4 * \brief Does mjpeg encoding as required by the zrmjpeg filter as well
5 * as by the zr video driver.
8 * Copyright (C) 2005 Rik Snel <rsnel@cube.dyndns.org>, license GPL v2
9 * - based on vd_lavc.c by A'rpi (C) 2002-2003
10 * - parts from ffmpeg Copyright (c) 2000-2003 Fabrice Bellard
12 * This files includes a straightforward (to be) optimized JPEG encoder for
13 * the YUV422 format, based on mjpeg code from ffmpeg.
15 * For an excellent introduction to the JPEG format, see:
16 * http://www.ece.purdue.edu/~bouman/grad-labs/lab8/pdf/lab.pdf
26 #include "img_format.h"
31 #include "libvo/fastmemcpy.h"
34 /* We need this #define because we need ../libavcodec/common.h to #define
35 * be2me_32, otherwise the linker will complain that it doesn't exist */
36 #define HAVE_AV_CONFIG_H
37 #include "libavcodec/avcodec.h"
38 #include "libavcodec/dsputil.h"
39 #include "libavcodec/mpegvideo.h"
40 //#include "jpeg_enc.h" /* this file is not present yet */
46 extern int avcodec_inited
;
48 /* some convenient #define's, is this portable enough? */
49 /// Printout with vf_zrmjpeg: prefix at VERBOSE level
50 #define VERBOSE(...) mp_msg(MSGT_DECVIDEO, MSGL_V, "vf_zrmjpeg: " __VA_ARGS__)
51 /// Printout with vf_zrmjpeg: prefix at ERROR level
52 #define ERROR(...) mp_msg(MSGT_DECVIDEO, MSGL_ERR, "vf_zrmjpeg: " __VA_ARGS__)
53 /// Printout with vf_zrmjpeg: prefix at WARNING level
54 #define WARNING(...) mp_msg(MSGT_DECVIDEO, MSGL_WARN, \
55 "vf_zrmjpeg: " __VA_ARGS__)
57 // "local" flag in vd_ffmpeg.c. If not set, avcodec_init() et. al. need to be called
58 // set when init is done, so that initialization is not done twice.
59 extern int avcodec_inited
;
61 /// structure copied from mjpeg.c
62 /* zrmjpeg_encode_mb needs access to these tables for the black & white
64 typedef struct MJpegContext
{
65 uint8_t huff_size_dc_luminance
[12];
66 uint16_t huff_code_dc_luminance
[12];
67 uint8_t huff_size_dc_chrominance
[12];
68 uint16_t huff_code_dc_chrominance
[12];
70 uint8_t huff_size_ac_luminance
[256];
71 uint16_t huff_code_ac_luminance
[256];
72 uint8_t huff_size_ac_chrominance
[256];
73 uint16_t huff_code_ac_chrominance
[256];
76 /// The get_pixels() routine to use. The real routine comes from dsputil
77 static void (*get_pixels
)(DCTELEM
*restrict block
, const uint8_t *pixels
, int line_size
);
79 /* Begin excessive code duplication ************************************/
80 /* Code coming from mpegvideo.c and mjpeg.c in ../libavcodec ***********/
82 /// copy of the table in mpegvideo.c
83 static const unsigned short aanscales
[64] = {
84 /**< precomputed values scaled up by 14 bits */
85 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
86 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
87 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
88 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
89 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
90 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
91 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
92 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
95 /// Precompute DCT quantizing matrix
97 * This routine will precompute the combined DCT matrix with qscale
98 * and DCT renorm needed by the MPEG encoder here. It is basically the
99 * same as the routine with the same name in mpegvideo.c, except for
100 * some coefficient changes. The matrix will be computed in two variations,
101 * depending on the DCT version used. The second used by the MMX version of DCT.
103 * \param s MpegEncContext pointer
104 * \param qmat[OUT] pointer to where the matrix is stored
105 * \param qmat16[OUT] pointer to where matrix for MMX is stored.
106 * This matrix is not permutated
107 * and second 64 entries are bias
108 * \param quant_matrix[IN] the quantizion matrix to use
109 * \param bias bias for the quantizer
110 * \param qmin minimum qscale value to set up for
111 * \param qmax maximum qscale value to set up for
113 * Only rows between qmin and qmax will be populated in the matrix.
114 * In this MJPEG encoder, only the value 8 for qscale is used.
116 static void convert_matrix(MpegEncContext
*s
, int (*qmat
)[64],
117 uint16_t (*qmat16
)[2][64], const uint16_t *quant_matrix
,
118 int bias
, int qmin
, int qmax
) {
121 for(qscale
= qmin
; qscale
<= qmax
; qscale
++) {
123 if (s
->dsp
.fdct
== ff_jpeg_fdct_islow
) {
124 for (i
= 0; i
< 64; i
++) {
125 const int j
= s
->dsp
.idct_permutation
[i
];
126 /* 16 <= qscale * quant_matrix[i] <= 7905
127 * 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
128 * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
129 * >= (1<<36)/249205026
130 * 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
131 qmat
[qscale
][i
] = (int)((UINT64_C(1) <<
133 (qscale
*quant_matrix
[j
]));
135 } else if (s
->dsp
.fdct
== fdct_ifast
) {
136 for (i
= 0; i
< 64; i
++) {
137 const int j
= s
->dsp
.idct_permutation
[i
];
138 /* 16 <= qscale * quant_matrix[i] <= 7905
139 * 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
140 * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
141 * >= (1<<36)/249205026
142 * 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
143 qmat
[qscale
][i
] = (int)((UINT64_C(1) <<
144 (QMAT_SHIFT
+ 11))/(aanscales
[i
]
145 *qscale
* quant_matrix
[j
]));
148 for (i
= 0; i
< 64; i
++) {
149 const int j
= s
->dsp
.idct_permutation
[i
];
150 /* We can safely assume that 16 <= quant_matrix[i] <= 255
151 * So 16 <= qscale * quant_matrix[i] <= 7905
152 * so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
153 * so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67 */
154 qmat
[qscale
][i
] = (int)((UINT64_C(1) <<
155 QMAT_SHIFT_MMX
) / (qscale
157 qmat16
[qscale
][0][i
] = (1 << QMAT_SHIFT_MMX
)
158 /(qscale
* quant_matrix
[j
]);
160 if (qmat16
[qscale
][0][i
] == 0 ||
161 qmat16
[qscale
][0][i
] == 128*256)
162 qmat16
[qscale
][0][i
]=128*256-1;
163 qmat16
[qscale
][1][i
]=ROUNDED_DIV(bias
164 <<(16-QUANT_BIAS_SHIFT
),
165 qmat16
[qscale
][0][i
]);
171 /// Emit the DC value into a MJPEG code sream
173 * This routine is only intended to be used from encode_block
175 * \param s pointer to MpegEncContext structure
176 * \param val the DC value to emit
177 * \param huff_size pointer to huffman code size array
178 * \param huff_code pointer to the code array corresponding to \a huff_size
180 * This routine is a clone of mjpeg_encode_dc
182 static inline void encode_dc(MpegEncContext
*s
, int val
,
183 uint8_t *huff_size
, uint16_t *huff_code
) {
187 put_bits(&s
->pb
, huff_size
[0], huff_code
[0]);
194 nbits
= av_log2_16bit(val
) + 1;
195 put_bits(&s
->pb
, huff_size
[nbits
], huff_code
[nbits
]);
196 put_bits(&s
->pb
, nbits
, mant
& ((1 << nbits
) - 1));
200 /// Huffman encode and emit one DCT block into the MJPEG code stream
202 * \param s pointer to MpegEncContext structure
203 * \param block pointer to the DCT block to emit
206 * This routine is a duplicate of encode_block in mjpeg.c
208 static void encode_block(MpegEncContext
*s
, DCTELEM
*block
, int n
) {
209 int mant
, nbits
, code
, i
, j
;
210 int component
, dc
, run
, last_index
, val
;
211 MJpegContext
*m
= s
->mjpeg_ctx
;
212 uint8_t *huff_size_ac
;
213 uint16_t *huff_code_ac
;
216 component
= (n
<= 3 ? 0 : n
- 4 + 1);
217 dc
= block
[0]; /* overflow is impossible */
218 val
= dc
- s
->last_dc
[component
];
220 encode_dc(s
, val
, m
->huff_size_dc_luminance
,
221 m
->huff_code_dc_luminance
);
222 huff_size_ac
= m
->huff_size_ac_luminance
;
223 huff_code_ac
= m
->huff_code_ac_luminance
;
225 encode_dc(s
, val
, m
->huff_size_dc_chrominance
,
226 m
->huff_code_dc_chrominance
);
227 huff_size_ac
= m
->huff_size_ac_chrominance
;
228 huff_code_ac
= m
->huff_code_ac_chrominance
;
230 s
->last_dc
[component
] = dc
;
235 last_index
= s
->block_last_index
[n
];
236 for (i
= 1; i
<= last_index
; i
++) {
237 j
= s
->intra_scantable
.permutated
[i
];
242 put_bits(&s
->pb
, huff_size_ac
[0xf0],
252 nbits
= av_log2_16bit(val
) + 1;
253 code
= (run
<< 4) | nbits
;
255 put_bits(&s
->pb
, huff_size_ac
[code
],
257 put_bits(&s
->pb
, nbits
, mant
& ((1 << nbits
) - 1));
262 /* output EOB only if not already 64 values */
263 if (last_index
< 63 || run
!= 0)
264 put_bits(&s
->pb
, huff_size_ac
[0], huff_code_ac
[0]);
267 /// clip overflowing DCT coefficients
269 * If the computed DCT coefficients in a block overflow, this routine
270 * will go through them and clip them to be in the valid range.
272 * \param s pointer to MpegEncContext
273 * \param block pointer to DCT block to process
274 * \param last_index index of the last non-zero coefficient in block
276 * The max and min level, which are clipped to, are stored in
277 * s->min_qcoeff and s->max_qcoeff respectively.
279 static inline void clip_coeffs(MpegEncContext
*s
, DCTELEM
*block
,
282 const int maxlevel
= s
->max_qcoeff
;
283 const int minlevel
= s
->min_qcoeff
;
285 for (i
= 0; i
<= last_index
; i
++) {
286 const int j
= s
->intra_scantable
.permutated
[i
];
287 int level
= block
[j
];
289 if (level
> maxlevel
) level
=maxlevel
;
290 else if(level
< minlevel
) level
=minlevel
;
295 /* End excessive code duplication **************************************/
298 struct MpegEncContext
*s
;
306 // Huffman encode and emit one MCU of MJPEG code
308 * \param j pointer to jpeg_enc_t structure
310 * This function huffman encodes one MCU, and emits the
311 * resulting bitstream into the MJPEG code that is currently worked on.
313 * this function is a reproduction of the one in mjpeg, it includes two
314 * changes, it allows for black&white encoding (it skips the U and V
315 * macroblocks and it outputs the huffman code for 'no change' (dc) and
316 * 'all zero' (ac)) and it takes 4 macroblocks (422) instead of 6 (420)
318 static av_always_inline
void zr_mjpeg_encode_mb(jpeg_enc_t
*j
) {
320 MJpegContext
*m
= j
->s
->mjpeg_ctx
;
322 encode_block(j
->s
, j
->s
->block
[0], 0);
323 encode_block(j
->s
, j
->s
->block
[1], 1);
326 put_bits(&j
->s
->pb
, m
->huff_size_dc_chrominance
[0],
327 m
->huff_code_dc_chrominance
[0]);
328 put_bits(&j
->s
->pb
, m
->huff_size_ac_chrominance
[0],
329 m
->huff_code_ac_chrominance
[0]);
331 put_bits(&j
->s
->pb
, m
->huff_size_dc_chrominance
[0],
332 m
->huff_code_dc_chrominance
[0]);
333 put_bits(&j
->s
->pb
, m
->huff_size_ac_chrominance
[0],
334 m
->huff_code_ac_chrominance
[0]);
336 /* we trick encode_block here so that it uses
337 * chrominance huffman tables instead of luminance ones
338 * (see the effect of second argument of encode_block) */
339 encode_block(j
->s
, j
->s
->block
[2], 4);
340 encode_block(j
->s
, j
->s
->block
[3], 5);
344 /// Fill one DCT MCU from planar storage
346 * This routine will convert one MCU from YUYV planar storage into 4
347 * DCT macro blocks, converting from 8-bit format in the planar
348 * storage to 16-bit format used in the DCT.
350 * \param j pointer to jpeg_enc structure, and also storage for DCT macro blocks
351 * \param x pixel x-coordinate for the first pixel
352 * \param y pixel y-coordinate for the first pixel
353 * \param y_data pointer to the Y plane
354 * \param u_data pointer to the U plane
355 * \param v_data pointer to the V plane
357 static av_always_inline
void fill_block(jpeg_enc_t
*j
, int x
, int y
,
358 unsigned char *y_data
, unsigned char *u_data
,
359 unsigned char *v_data
)
363 unsigned char *source
;
366 get_pixels(j
->s
->block
[0], y
*8*j
->y_rs
+ 16*x
+ y_data
, j
->y_rs
);
368 get_pixels(j
->s
->block
[1], y
*8*j
->y_rs
+ 16*x
+ 8 + y_data
, j
->y_rs
);
370 if (!j
->bw
&& j
->cheap_upsample
) {
371 source
= y
* 4 * j
->u_rs
+ 8*x
+ u_data
;
372 dest
= j
->s
->block
[2];
373 for (i
= 0; i
< 4; i
++) {
374 for (k
= 0; k
< 8; k
++) {
375 dest
[k
] = source
[k
]; // First row
376 dest
[k
+8] = source
[k
]; // Duplicate to next row
382 source
= y
* 4 * j
->v_rs
+ 8*x
+ v_data
;
383 dest
= j
->s
->block
[3];
384 for (i
= 0; i
< 4; i
++) {
385 for (k
= 0; k
< 8; k
++) {
387 dest
[k
+8] = source
[k
];
392 } else if (!j
->bw
&& !j
->cheap_upsample
) {
394 get_pixels(j
->s
->block
[2], y
*8*j
->u_rs
+ 8*x
+ u_data
, j
->u_rs
);
396 get_pixels(j
->s
->block
[3], y
*8*j
->v_rs
+ 8*x
+ v_data
, j
->v_rs
);
401 * \brief initialize mjpeg encoder
403 * This routine is to set up the parameters and initialize the mjpeg encoder.
404 * It does all the initializations needed of lower level routines.
405 * The formats accepted by this encoder is YUV422P and YUV420
407 * \param w width in pixels of the image to encode, must be a multiple of 16
408 * \param h height in pixels of the image to encode, must be a multiple of 8
409 * \param y_rsize size of each plane row Y component
410 * \param y_rsize size of each plane row U component
411 * \param v_rsize size of each plane row V component
412 * \param cu "cheap upsample". Set to 0 for YUV422 format, 1 for YUV420 format
413 * when set to 1, the encoder will assume that there is only half th
414 * number of rows of chroma information, and every chroma row is
416 * \param q quality parameter for the mjpeg encode. Between 1 and 20 where 1
417 * is best quality and 20 is the worst quality.
418 * \param b monochrome flag. When set to 1, the mjpeg output is monochrome.
419 * In that case, the colour information is omitted, and actually the
420 * colour planes are not touched.
422 * \returns an appropriately set up jpeg_enc_t structure
424 * The actual plane buffer addreses are passed by jpeg_enc_frame().
426 * The encoder doesn't know anything about interlacing, the halve height
427 * needs to be passed and the double rowstride. Which field gets encoded
428 * is decided by what buffers are passed to mjpeg_encode_frame()
430 static jpeg_enc_t
*jpeg_enc_init(int w
, int h
, int y_rsize
,
431 int u_rsize
, int v_rsize
,
432 int cu
, int q
, int b
) {
435 VERBOSE("JPEG encoder init: %dx%d %d %d %d cu=%d q=%d bw=%d\n",
436 w
, h
, y_rsize
, u_rsize
, v_rsize
, cu
, q
, b
);
438 j
= av_mallocz(sizeof(jpeg_enc_t
));
439 if (j
== NULL
) return NULL
;
441 j
->s
= av_mallocz(sizeof(MpegEncContext
));
447 /* info on how to access the pixels */
452 j
->s
->width
= w
; // image width and height
454 j
->s
->qscale
= q
; // Encoding quality
456 j
->s
->mjpeg_data_only_frames
= 0;
457 j
->s
->out_format
= FMT_MJPEG
;
458 j
->s
->intra_only
= 1; // Generate only intra pictures for jpeg
459 j
->s
->encoding
= 1; // Set mode to encode
460 j
->s
->pict_type
= I_TYPE
;
461 j
->s
->y_dc_scale
= 8;
462 j
->s
->c_dc_scale
= 8;
465 * This sets up the MCU (Minimal Code Unit) number
466 * of appearances of the various component
467 * for the SOF0 table in the generated MJPEG.
468 * The values are not used for anything else.
469 * The current setup is simply YUV422, with two horizontal Y components
470 * for every UV component.
472 j
->s
->mjpeg_write_tables
= 1; // setup to write tables
473 j
->s
->mjpeg_vsample
[0] = 1; // 1 appearance of Y vertically
474 j
->s
->mjpeg_vsample
[1] = 1; // 1 appearance of U vertically
475 j
->s
->mjpeg_vsample
[2] = 1; // 1 appearance of V vertically
476 j
->s
->mjpeg_hsample
[0] = 2; // 2 appearances of Y horizontally
477 j
->s
->mjpeg_hsample
[1] = 1; // 1 appearance of U horizontally
478 j
->s
->mjpeg_hsample
[2] = 1; // 1 appearance of V horizontally
480 j
->cheap_upsample
= cu
;
484 /* if libavcodec is used by the decoder then we must not
485 * initialize again, but if it is not initialized then we must
486 * initialize it here. */
487 if (!avcodec_inited
) {
489 avcodec_register_all();
493 // Build mjpeg huffman code tables, setting up j->s->mjpeg_ctx
494 if (mjpeg_init(j
->s
) < 0) {
500 /* alloc bogus avctx to keep MPV_common_init from segfaulting */
501 j
->s
->avctx
= avcodec_alloc_context();
502 if (j
->s
->avctx
== NULL
) {
508 // Set some a minimum amount of default values that are needed
509 // Indicates that we should generated normal MJPEG
510 j
->s
->avctx
->codec_id
= CODEC_ID_MJPEG
;
511 // Which DCT method to use. AUTO will select the fastest one
512 j
->s
->avctx
->dct_algo
= FF_DCT_AUTO
;
513 j
->s
->intra_quant_bias
= 1<<(QUANT_BIAS_SHIFT
-1); //(a + x/2)/x
515 j
->s
->avctx
->thread_count
= 1;
517 /* make MPV_common_init allocate important buffers, like s->block
518 * Also initializes dsputil */
519 if (MPV_common_init(j
->s
) < 0) {
525 /* correct the value for sc->mb_height. MPV_common_init put other
527 j
->s
->mb_height
= j
->s
->height
/8;
531 j
->s
->intra_matrix
[0] = ff_mpeg1_default_intra_matrix
[0];
532 for (i
= 1; i
< 64; i
++)
533 j
->s
->intra_matrix
[i
] = av_clip_uint8(
534 (ff_mpeg1_default_intra_matrix
[i
]*j
->s
->qscale
) >> 3);
537 convert_matrix(j
->s
, j
->s
->q_intra_matrix
, j
->s
->q_intra_matrix16
,
538 j
->s
->intra_matrix
, j
->s
->intra_quant_bias
, 8, 8);
540 /* Pick up the selection of the optimal get_pixels() routine
541 * to use, which was done in MPV_common_init() */
542 get_pixels
= j
->s
->dsp
.get_pixels
;
548 * \brief mjpeg encode an image
550 * This routine will take a 3-plane YUV422 image and encoded it with MJPEG
551 * base line format, as suitable as input for the Zoran hardare MJPEG chips.
553 * It requires that the \a j parameter points the structure set up by the
554 * jpeg_enc_init() routine.
556 * \param j pointer to jpeg_enc_t structure as created by jpeg_enc_init()
557 * \param y_data pointer to Y component plane, packed one byte/pixel
558 * \param u_data pointer to U component plane, packed one byte per every
560 * \param v_data pointer to V component plane, packed one byte per every
562 * \param bufr pointer to the buffer where the mjpeg encoded code is stored
564 * \returns the number of bytes stored into \a bufr
566 * If \a j->s->mjpeg_write_tables is set, it will also emit the mjpeg tables,
567 * otherwise it will just emit the data. The \a j->s->mjpeg_write_tables
568 * variable will be reset to 0 by the routine.
570 static int jpeg_enc_frame(jpeg_enc_t
*j
, uint8_t *y_data
,
571 uint8_t *u_data
, uint8_t *v_data
, uint8_t *bufr
) {
572 int mb_x
, mb_y
, overflow
;
573 /* initialize the buffer */
575 init_put_bits(&j
->s
->pb
, bufr
, 1024*256);
577 // Emit the mjpeg header blocks
578 mjpeg_picture_header(j
->s
);
580 j
->s
->header_bits
= put_bits_count(&j
->s
->pb
);
582 j
->s
->last_dc
[0] = 128;
583 j
->s
->last_dc
[1] = 128;
584 j
->s
->last_dc
[2] = 128;
586 for (mb_y
= 0; mb_y
< j
->s
->mb_height
; mb_y
++) {
587 for (mb_x
= 0; mb_x
< j
->s
->mb_width
; mb_x
++) {
589 * Fill one DCT block (8x8 pixels) from
590 * 2 Y macroblocks and one U and one V
592 fill_block(j
, mb_x
, mb_y
, y_data
, u_data
, v_data
);
593 emms_c(); /* is this really needed? */
595 j
->s
->block_last_index
[0] =
596 j
->s
->dct_quantize(j
->s
, j
->s
->block
[0],
598 if (overflow
) clip_coeffs(j
->s
, j
->s
->block
[0],
599 j
->s
->block_last_index
[0]);
600 j
->s
->block_last_index
[1] =
601 j
->s
->dct_quantize(j
->s
, j
->s
->block
[1],
603 if (overflow
) clip_coeffs(j
->s
, j
->s
->block
[1],
604 j
->s
->block_last_index
[1]);
607 j
->s
->block_last_index
[4] =
608 j
->s
->dct_quantize(j
->s
, j
->s
->block
[2],
610 if (overflow
) clip_coeffs(j
->s
, j
->s
->block
[2],
611 j
->s
->block_last_index
[2]);
612 j
->s
->block_last_index
[5] =
613 j
->s
->dct_quantize(j
->s
, j
->s
->block
[3],
615 if (overflow
) clip_coeffs(j
->s
, j
->s
->block
[3],
616 j
->s
->block_last_index
[3]);
618 zr_mjpeg_encode_mb(j
);
622 mjpeg_picture_trailer(j
->s
);
623 flush_put_bits(&j
->s
->pb
);
625 if (j
->s
->mjpeg_write_tables
== 1)
626 j
->s
->mjpeg_write_tables
= 0;
628 return pbBufPtr(&(j
->s
->pb
)) - j
->s
->pb
.buf
;
631 /// the real uninit routine
633 * This is the real routine that does the uninit of the ZRMJPEG filter
635 * \param j pointer to jpeg_enc structure
637 static void jpeg_enc_uninit(jpeg_enc_t
*j
) {
643 /// Private structure for ZRMJPEG filter
646 unsigned char buf
[256*1024];
647 int bw
, fd
, hdec
, vdec
;
656 /// vf CONFIGURE entry point for the ZRMJPEG filter
658 * \param vf video filter instance pointer
659 * \param width image source width in pixels
660 * \param height image source height in pixels
661 * \param d_width width of requested window, just a hint
662 * \param d_height height of requested window, just a hint
663 * \param flags vf filter flags
666 * \returns returns 0 on error
668 * This routine will make the necessary hardware-related decisions for
669 * the ZRMJPEG filter, do the initialization of the MJPEG encoder, and
670 * then select one of the ZRJMJPEGIT or ZRMJPEGNI filters and then
671 * arrange to dispatch to the config() entry pointer for the one
674 static int config(struct vf_instance_s
* vf
, int width
, int height
, int d_width
,
675 int d_height
, unsigned int flags
, unsigned int outfmt
){
676 struct vf_priv_s
*priv
= vf
->priv
;
677 float aspect_decision
;
678 int stretchx
, stretchy
, err
= 0, maxstretchx
= 4;
681 VERBOSE("config() called\n");
684 VERBOSE("re-configuring, resetting JPEG encoder\n");
685 jpeg_enc_uninit(priv
->j
);
689 aspect_decision
= ((float)d_width
/(float)d_height
)/
690 ((float)width
/(float)height
);
692 if (aspect_decision
> 1.8 && aspect_decision
< 2.2) {
693 VERBOSE("should correct aspect by stretching x times 2, %d %d\n", 2*width
, priv
->maxwidth
);
694 if (2*width
<= priv
->maxwidth
) {
699 WARNING("unable to correct aspect by stretching, because resulting X will be too large, aspect correction by decimating y not yet implemented\n");
703 /* prestretch movie */
705 /* uncorrecting output for now */
709 /* make the scaling decision
710 * we are capable of stretching the image in the horizontal
711 * direction by factors 1, 2 and 4
712 * we can stretch the image in the vertical direction by a
713 * factor of 1 and 2 AND we must decide about interlacing */
714 if (d_width
> priv
->maxwidth
/2 || height
> priv
->maxheight
/2
715 || maxstretchx
== 1) {
719 if (priv
->vdec
== 2) {
721 } else if (priv
->vdec
== 4) {
725 if (priv
->hdec
> maxstretchx
) {
727 WARNING("horizontal decimation too high, "
728 "changing to %d (use fd to keep"
730 maxstretchx
, priv
->hdec
);
731 priv
->hdec
= maxstretchx
;
734 stretchx
= priv
->hdec
;
735 } else if (d_width
> priv
->maxwidth
/4 ||
736 height
> priv
->maxheight
/4 ||
741 if (priv
->vdec
== 2) {
743 } else if (priv
->vdec
== 4) {
745 WARNING("vertical decimation too high, "
746 "changing to 2 (use fd to keep "
752 if (priv
->hdec
== 2) {
754 } else if (priv
->hdec
== 4) {
756 WARNING("horizontal decimation too high, "
757 "changing to 2 (use fd to keep "
764 /* output image is maximally stretched */
768 if (priv
->vdec
!= 1 && !priv
->fd
) {
769 WARNING("vertical decimation too high, changing to 1 "
770 "(use fd to keep vdec=%d)\n",
774 if (priv
->hdec
!= 1 && !priv
->fd
) {
775 WARNING("horizontal decimation too high, changing to 1 (use fd to keep hdec=%d)\n", priv
->hdec
);
780 VERBOSE("generated JPEG's %dx%s%d%s, stretched to %dx%d\n",
781 width
/priv
->hdec
, (priv
->fields
== 2) ? "(" : "",
782 height
/(priv
->vdec
*priv
->fields
),
783 (priv
->fields
== 2) ? "x2)" : "",
784 (width
/priv
->hdec
)*stretchx
,
785 (height
/(priv
->vdec
*priv
->fields
))*
786 stretchy
*priv
->fields
);
789 if ((width
/priv
->hdec
)*stretchx
> priv
->maxwidth
||
790 (height
/(priv
->vdec
*priv
->fields
))*
791 stretchy
*priv
->fields
> priv
->maxheight
) {
792 ERROR("output dimensions too large (%dx%d), max (%dx%d) "
793 "insert crop to fix\n",
794 (width
/priv
->hdec
)*stretchx
,
795 (height
/(priv
->vdec
*priv
->fields
))*
796 stretchy
*priv
->fields
,
797 priv
->maxwidth
, priv
->maxheight
);
801 if (width
%(16*priv
->hdec
) != 0) {
802 ERROR("width must be a multiple of 16*hdec (%d), use expand\n",
807 if (height
%(8*priv
->fields
*priv
->vdec
) != 0) {
808 ERROR("height must be a multiple of 8*fields*vdec (%d),"
809 " use expand\n", priv
->vdec
*priv
->fields
*8);
815 priv
->y_stride
= width
;
816 priv
->c_stride
= width
/2;
817 priv
->j
= jpeg_enc_init(width
, height
/priv
->fields
,
818 priv
->fields
*priv
->y_stride
,
819 priv
->fields
*priv
->c_stride
,
820 priv
->fields
*priv
->c_stride
,
821 1, priv
->quality
, priv
->bw
);
823 if (!priv
->j
) return 0;
824 return vf_next_config(vf
, width
, height
, d_width
, d_height
, flags
,
825 (priv
->fields
== 2) ? IMGFMT_ZRMJPEGIT
: IMGFMT_ZRMJPEGNI
);
828 /// put_image entrypoint for the ZRMJPEG vf filter
830 * \param vf pointer to vf_instance
831 * \param mpi pointer to mp_image_t structure
834 static int put_image(struct vf_instance_s
* vf
, mp_image_t
*mpi
, double pts
){
835 struct vf_priv_s
*priv
= vf
->priv
;
839 for (i
= 0; i
< priv
->fields
; i
++)
840 size
+= jpeg_enc_frame(priv
->j
,
841 mpi
->planes
[0] + i
*priv
->y_stride
,
842 mpi
->planes
[1] + i
*priv
->c_stride
,
843 mpi
->planes
[2] + i
*priv
->c_stride
,
846 dmpi
= vf_get_image(vf
->next
, IMGFMT_ZRMJPEGNI
,
847 MP_IMGTYPE_EXPORT
, 0, mpi
->w
, mpi
->h
);
848 dmpi
->planes
[0] = (uint8_t*)priv
->buf
;
849 dmpi
->planes
[1] = (uint8_t*)size
;
850 return vf_next_put_image(vf
,dmpi
, pts
);
853 /// query_format entrypoint for the ZRMJPEG vf filter
855 * \param vf pointer to vf_instance
856 * \param fmt image format to query for
858 * \returns 0 if image format in fmt is not supported
860 * Given the image format specified by \a fmt, this routine is called
861 * to ask if the format is supported or not.
863 static int query_format(struct vf_instance_s
* vf
, unsigned int fmt
){
864 VERBOSE("query_format() called\n");
869 /* strictly speaking the output format of
870 * this filter will be known after config(),
871 * but everything that supports IMGFMT_ZRMJPEGNI
872 * should also support all other IMGFMT_ZRMJPEG* */
873 return vf_next_query_format(vf
, IMGFMT_ZRMJPEGNI
);
879 /// vf UNINIT entry point for the ZRMJPEG filter
881 * \param vf pointer to the vf instance structure
883 static void uninit(vf_instance_t
*vf
) {
884 struct vf_priv_s
*priv
= vf
->priv
;
885 VERBOSE("uninit() called\n");
886 if (priv
->j
) jpeg_enc_uninit(priv
->j
);
890 /// vf OPEN entry point for the ZRMJPEG filter
892 * \param vf pointer to the vf instance structure
893 * \param args the argument list string for the -vf zrmjpeg command
895 * \returns 0 for error, 1 for success
897 * This routine will do some basic initialization of local structures etc.,
898 * and then parse the command line arguments specific for the ZRMJPEG filter.
900 static int open(vf_instance_t
*vf
, char* args
){
901 struct vf_priv_s
*priv
;
902 VERBOSE("open() called: args=\"%s\"\n", args
);
905 vf
->put_image
= put_image
;
906 vf
->query_format
= query_format
;
909 priv
= vf
->priv
= calloc(sizeof(*priv
), 1);
911 ERROR("out of memory error\n");
915 /* maximum displayable size by zoran card, these defaults
916 * are for my own zoran card in PAL mode, these can be changed
917 * by filter options. But... in an ideal world these values would
918 * be queried from the vo device itself... */
919 priv
->maxwidth
= 768;
920 priv
->maxheight
= 576;
926 /* if libavcodec is already initialized, we must not initialize it
927 * again, but if it is not initialized then we mustinitialize it now. */
928 if (!avcodec_inited
) {
929 /* we need to initialize libavcodec */
931 avcodec_register_all();
936 char *arg
, *tmp
, *ptr
, junk
;
939 /* save arguments, to be able to safely modify them */
942 ERROR("out of memory, this is bad\n");
948 while (*tmp
!= ':' && *tmp
) tmp
++;
949 if (*tmp
== ':') *tmp
++ = '\0';
951 VERBOSE("processing filter option \"%s\"\n", ptr
);
952 /* These options deal with the maximum output
953 * resolution of the zoran card. These should
954 * be queried from the vo device, but it is currently
955 * too difficult, so the user should tell the filter */
956 if (!strncmp("maxheight=", ptr
, 10)) {
957 if (sscanf(ptr
+10, "%d%c", &input
, &junk
) != 1)
959 "error parsing parameter to \"maxheight=\", \"%s\", ignoring\n"
962 priv
->maxheight
= input
;
963 VERBOSE("setting maxheight to %d\n",
966 } else if (!strncmp("quality=", ptr
, 8)) {
967 if (sscanf(ptr
+8, "%d%c", &input
, &junk
) != 1)
969 "error parsing parameter to \"quality=\", \"%s\", ignoring\n"
971 else if (input
< 1 || input
> 20)
973 "parameter to \"quality=\" out of range (1..20), %d\n", input
);
975 priv
->quality
= input
;
976 VERBOSE("setting JPEG quality to %d\n",
979 } else if (!strncmp("maxwidth=", ptr
, 9)) {
980 if (sscanf(ptr
+9, "%d%c", &input
, &junk
) != 1)
982 "error parsing parameter to \"maxwidth=\", \"%s\", ignoring\n"
985 priv
->maxwidth
= input
;
986 VERBOSE("setting maxwidth to %d\n",
989 } else if (!strncmp("hdec=", ptr
, 5)) {
990 if (sscanf(ptr
+5, "%d%c", &input
, &junk
) != 1)
992 "error parsing parameter to \"hdec=\", \"%s\", ignoring\n"
994 else if (input
!= 1 && input
!= 2 && input
!= 4)
996 "illegal parameter to \"hdec=\", %d, should be 1, 2 or 4",
1001 "setting horizontal decimation to %d\n", priv
->maxwidth
);
1003 } else if (!strncmp("vdec=", ptr
, 5)) {
1004 if (sscanf(ptr
+5, "%d%c", &input
, &junk
) != 1)
1006 "error parsing parameter to \"vdec=\", \"%s\", ignoring\n"
1008 else if (input
!= 1 && input
!= 2 && input
!= 4)
1010 "illegal parameter to \"vdec=\", %d, should be 1, 2 or 4",
1015 "setting vertical decimation to %d\n", priv
->maxwidth
);
1017 } else if (!strcasecmp("dc10+-PAL", ptr
) ||
1018 !strcasecmp("dc10-PAL", ptr
)) {
1019 priv
->maxwidth
= 768;
1020 priv
->maxheight
= 576;
1021 VERBOSE("setting DC10(+) PAL profile\n");
1022 } else if (!strcasecmp("fd", ptr
)) {
1024 VERBOSE("forcing decimation\n");
1025 } else if (!strcasecmp("nofd", ptr
)) {
1027 VERBOSE("decimate only if beautiful\n");
1028 } else if (!strcasecmp("bw", ptr
)) {
1030 VERBOSE("setting black and white encoding\n");
1031 } else if (!strcasecmp("color", ptr
)) {
1033 VERBOSE("setting color encoding\n");
1034 } else if (!strcasecmp("dc10+-NTSC", ptr
) ||
1035 !strcasecmp("dc10-NTSC", ptr
)) {
1036 priv
->maxwidth
= 640;
1037 priv
->maxheight
= 480;
1038 VERBOSE("setting DC10(+) NTSC profile\n");
1039 } else if (!strcasecmp("buz-PAL", ptr
) ||
1040 !strcasecmp("lml33-PAL", ptr
)) {
1041 priv
->maxwidth
= 720;
1042 priv
->maxheight
= 576;
1043 VERBOSE("setting buz/lml33 PAL profile\n");
1044 } else if (!strcasecmp("buz-NTSC", ptr
) ||
1045 !strcasecmp("lml33-NTSC", ptr
)) {
1046 priv
->maxwidth
= 720;
1047 priv
->maxheight
= 480;
1048 VERBOSE("setting buz/lml33 NTSC profile\n");
1050 WARNING("ignoring unknown filter option "
1051 "\"%s\", or missing argument\n",
1064 vf_info_t vf_info_zrmjpeg
= {
1065 "realtime zoran MJPEG encoding",