
1303 if(i_stereo)
1304 III_i_stereo(hybridIn,scalefacs[1],gr_info,sfreq,ms_stereo,fr->lsf);
1306 if(ms_stereo || i_stereo || (single == 3) ) {
1307 if(gr_info->maxb > sideinfo.ch[0].gr[gr].maxb)
1308 sideinfo.ch[0].gr[gr].maxb = gr_info->maxb;
1309 else
1310 gr_info->maxb = sideinfo.ch[0].gr[gr].maxb;
1313 switch(single) {
1314 case 3: {
1315 register int i;
1316 register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1];
1317 for(i=0;i<SSLIMIT*gr_info->maxb;i++,in0++)
1318 *in0 = (*in0 + *in1++); /* *0.5 done by pow-scale */
1319 break; }
1320 case 1: {
1321 register int i;
1322 register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1];
1323 for(i=0;i<SSLIMIT*gr_info->maxb;i++)
1324 *in0++ = *in1++;
1325 break; }
1328 } // if(stereo == 2)
1330 for(ch=0;ch<stereo1;ch++) {
1331 struct gr_info_s *gr_info = &(sideinfo.ch[ch].gr[gr]);
1332 III_antialias(hybridIn[ch],gr_info);
1333 III_hybrid(hybridIn[ch], hybridOut[ch], ch,gr_info);
1336 for(ss=0;ss<SSLIMIT;ss++) {
1337 if(single >= 0) {
1338 clip += (fr->synth_mono)(hybridOut[0][ss],pcm_sample,&pcm_point);
1339 } else {
1340 int p1 = pcm_point;
1341 clip += (fr->synth)(hybridOut[0][ss],0,pcm_sample,&p1);
1342 clip += (fr->synth)(hybridOut[1][ss],1,pcm_sample,&pcm_point);
1348 return clip;