2 Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22 {BGR,RGB}{1,4,8,15,16} support dithering
24 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
30 BGR24 -> BGR32 & RGB24 -> RGB32
31 BGR32 -> BGR24 & RGB32 -> RGB24
36 tested special converters (most are tested actually but i didnt write it down ...)
43 untested special converters
44 YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45 YV12/I420 -> YV12/I420
46 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47 BGR24 -> BGR32 & RGB24 -> RGB32
48 BGR32 -> BGR24 & RGB32 -> RGB24
65 #ifdef HAVE_SYS_MMAN_H
67 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
68 #define MAP_ANONYMOUS MAP_ANON
72 #include "swscale_internal.h"
73 #include "cpudetect.h"
75 #include "libvo/img_format.h"
77 #include "libvo/fastmemcpy.h"
86 //#define WORDS_BIGENDIAN
89 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
91 #define RET 0xC3 //near return opcode for X86
94 #define ASSERT(x) assert(x);
102 #define PI 3.14159265358979323846
105 //FIXME replace this with something faster
106 #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
107 || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21 \
108 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
109 #define isYUV(x) ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
110 #define isGray(x) ((x)==IMGFMT_Y800)
111 #define isRGB(x) (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
112 #define isBGR(x) (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
113 #define isSupportedIn(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
114 || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
115 || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
116 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
117 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
118 #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
119 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
120 || isRGB(x) || isBGR(x)\
121 || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21\
122 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
123 #define isPacked(x) ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
125 #define RGB2YUV_SHIFT 16
126 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
127 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
128 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
129 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
130 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
131 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
132 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
133 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
134 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
136 extern const int32_t Inverse_Table_6_9
[8][4];
140 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
143 more intelligent missalignment avoidance for the horizontal scaler
144 write special vertical cubic upscale version
145 Optimize C code (yv12 / minmax)
146 add support for packed pixel yuv input & output
147 add support for Y8 output
148 optimize bgr24 & bgr32
149 add BGR4 output support
150 write special BGR->BGR scaler
153 #define ABS(a) ((a) > 0 ? (a) : (-(a)))
154 #define MIN(a,b) ((a) > (b) ? (b) : (a))
155 #define MAX(a,b) ((a) < (b) ? (b) : (a))
157 #if defined(ARCH_X86) || defined(ARCH_X86_64)
158 static uint64_t attribute_used
__attribute__((aligned(8))) bF8
= 0xF8F8F8F8F8F8F8F8LL
;
159 static uint64_t attribute_used
__attribute__((aligned(8))) bFC
= 0xFCFCFCFCFCFCFCFCLL
;
160 static uint64_t __attribute__((aligned(8))) w10
= 0x0010001000100010LL
;
161 static uint64_t attribute_used
__attribute__((aligned(8))) w02
= 0x0002000200020002LL
;
162 static uint64_t attribute_used
__attribute__((aligned(8))) bm00001111
=0x00000000FFFFFFFFLL
;
163 static uint64_t attribute_used
__attribute__((aligned(8))) bm00000111
=0x0000000000FFFFFFLL
;
164 static uint64_t attribute_used
__attribute__((aligned(8))) bm11111000
=0xFFFFFFFFFF000000LL
;
165 static uint64_t attribute_used
__attribute__((aligned(8))) bm01010101
=0x00FF00FF00FF00FFLL
;
167 static volatile uint64_t attribute_used
__attribute__((aligned(8))) b5Dither
;
168 static volatile uint64_t attribute_used
__attribute__((aligned(8))) g5Dither
;
169 static volatile uint64_t attribute_used
__attribute__((aligned(8))) g6Dither
;
170 static volatile uint64_t attribute_used
__attribute__((aligned(8))) r5Dither
;
172 static uint64_t __attribute__((aligned(8))) dither4
[2]={
173 0x0103010301030103LL
,
174 0x0200020002000200LL
,};
176 static uint64_t __attribute__((aligned(8))) dither8
[2]={
177 0x0602060206020602LL
,
178 0x0004000400040004LL
,};
180 static uint64_t __attribute__((aligned(8))) b16Mask
= 0x001F001F001F001FLL
;
181 static uint64_t attribute_used
__attribute__((aligned(8))) g16Mask
= 0x07E007E007E007E0LL
;
182 static uint64_t attribute_used
__attribute__((aligned(8))) r16Mask
= 0xF800F800F800F800LL
;
183 static uint64_t __attribute__((aligned(8))) b15Mask
= 0x001F001F001F001FLL
;
184 static uint64_t attribute_used
__attribute__((aligned(8))) g15Mask
= 0x03E003E003E003E0LL
;
185 static uint64_t attribute_used
__attribute__((aligned(8))) r15Mask
= 0x7C007C007C007C00LL
;
187 static uint64_t attribute_used
__attribute__((aligned(8))) M24A
= 0x00FF0000FF0000FFLL
;
188 static uint64_t attribute_used
__attribute__((aligned(8))) M24B
= 0xFF0000FF0000FF00LL
;
189 static uint64_t attribute_used
__attribute__((aligned(8))) M24C
= 0x0000FF0000FF0000LL
;
192 static const uint64_t bgr2YCoeff attribute_used
__attribute__((aligned(8))) = 0x000000210041000DULL
;
193 static const uint64_t bgr2UCoeff attribute_used
__attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL
;
194 static const uint64_t bgr2VCoeff attribute_used
__attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL
;
196 static const uint64_t bgr2YCoeff attribute_used
__attribute__((aligned(8))) = 0x000020E540830C8BULL
;
197 static const uint64_t bgr2UCoeff attribute_used
__attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL
;
198 static const uint64_t bgr2VCoeff attribute_used
__attribute__((aligned(8))) = 0x00003831D0E6F6EAULL
;
200 static const uint64_t bgr2YOffset attribute_used
__attribute__((aligned(8))) = 0x1010101010101010ULL
;
201 static const uint64_t bgr2UVOffset attribute_used
__attribute__((aligned(8)))= 0x8080808080808080ULL
;
202 static const uint64_t w1111 attribute_used
__attribute__((aligned(8))) = 0x0001000100010001ULL
;
205 // clipping helper table for C implementations:
206 static unsigned char clip_table
[768];
208 static SwsVector
*sws_getConvVec(SwsVector
*a
, SwsVector
*b
);
210 extern const uint8_t dither_2x2_4
[2][8];
211 extern const uint8_t dither_2x2_8
[2][8];
212 extern const uint8_t dither_8x8_32
[8][8];
213 extern const uint8_t dither_8x8_73
[8][8];
214 extern const uint8_t dither_8x8_220
[8][8];
216 #if defined(ARCH_X86) || defined(ARCH_X86_64)
217 void in_asm_used_var_warning_killer()
219 volatile int i
= bF8
+bFC
+w10
+
220 bm00001111
+bm00000111
+bm11111000
+b16Mask
+g16Mask
+r16Mask
+b15Mask
+g15Mask
+r15Mask
+
221 M24A
+M24B
+M24C
+w02
+ b5Dither
+g5Dither
+r5Dither
+g6Dither
+dither4
[0]+dither8
[0]+bm01010101
;
226 static inline void yuv2yuvXinC(int16_t *lumFilter
, int16_t **lumSrc
, int lumFilterSize
,
227 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
228 uint8_t *dest
, uint8_t *uDest
, uint8_t *vDest
, int dstW
, int chrDstW
)
230 //FIXME Optimize (just quickly writen not opti..)
232 for(i
=0; i
<dstW
; i
++)
236 for(j
=0; j
<lumFilterSize
; j
++)
237 val
+= lumSrc
[j
][i
] * lumFilter
[j
];
239 dest
[i
]= MIN(MAX(val
>>19, 0), 255);
243 for(i
=0; i
<chrDstW
; i
++)
248 for(j
=0; j
<chrFilterSize
; j
++)
250 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
251 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
254 uDest
[i
]= MIN(MAX(u
>>19, 0), 255);
255 vDest
[i
]= MIN(MAX(v
>>19, 0), 255);
259 static inline void yuv2nv12XinC(int16_t *lumFilter
, int16_t **lumSrc
, int lumFilterSize
,
260 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
261 uint8_t *dest
, uint8_t *uDest
, int dstW
, int chrDstW
, int dstFormat
)
263 //FIXME Optimize (just quickly writen not opti..)
265 for(i
=0; i
<dstW
; i
++)
269 for(j
=0; j
<lumFilterSize
; j
++)
270 val
+= lumSrc
[j
][i
] * lumFilter
[j
];
272 dest
[i
]= MIN(MAX(val
>>19, 0), 255);
278 if(dstFormat
== IMGFMT_NV12
)
279 for(i
=0; i
<chrDstW
; i
++)
284 for(j
=0; j
<chrFilterSize
; j
++)
286 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
287 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
290 uDest
[2*i
]= MIN(MAX(u
>>19, 0), 255);
291 uDest
[2*i
+1]= MIN(MAX(v
>>19, 0), 255);
294 for(i
=0; i
<chrDstW
; i
++)
299 for(j
=0; j
<chrFilterSize
; j
++)
301 u
+= chrSrc
[j
][i
] * chrFilter
[j
];
302 v
+= chrSrc
[j
][i
+ 2048] * chrFilter
[j
];
305 uDest
[2*i
]= MIN(MAX(v
>>19, 0), 255);
306 uDest
[2*i
+1]= MIN(MAX(u
>>19, 0), 255);
310 #define YSCALE_YUV_2_PACKEDX_C(type) \
311 for(i=0; i<(dstW>>1); i++){\
320 for(j=0; j<lumFilterSize; j++)\
322 Y1 += lumSrc[j][i2] * lumFilter[j];\
323 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
325 for(j=0; j<chrFilterSize; j++)\
327 U += chrSrc[j][i] * chrFilter[j];\
328 V += chrSrc[j][i+2048] * chrFilter[j];\
346 #define YSCALE_YUV_2_RGBX_C(type) \
347 YSCALE_YUV_2_PACKEDX_C(type)\
349 g = c->table_gU[U] + c->table_gV[V];\
352 #define YSCALE_YUV_2_PACKED2_C \
353 for(i=0; i<(dstW>>1); i++){\
355 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
356 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
357 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
358 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
360 #define YSCALE_YUV_2_RGB2_C(type) \
361 YSCALE_YUV_2_PACKED2_C\
364 g = c->table_gU[U] + c->table_gV[V];\
367 #define YSCALE_YUV_2_PACKED1_C \
368 for(i=0; i<(dstW>>1); i++){\
370 int Y1= buf0[i2 ]>>7;\
371 int Y2= buf0[i2+1]>>7;\
372 int U= (uvbuf1[i ])>>7;\
373 int V= (uvbuf1[i+2048])>>7;\
375 #define YSCALE_YUV_2_RGB1_C(type) \
376 YSCALE_YUV_2_PACKED1_C\
379 g = c->table_gU[U] + c->table_gV[V];\
382 #define YSCALE_YUV_2_PACKED1B_C \
383 for(i=0; i<(dstW>>1); i++){\
385 int Y1= buf0[i2 ]>>7;\
386 int Y2= buf0[i2+1]>>7;\
387 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
388 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
390 #define YSCALE_YUV_2_RGB1B_C(type) \
391 YSCALE_YUV_2_PACKED1B_C\
394 g = c->table_gU[U] + c->table_gV[V];\
397 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
398 switch(c->dstFormat)\
403 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
404 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
409 ((uint8_t*)dest)[0]= r[Y1];\
410 ((uint8_t*)dest)[1]= g[Y1];\
411 ((uint8_t*)dest)[2]= b[Y1];\
412 ((uint8_t*)dest)[3]= r[Y2];\
413 ((uint8_t*)dest)[4]= g[Y2];\
414 ((uint8_t*)dest)[5]= b[Y2];\
420 ((uint8_t*)dest)[0]= b[Y1];\
421 ((uint8_t*)dest)[1]= g[Y1];\
422 ((uint8_t*)dest)[2]= r[Y1];\
423 ((uint8_t*)dest)[3]= b[Y2];\
424 ((uint8_t*)dest)[4]= g[Y2];\
425 ((uint8_t*)dest)[5]= r[Y2];\
432 const int dr1= dither_2x2_8[y&1 ][0];\
433 const int dg1= dither_2x2_4[y&1 ][0];\
434 const int db1= dither_2x2_8[(y&1)^1][0];\
435 const int dr2= dither_2x2_8[y&1 ][1];\
436 const int dg2= dither_2x2_4[y&1 ][1];\
437 const int db2= dither_2x2_8[(y&1)^1][1];\
439 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
440 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
447 const int dr1= dither_2x2_8[y&1 ][0];\
448 const int dg1= dither_2x2_8[y&1 ][1];\
449 const int db1= dither_2x2_8[(y&1)^1][0];\
450 const int dr2= dither_2x2_8[y&1 ][1];\
451 const int dg2= dither_2x2_8[y&1 ][0];\
452 const int db2= dither_2x2_8[(y&1)^1][1];\
454 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
455 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
462 const uint8_t * const d64= dither_8x8_73[y&7];\
463 const uint8_t * const d32= dither_8x8_32[y&7];\
465 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
466 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
473 const uint8_t * const d64= dither_8x8_73 [y&7];\
474 const uint8_t * const d128=dither_8x8_220[y&7];\
476 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
477 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
484 const uint8_t * const d64= dither_8x8_73 [y&7];\
485 const uint8_t * const d128=dither_8x8_220[y&7];\
487 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
488 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
495 const uint8_t * const d128=dither_8x8_220[y&7];\
496 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
497 for(i=0; i<dstW-7; i+=8){\
499 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
500 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
501 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
502 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
503 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
504 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
505 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
506 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
507 ((uint8_t*)dest)[0]= acc;\
512 ((uint8_t*)dest)-= dstW>>4;\
516 static int top[1024];\
517 static int last_new[1024][1024];\
518 static int last_in3[1024][1024];\
519 static int drift[1024][1024];\
523 const uint8_t * const d128=dither_8x8_220[y&7];\
528 for(i=dstW>>1; i<dstW; i++){\
529 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
530 int in2 = (76309 * (in - 16) + 32768) >> 16;\
531 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
532 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
533 + (last_new[y][i] - in3)*f/256;\
534 int new= old> 128 ? 255 : 0;\
536 error_new+= ABS(last_new[y][i] - new);\
537 error_in3+= ABS(last_in3[y][i] - in3);\
538 f= error_new - error_in3*4;\
543 left= top[i]= old - new;\
544 last_new[y][i]= new;\
545 last_in3[y][i]= in3;\
547 acc+= acc + (new&1);\
549 ((uint8_t*)dest)[0]= acc;\
559 ((uint8_t*)dest)[2*i2+0]= Y1;\
560 ((uint8_t*)dest)[2*i2+1]= U;\
561 ((uint8_t*)dest)[2*i2+2]= Y2;\
562 ((uint8_t*)dest)[2*i2+3]= V;\
567 ((uint8_t*)dest)[2*i2+0]= U;\
568 ((uint8_t*)dest)[2*i2+1]= Y1;\
569 ((uint8_t*)dest)[2*i2+2]= V;\
570 ((uint8_t*)dest)[2*i2+3]= Y2;\
576 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
577 int16_t *chrFilter
, int16_t **chrSrc
, int chrFilterSize
,
578 uint8_t *dest
, int dstW
, int y
)
585 YSCALE_YUV_2_RGBX_C(uint32_t)
586 ((uint32_t*)dest
)[i2
+0]= r
[Y1
] + g
[Y1
] + b
[Y1
];
587 ((uint32_t*)dest
)[i2
+1]= r
[Y2
] + g
[Y2
] + b
[Y2
];
591 YSCALE_YUV_2_RGBX_C(uint8_t)
592 ((uint8_t*)dest
)[0]= r
[Y1
];
593 ((uint8_t*)dest
)[1]= g
[Y1
];
594 ((uint8_t*)dest
)[2]= b
[Y1
];
595 ((uint8_t*)dest
)[3]= r
[Y2
];
596 ((uint8_t*)dest
)[4]= g
[Y2
];
597 ((uint8_t*)dest
)[5]= b
[Y2
];
602 YSCALE_YUV_2_RGBX_C(uint8_t)
603 ((uint8_t*)dest
)[0]= b
[Y1
];
604 ((uint8_t*)dest
)[1]= g
[Y1
];
605 ((uint8_t*)dest
)[2]= r
[Y1
];
606 ((uint8_t*)dest
)[3]= b
[Y2
];
607 ((uint8_t*)dest
)[4]= g
[Y2
];
608 ((uint8_t*)dest
)[5]= r
[Y2
];
615 const int dr1
= dither_2x2_8
[y
&1 ][0];
616 const int dg1
= dither_2x2_4
[y
&1 ][0];
617 const int db1
= dither_2x2_8
[(y
&1)^1][0];
618 const int dr2
= dither_2x2_8
[y
&1 ][1];
619 const int dg2
= dither_2x2_4
[y
&1 ][1];
620 const int db2
= dither_2x2_8
[(y
&1)^1][1];
621 YSCALE_YUV_2_RGBX_C(uint16_t)
622 ((uint16_t*)dest
)[i2
+0]= r
[Y1
+dr1
] + g
[Y1
+dg1
] + b
[Y1
+db1
];
623 ((uint16_t*)dest
)[i2
+1]= r
[Y2
+dr2
] + g
[Y2
+dg2
] + b
[Y2
+db2
];
630 const int dr1
= dither_2x2_8
[y
&1 ][0];
631 const int dg1
= dither_2x2_8
[y
&1 ][1];
632 const int db1
= dither_2x2_8
[(y
&1)^1][0];
633 const int dr2
= dither_2x2_8
[y
&1 ][1];
634 const int dg2
= dither_2x2_8
[y
&1 ][0];
635 const int db2
= dither_2x2_8
[(y
&1)^1][1];
636 YSCALE_YUV_2_RGBX_C(uint16_t)
637 ((uint16_t*)dest
)[i2
+0]= r
[Y1
+dr1
] + g
[Y1
+dg1
] + b
[Y1
+db1
];
638 ((uint16_t*)dest
)[i2
+1]= r
[Y2
+dr2
] + g
[Y2
+dg2
] + b
[Y2
+db2
];
645 const uint8_t * const d64
= dither_8x8_73
[y
&7];
646 const uint8_t * const d32
= dither_8x8_32
[y
&7];
647 YSCALE_YUV_2_RGBX_C(uint8_t)
648 ((uint8_t*)dest
)[i2
+0]= r
[Y1
+d32
[(i2
+0)&7]] + g
[Y1
+d32
[(i2
+0)&7]] + b
[Y1
+d64
[(i2
+0)&7]];
649 ((uint8_t*)dest
)[i2
+1]= r
[Y2
+d32
[(i2
+1)&7]] + g
[Y2
+d32
[(i2
+1)&7]] + b
[Y2
+d64
[(i2
+1)&7]];
656 const uint8_t * const d64
= dither_8x8_73
[y
&7];
657 const uint8_t * const d128
=dither_8x8_220
[y
&7];
658 YSCALE_YUV_2_RGBX_C(uint8_t)
659 ((uint8_t*)dest
)[i
]= r
[Y1
+d128
[(i2
+0)&7]] + g
[Y1
+d64
[(i2
+0)&7]] + b
[Y1
+d128
[(i2
+0)&7]]
660 +((r
[Y2
+d128
[(i2
+1)&7]] + g
[Y2
+d64
[(i2
+1)&7]] + b
[Y2
+d128
[(i2
+1)&7]])<<4);
667 const uint8_t * const d64
= dither_8x8_73
[y
&7];
668 const uint8_t * const d128
=dither_8x8_220
[y
&7];
669 YSCALE_YUV_2_RGBX_C(uint8_t)
670 ((uint8_t*)dest
)[i2
+0]= r
[Y1
+d128
[(i2
+0)&7]] + g
[Y1
+d64
[(i2
+0)&7]] + b
[Y1
+d128
[(i2
+0)&7]];
671 ((uint8_t*)dest
)[i2
+1]= r
[Y2
+d128
[(i2
+1)&7]] + g
[Y2
+d64
[(i2
+1)&7]] + b
[Y2
+d128
[(i2
+1)&7]];
678 const uint8_t * const d128
=dither_8x8_220
[y
&7];
679 uint8_t *g
= c
->table_gU
[128] + c
->table_gV
[128];
681 for(i
=0; i
<dstW
-1; i
+=2){
686 for(j
=0; j
<lumFilterSize
; j
++)
688 Y1
+= lumSrc
[j
][i
] * lumFilter
[j
];
689 Y2
+= lumSrc
[j
][i
+1] * lumFilter
[j
];
700 acc
+= acc
+ g
[Y1
+d128
[(i
+0)&7]];
701 acc
+= acc
+ g
[Y2
+d128
[(i
+1)&7]];
703 ((uint8_t*)dest
)[0]= acc
;
710 YSCALE_YUV_2_PACKEDX_C(void)
711 ((uint8_t*)dest
)[2*i2
+0]= Y1
;
712 ((uint8_t*)dest
)[2*i2
+1]= U
;
713 ((uint8_t*)dest
)[2*i2
+2]= Y2
;
714 ((uint8_t*)dest
)[2*i2
+3]= V
;
718 YSCALE_YUV_2_PACKEDX_C(void)
719 ((uint8_t*)dest
)[2*i2
+0]= U
;
720 ((uint8_t*)dest
)[2*i2
+1]= Y1
;
721 ((uint8_t*)dest
)[2*i2
+2]= V
;
722 ((uint8_t*)dest
)[2*i2
+3]= Y2
;
729 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
731 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
736 #if defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)
737 #define COMPILE_ALTIVEC
738 #endif //HAVE_ALTIVEC
739 #endif //ARCH_POWERPC
741 #if defined(ARCH_X86) || defined(ARCH_X86_64)
743 #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
747 #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
751 #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
752 #define COMPILE_3DNOW
754 #endif //ARCH_X86 || ARCH_X86_64
765 #define RENAME(a) a ## _C
766 #include "swscale_template.c"
770 #ifdef COMPILE_ALTIVEC
773 #define RENAME(a) a ## _altivec
774 #include "swscale_template.c"
776 #endif //ARCH_POWERPC
778 #if defined(ARCH_X86) || defined(ARCH_X86_64)
787 #define RENAME(a) a ## _X86
788 #include "swscale_template.c"
796 #define RENAME(a) a ## _MMX
797 #include "swscale_template.c"
806 #define RENAME(a) a ## _MMX2
807 #include "swscale_template.c"
816 #define RENAME(a) a ## _3DNow
817 #include "swscale_template.c"
820 #endif //ARCH_X86 || ARCH_X86_64
822 // minor note: the HAVE_xyz is messed up after that line so don't use it
824 static double getSplineCoeff(double a
, double b
, double c
, double d
, double dist
)
826 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
827 if(dist
<=1.0) return ((d
*dist
+ c
)*dist
+ b
)*dist
+a
;
828 else return getSplineCoeff( 0.0,
835 static inline void initFilter(int16_t **outFilter
, int16_t **filterPos
, int *outFilterSize
, int xInc
,
836 int srcW
, int dstW
, int filterAlign
, int one
, int flags
,
837 SwsVector
*srcFilter
, SwsVector
*dstFilter
, double param
[2])
844 double *filter2
=NULL
;
845 #if defined(ARCH_X86) || defined(ARCH_X86_64)
846 if(flags
& SWS_CPU_CAPS_MMX
)
847 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
850 // Note the +1 is for the MMXscaler which reads over the end
851 *filterPos
= (int16_t*)memalign(8, (dstW
+1)*sizeof(int16_t));
853 if(ABS(xInc
- 0x10000) <10) // unscaled
857 filter
= (double*)memalign(8, dstW
*sizeof(double)*filterSize
);
858 for(i
=0; i
<dstW
*filterSize
; i
++) filter
[i
]=0;
860 for(i
=0; i
<dstW
; i
++)
862 filter
[i
*filterSize
]=1;
867 else if(flags
&SWS_POINT
) // lame looking point sampling mode
872 filter
= (double*)memalign(8, dstW
*sizeof(double)*filterSize
);
874 xDstInSrc
= xInc
/2 - 0x8000;
875 for(i
=0; i
<dstW
; i
++)
877 int xx
= (xDstInSrc
- ((filterSize
-1)<<15) + (1<<15))>>16;
884 else if((xInc
<= (1<<16) && (flags
&SWS_AREA
)) || (flags
&SWS_FAST_BILINEAR
)) // bilinear upscale
888 if (flags
&SWS_BICUBIC
) filterSize
= 4;
889 else if(flags
&SWS_X
) filterSize
= 4;
890 else filterSize
= 2; // SWS_BILINEAR / SWS_AREA
891 filter
= (double*)memalign(8, dstW
*sizeof(double)*filterSize
);
893 xDstInSrc
= xInc
/2 - 0x8000;
894 for(i
=0; i
<dstW
; i
++)
896 int xx
= (xDstInSrc
- ((filterSize
-1)<<15) + (1<<15))>>16;
900 //Bilinear upscale / linear interpolate / Area averaging
901 for(j
=0; j
<filterSize
; j
++)
903 double d
= ABS((xx
<<16) - xDstInSrc
)/(double)(1<<16);
904 double coeff
= 1.0 - d
;
906 filter
[i
*filterSize
+ j
]= coeff
;
915 double sizeFactor
, filterSizeInSrc
;
916 const double xInc1
= (double)xInc
/ (double)(1<<16);
918 if (flags
&SWS_BICUBIC
) sizeFactor
= 4.0;
919 else if(flags
&SWS_X
) sizeFactor
= 8.0;
920 else if(flags
&SWS_AREA
) sizeFactor
= 1.0; //downscale only, for upscale it is bilinear
921 else if(flags
&SWS_GAUSS
) sizeFactor
= 8.0; // infinite ;)
922 else if(flags
&SWS_LANCZOS
) sizeFactor
= param
[0] != SWS_PARAM_DEFAULT
? 2.0*param
[0] : 6.0;
923 else if(flags
&SWS_SINC
) sizeFactor
= 20.0; // infinite ;)
924 else if(flags
&SWS_SPLINE
) sizeFactor
= 20.0; // infinite ;)
925 else if(flags
&SWS_BILINEAR
) sizeFactor
= 2.0;
927 sizeFactor
= 0.0; //GCC warning killer
931 if(xInc1
<= 1.0) filterSizeInSrc
= sizeFactor
; // upscale
932 else filterSizeInSrc
= sizeFactor
*srcW
/ (double)dstW
;
934 filterSize
= (int)ceil(1 + filterSizeInSrc
); // will be reduced later if possible
935 if(filterSize
> srcW
-2) filterSize
=srcW
-2;
937 filter
= (double*)memalign(16, dstW
*sizeof(double)*filterSize
);
939 xDstInSrc
= xInc1
/ 2.0 - 0.5;
940 for(i
=0; i
<dstW
; i
++)
942 int xx
= (int)(xDstInSrc
- (filterSize
-1)*0.5 + 0.5);
945 for(j
=0; j
<filterSize
; j
++)
947 double d
= ABS(xx
- xDstInSrc
)/filterSizeInSrc
*sizeFactor
;
949 if(flags
& SWS_BICUBIC
)
951 double B
= param
[0] != SWS_PARAM_DEFAULT
? param
[0] : 0.0;
952 double C
= param
[1] != SWS_PARAM_DEFAULT
? param
[1] : 0.6;
955 coeff
= (12-9*B
-6*C
)*d
*d
*d
+ (-18+12*B
+6*C
)*d
*d
+ 6-2*B
;
957 coeff
= (-B
-6*C
)*d
*d
*d
+ (6*B
+30*C
)*d
*d
+ (-12*B
-48*C
)*d
+8*B
+24*C
;
961 /* else if(flags & SWS_X)
963 double p= param ? param*0.01 : 0.3;
964 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
965 coeff*= pow(2.0, - p*d*d);
967 else if(flags
& SWS_X
)
969 double A
= param
[0] != SWS_PARAM_DEFAULT
? param
[0] : 1.0;
975 if(coeff
<0.0) coeff
= -pow(-coeff
, A
);
976 else coeff
= pow( coeff
, A
);
977 coeff
= coeff
*0.5 + 0.5;
979 else if(flags
& SWS_AREA
)
981 double srcPixelSize
= 1.0/xInc1
;
982 if(d
+ srcPixelSize
/2 < 0.5) coeff
= 1.0;
983 else if(d
- srcPixelSize
/2 < 0.5) coeff
= (0.5-d
)/srcPixelSize
+ 0.5;
986 else if(flags
& SWS_GAUSS
)
988 double p
= param
[0] != SWS_PARAM_DEFAULT
? param
[0] : 3.0;
989 coeff
= pow(2.0, - p
*d
*d
);
991 else if(flags
& SWS_SINC
)
993 coeff
= d
? sin(d
*PI
)/(d
*PI
) : 1.0;
995 else if(flags
& SWS_LANCZOS
)
997 double p
= param
[0] != SWS_PARAM_DEFAULT
? param
[0] : 3.0;
998 coeff
= d
? sin(d
*PI
)*sin(d
*PI
/p
)/(d
*d
*PI
*PI
/p
) : 1.0;
1001 else if(flags
& SWS_BILINEAR
)
1004 if(coeff
<0) coeff
=0;
1006 else if(flags
& SWS_SPLINE
)
1008 double p
=-2.196152422706632;
1009 coeff
= getSplineCoeff(1.0, 0.0, p
, -p
-1.0, d
);
1012 coeff
= 0.0; //GCC warning killer
1016 filter
[i
*filterSize
+ j
]= coeff
;
1023 /* apply src & dst Filter to filter -> filter2
1026 ASSERT(filterSize
>0)
1027 filter2Size
= filterSize
;
1028 if(srcFilter
) filter2Size
+= srcFilter
->length
- 1;
1029 if(dstFilter
) filter2Size
+= dstFilter
->length
- 1;
1030 ASSERT(filter2Size
>0)
1031 filter2
= (double*)memalign(8, filter2Size
*dstW
*sizeof(double));
1033 for(i
=0; i
<dstW
; i
++)
1036 SwsVector scaleFilter
;
1039 scaleFilter
.coeff
= filter
+ i
*filterSize
;
1040 scaleFilter
.length
= filterSize
;
1042 if(srcFilter
) outVec
= sws_getConvVec(srcFilter
, &scaleFilter
);
1043 else outVec
= &scaleFilter
;
1045 ASSERT(outVec
->length
== filter2Size
)
1048 for(j
=0; j
<outVec
->length
; j
++)
1050 filter2
[i
*filter2Size
+ j
]= outVec
->coeff
[j
];
1053 (*filterPos
)[i
]+= (filterSize
-1)/2 - (filter2Size
-1)/2;
1055 if(outVec
!= &scaleFilter
) sws_freeVec(outVec
);
1057 free(filter
); filter
=NULL
;
1059 /* try to reduce the filter-size (step1 find size and shift left) */
1060 // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1062 for(i
=dstW
-1; i
>=0; i
--)
1064 int min
= filter2Size
;
1068 /* get rid off near zero elements on the left by shifting left */
1069 for(j
=0; j
<filter2Size
; j
++)
1072 cutOff
+= ABS(filter2
[i
*filter2Size
]);
1074 if(cutOff
> SWS_MAX_REDUCE_CUTOFF
) break;
1076 /* preserve Monotonicity because the core can't handle the filter otherwise */
1077 if(i
<dstW
-1 && (*filterPos
)[i
] >= (*filterPos
)[i
+1]) break;
1079 // Move filter coeffs left
1080 for(k
=1; k
<filter2Size
; k
++)
1081 filter2
[i
*filter2Size
+ k
- 1]= filter2
[i
*filter2Size
+ k
];
1082 filter2
[i
*filter2Size
+ k
- 1]= 0.0;
1087 /* count near zeros on the right */
1088 for(j
=filter2Size
-1; j
>0; j
--)
1090 cutOff
+= ABS(filter2
[i
*filter2Size
+ j
]);
1092 if(cutOff
> SWS_MAX_REDUCE_CUTOFF
) break;
1096 if(min
>minFilterSize
) minFilterSize
= min
;
1099 if (flags
& SWS_CPU_CAPS_ALTIVEC
) {
1100 // we can handle the special case 4,
1101 // so we don't want to go to the full 8
1102 if (minFilterSize
< 5)
1105 // we really don't want to waste our time
1106 // doing useless computation, so fall-back on
1107 // the scalar C code for very small filter.
1108 // vectorizing is worth it only if you have
1109 // decent-sized vector.
1110 if (minFilterSize
< 3)
1114 ASSERT(minFilterSize
> 0)
1115 filterSize
= (minFilterSize
+(filterAlign
-1)) & (~(filterAlign
-1));
1116 ASSERT(filterSize
> 0)
1117 filter
= (double*)memalign(8, filterSize
*dstW
*sizeof(double));
1118 *outFilterSize
= filterSize
;
1120 if(flags
&SWS_PRINT_INFO
)
1121 MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size
, filterSize
);
1122 /* try to reduce the filter-size (step2 reduce it) */
1123 for(i
=0; i
<dstW
; i
++)
1127 for(j
=0; j
<filterSize
; j
++)
1129 if(j
>=filter2Size
) filter
[i
*filterSize
+ j
]= 0.0;
1130 else filter
[i
*filterSize
+ j
]= filter2
[i
*filter2Size
+ j
];
1133 free(filter2
); filter2
=NULL
;
1136 //FIXME try to align filterpos if possible
1139 for(i
=0; i
<dstW
; i
++)
1142 if((*filterPos
)[i
] < 0)
1144 // Move filter coeffs left to compensate for filterPos
1145 for(j
=1; j
<filterSize
; j
++)
1147 int left
= MAX(j
+ (*filterPos
)[i
], 0);
1148 filter
[i
*filterSize
+ left
] += filter
[i
*filterSize
+ j
];
1149 filter
[i
*filterSize
+ j
]=0;
1154 if((*filterPos
)[i
] + filterSize
> srcW
)
1156 int shift
= (*filterPos
)[i
] + filterSize
- srcW
;
1157 // Move filter coeffs right to compensate for filterPos
1158 for(j
=filterSize
-2; j
>=0; j
--)
1160 int right
= MIN(j
+ shift
, filterSize
-1);
1161 filter
[i
*filterSize
+right
] += filter
[i
*filterSize
+j
];
1162 filter
[i
*filterSize
+j
]=0;
1164 (*filterPos
)[i
]= srcW
- filterSize
;
1168 // Note the +1 is for the MMXscaler which reads over the end
1169 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1170 *outFilter
= (int16_t*)memalign(16, *outFilterSize
*(dstW
+1)*sizeof(int16_t));
1171 memset(*outFilter
, 0, *outFilterSize
*(dstW
+1)*sizeof(int16_t));
1173 /* Normalize & Store in outFilter */
1174 for(i
=0; i
<dstW
; i
++)
1181 for(j
=0; j
<filterSize
; j
++)
1183 sum
+= filter
[i
*filterSize
+ j
];
1186 for(j
=0; j
<*outFilterSize
; j
++)
1188 double v
= filter
[i
*filterSize
+ j
]*scale
+ error
;
1189 int intV
= floor(v
+ 0.5);
1190 (*outFilter
)[i
*(*outFilterSize
) + j
]= intV
;
1195 (*filterPos
)[dstW
]= (*filterPos
)[dstW
-1]; // the MMX scaler will read over the end
1196 for(i
=0; i
<*outFilterSize
; i
++)
1198 int j
= dstW
*(*outFilterSize
);
1199 (*outFilter
)[j
+ i
]= (*outFilter
)[j
+ i
- (*outFilterSize
)];
1205 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1206 static void initMMX2HScaler(int dstW
, int xInc
, uint8_t *funnyCode
, int16_t *filter
, int32_t *filterPos
, int numSplits
)
1209 long imm8OfPShufW1A
;
1210 long imm8OfPShufW2A
;
1211 long fragmentLengthA
;
1213 long imm8OfPShufW1B
;
1214 long imm8OfPShufW2B
;
1215 long fragmentLengthB
;
1220 // create an optimized horizontal scaling routine
1228 "movq (%%"REG_d
", %%"REG_a
"), %%mm3\n\t"
1229 "movd (%%"REG_c
", %%"REG_S
"), %%mm0\n\t"
1230 "movd 1(%%"REG_c
", %%"REG_S
"), %%mm1\n\t"
1231 "punpcklbw %%mm7, %%mm1 \n\t"
1232 "punpcklbw %%mm7, %%mm0 \n\t"
1233 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1235 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1237 "psubw %%mm1, %%mm0 \n\t"
1238 "movl 8(%%"REG_b
", %%"REG_a
"), %%esi\n\t"
1239 "pmullw %%mm3, %%mm0 \n\t"
1240 "psllw $7, %%mm1 \n\t"
1241 "paddw %%mm1, %%mm0 \n\t"
1243 "movq %%mm0, (%%"REG_D
", %%"REG_a
")\n\t"
1245 "add $8, %%"REG_a
" \n\t"
1260 :"=r" (fragmentA
), "=r" (imm8OfPShufW1A
), "=r" (imm8OfPShufW2A
),
1261 "=r" (fragmentLengthA
)
1268 "movq (%%"REG_d
", %%"REG_a
"), %%mm3\n\t"
1269 "movd (%%"REG_c
", %%"REG_S
"), %%mm0\n\t"
1270 "punpcklbw %%mm7, %%mm0 \n\t"
1271 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1273 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1275 "psubw %%mm1, %%mm0 \n\t"
1276 "movl 8(%%"REG_b
", %%"REG_a
"), %%esi\n\t"
1277 "pmullw %%mm3, %%mm0 \n\t"
1278 "psllw $7, %%mm1 \n\t"
1279 "paddw %%mm1, %%mm0 \n\t"
1281 "movq %%mm0, (%%"REG_D
", %%"REG_a
")\n\t"
1283 "add $8, %%"REG_a
" \n\t"
1298 :"=r" (fragmentB
), "=r" (imm8OfPShufW1B
), "=r" (imm8OfPShufW2B
),
1299 "=r" (fragmentLengthB
)
1302 xpos
= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1305 for(i
=0; i
<dstW
/numSplits
; i
++)
1312 int b
=((xpos
+xInc
)>>16) - xx
;
1313 int c
=((xpos
+xInc
*2)>>16) - xx
;
1314 int d
=((xpos
+xInc
*3)>>16) - xx
;
1316 filter
[i
] = (( xpos
& 0xFFFF) ^ 0xFFFF)>>9;
1317 filter
[i
+1] = (((xpos
+xInc
) & 0xFFFF) ^ 0xFFFF)>>9;
1318 filter
[i
+2] = (((xpos
+xInc
*2) & 0xFFFF) ^ 0xFFFF)>>9;
1319 filter
[i
+3] = (((xpos
+xInc
*3) & 0xFFFF) ^ 0xFFFF)>>9;
1324 int maxShift
= 3-(d
+1);
1327 memcpy(funnyCode
+ fragmentPos
, fragmentB
, fragmentLengthB
);
1329 funnyCode
[fragmentPos
+ imm8OfPShufW1B
]=
1330 (a
+1) | ((b
+1)<<2) | ((c
+1)<<4) | ((d
+1)<<6);
1331 funnyCode
[fragmentPos
+ imm8OfPShufW2B
]=
1332 a
| (b
<<2) | (c
<<4) | (d
<<6);
1334 if(i
+3>=dstW
) shift
=maxShift
; //avoid overread
1335 else if((filterPos
[i
/2]&3) <= maxShift
) shift
=filterPos
[i
/2]&3; //Align
1337 if(shift
&& i
>=shift
)
1339 funnyCode
[fragmentPos
+ imm8OfPShufW1B
]+= 0x55*shift
;
1340 funnyCode
[fragmentPos
+ imm8OfPShufW2B
]+= 0x55*shift
;
1341 filterPos
[i
/2]-=shift
;
1344 fragmentPos
+= fragmentLengthB
;
1351 memcpy(funnyCode
+ fragmentPos
, fragmentA
, fragmentLengthA
);
1353 funnyCode
[fragmentPos
+ imm8OfPShufW1A
]=
1354 funnyCode
[fragmentPos
+ imm8OfPShufW2A
]=
1355 a
| (b
<<2) | (c
<<4) | (d
<<6);
1357 if(i
+4>=dstW
) shift
=maxShift
; //avoid overread
1358 else if((filterPos
[i
/2]&3) <= maxShift
) shift
=filterPos
[i
/2]&3; //partial align
1360 if(shift
&& i
>=shift
)
1362 funnyCode
[fragmentPos
+ imm8OfPShufW1A
]+= 0x55*shift
;
1363 funnyCode
[fragmentPos
+ imm8OfPShufW2A
]+= 0x55*shift
;
1364 filterPos
[i
/2]-=shift
;
1367 fragmentPos
+= fragmentLengthA
;
1370 funnyCode
[fragmentPos
]= RET
;
1374 filterPos
[i
/2]= xpos
>>16; // needed to jump to the next part
1376 #endif // ARCH_X86 || ARCH_X86_64
1378 static void globalInit(void){
1379 // generating tables:
1381 for(i
=0; i
<768; i
++){
1382 int c
= MIN(MAX(i
-256, 0), 255);
1387 static SwsFunc
getSwsFunc(int flags
){
1389 #ifdef RUNTIME_CPUDETECT
1390 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1391 // ordered per speed fasterst first
1392 if(flags
& SWS_CPU_CAPS_MMX2
)
1393 return swScale_MMX2
;
1394 else if(flags
& SWS_CPU_CAPS_3DNOW
)
1395 return swScale_3DNow
;
1396 else if(flags
& SWS_CPU_CAPS_MMX
)
1403 if(flags
& SWS_CPU_CAPS_ALTIVEC
)
1404 return swScale_altivec
;
1410 #else //RUNTIME_CPUDETECT
1412 return swScale_MMX2
;
1413 #elif defined (HAVE_3DNOW)
1414 return swScale_3DNow
;
1415 #elif defined (HAVE_MMX)
1417 #elif defined (HAVE_ALTIVEC)
1418 return swScale_altivec
;
1422 #endif //!RUNTIME_CPUDETECT
1425 static int PlanarToNV12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1426 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1427 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1429 if(dstStride
[0]==srcStride
[0] && srcStride
[0] > 0)
1430 memcpy(dst
, src
[0], srcSliceH
*dstStride
[0]);
1434 uint8_t *srcPtr
= src
[0];
1435 uint8_t *dstPtr
= dst
;
1436 for(i
=0; i
<srcSliceH
; i
++)
1438 memcpy(dstPtr
, srcPtr
, c
->srcW
);
1439 srcPtr
+= srcStride
[0];
1440 dstPtr
+= dstStride
[0];
1443 dst
= dstParam
[1] + dstStride
[1]*srcSliceY
/2;
1444 if (c
->dstFormat
== IMGFMT_NV12
)
1445 interleaveBytes( src
[1],src
[2],dst
,c
->srcW
/2,srcSliceH
/2,srcStride
[1],srcStride
[2],dstStride
[0] );
1447 interleaveBytes( src
[2],src
[1],dst
,c
->srcW
/2,srcSliceH
/2,srcStride
[2],srcStride
[1],dstStride
[0] );
1452 static int PlanarToYuy2Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1453 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1454 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1456 yv12toyuy2( src
[0],src
[1],src
[2],dst
,c
->srcW
,srcSliceH
,srcStride
[0],srcStride
[1],dstStride
[0] );
1461 static int PlanarToUyvyWrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1462 int srcSliceH
, uint8_t* dstParam
[], int dstStride
[]){
1463 uint8_t *dst
=dstParam
[0] + dstStride
[0]*srcSliceY
;
1465 yv12touyvy( src
[0],src
[1],src
[2],dst
,c
->srcW
,srcSliceH
,srcStride
[0],srcStride
[1],dstStride
[0] );
1470 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1471 static int rgb2rgbWrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1472 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1473 const int srcFormat
= c
->srcFormat
;
1474 const int dstFormat
= c
->dstFormat
;
1475 const int srcBpp
= ((srcFormat
&0xFF) + 7)>>3;
1476 const int dstBpp
= ((dstFormat
&0xFF) + 7)>>3;
1477 const int srcId
= (srcFormat
&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8
1478 const int dstId
= (dstFormat
&0xFF)>>2;
1479 void (*conv
)(const uint8_t *src
, uint8_t *dst
, long src_size
)=NULL
;
1482 if( (isBGR(srcFormat
) && isBGR(dstFormat
))
1483 || (isRGB(srcFormat
) && isRGB(dstFormat
))){
1484 switch(srcId
| (dstId
<<4)){
1485 case 0x34: conv
= rgb16to15
; break;
1486 case 0x36: conv
= rgb24to15
; break;
1487 case 0x38: conv
= rgb32to15
; break;
1488 case 0x43: conv
= rgb15to16
; break;
1489 case 0x46: conv
= rgb24to16
; break;
1490 case 0x48: conv
= rgb32to16
; break;
1491 case 0x63: conv
= rgb15to24
; break;
1492 case 0x64: conv
= rgb16to24
; break;
1493 case 0x68: conv
= rgb32to24
; break;
1494 case 0x83: conv
= rgb15to32
; break;
1495 case 0x84: conv
= rgb16to32
; break;
1496 case 0x86: conv
= rgb24to32
; break;
1497 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1498 vo_format_name(srcFormat
), vo_format_name(dstFormat
)); break;
1500 }else if( (isBGR(srcFormat
) && isRGB(dstFormat
))
1501 || (isRGB(srcFormat
) && isBGR(dstFormat
))){
1502 switch(srcId
| (dstId
<<4)){
1503 case 0x33: conv
= rgb15tobgr15
; break;
1504 case 0x34: conv
= rgb16tobgr15
; break;
1505 case 0x36: conv
= rgb24tobgr15
; break;
1506 case 0x38: conv
= rgb32tobgr15
; break;
1507 case 0x43: conv
= rgb15tobgr16
; break;
1508 case 0x44: conv
= rgb16tobgr16
; break;
1509 case 0x46: conv
= rgb24tobgr16
; break;
1510 case 0x48: conv
= rgb32tobgr16
; break;
1511 case 0x63: conv
= rgb15tobgr24
; break;
1512 case 0x64: conv
= rgb16tobgr24
; break;
1513 case 0x66: conv
= rgb24tobgr24
; break;
1514 case 0x68: conv
= rgb32tobgr24
; break;
1515 case 0x83: conv
= rgb15tobgr32
; break;
1516 case 0x84: conv
= rgb16tobgr32
; break;
1517 case 0x86: conv
= rgb24tobgr32
; break;
1518 case 0x88: conv
= rgb32tobgr32
; break;
1519 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1520 vo_format_name(srcFormat
), vo_format_name(dstFormat
)); break;
1523 MSG_ERR("swScaler: internal error %s -> %s converter\n",
1524 vo_format_name(srcFormat
), vo_format_name(dstFormat
));
1527 if(dstStride
[0]*srcBpp
== srcStride
[0]*dstBpp
)
1528 conv(src
[0], dst
[0] + dstStride
[0]*srcSliceY
, srcSliceH
*srcStride
[0]);
1532 uint8_t *srcPtr
= src
[0];
1533 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1535 for(i
=0; i
<srcSliceH
; i
++)
1537 conv(srcPtr
, dstPtr
, c
->srcW
*srcBpp
);
1538 srcPtr
+= srcStride
[0];
1539 dstPtr
+= dstStride
[0];
1545 static int bgr24toyv12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1546 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1550 dst
[0]+ srcSliceY
*dstStride
[0],
1551 dst
[1]+(srcSliceY
>>1)*dstStride
[1],
1552 dst
[2]+(srcSliceY
>>1)*dstStride
[2],
1554 dstStride
[0], dstStride
[1], srcStride
[0]);
1558 static int yvu9toyv12Wrapper(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1559 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1563 if(srcStride
[0]==dstStride
[0] && srcStride
[0] > 0)
1564 memcpy(dst
[0]+ srcSliceY
*dstStride
[0], src
[0], srcStride
[0]*srcSliceH
);
1566 uint8_t *srcPtr
= src
[0];
1567 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1569 for(i
=0; i
<srcSliceH
; i
++)
1571 memcpy(dstPtr
, srcPtr
, c
->srcW
);
1572 srcPtr
+= srcStride
[0];
1573 dstPtr
+= dstStride
[0];
1577 if(c
->dstFormat
==IMGFMT_YV12
){
1578 planar2x(src
[1], dst
[1], c
->chrSrcW
, c
->chrSrcH
, srcStride
[1], dstStride
[1]);
1579 planar2x(src
[2], dst
[2], c
->chrSrcW
, c
->chrSrcH
, srcStride
[2], dstStride
[2]);
1581 planar2x(src
[1], dst
[2], c
->chrSrcW
, c
->chrSrcH
, srcStride
[1], dstStride
[2]);
1582 planar2x(src
[2], dst
[1], c
->chrSrcW
, c
->chrSrcH
, srcStride
[2], dstStride
[1]);
1588 * bring pointers in YUV order instead of YVU
1590 static inline void sws_orderYUV(int format
, uint8_t * sortedP
[], int sortedStride
[], uint8_t * p
[], int stride
[]){
1591 if(format
== IMGFMT_YV12
|| format
== IMGFMT_YVU9
1592 || format
== IMGFMT_444P
|| format
== IMGFMT_422P
|| format
== IMGFMT_411P
){
1596 sortedStride
[0]= stride
[0];
1597 sortedStride
[1]= stride
[2];
1598 sortedStride
[2]= stride
[1];
1600 else if(isPacked(format
) || isGray(format
) || format
== IMGFMT_Y8
)
1605 sortedStride
[0]= stride
[0];
1609 else if(format
== IMGFMT_I420
|| format
== IMGFMT_IYUV
)
1614 sortedStride
[0]= stride
[0];
1615 sortedStride
[1]= stride
[1];
1616 sortedStride
[2]= stride
[2];
1618 else if(format
== IMGFMT_NV12
|| format
== IMGFMT_NV21
)
1623 sortedStride
[0]= stride
[0];
1624 sortedStride
[1]= stride
[1];
1627 MSG_ERR("internal error in orderYUV\n");
1631 /* unscaled copy like stuff (assumes nearly identical formats) */
1632 static int simpleCopy(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
1633 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
1635 if(isPacked(c
->srcFormat
))
1637 if(dstStride
[0]==srcStride
[0] && srcStride
[0] > 0)
1638 memcpy(dst
[0] + dstStride
[0]*srcSliceY
, src
[0], srcSliceH
*dstStride
[0]);
1642 uint8_t *srcPtr
= src
[0];
1643 uint8_t *dstPtr
= dst
[0] + dstStride
[0]*srcSliceY
;
1646 /* universal length finder */
1647 while(length
+c
->srcW
<= ABS(dstStride
[0])
1648 && length
+c
->srcW
<= ABS(srcStride
[0])) length
+= c
->srcW
;
1651 for(i
=0; i
<srcSliceH
; i
++)
1653 memcpy(dstPtr
, srcPtr
, length
);
1654 srcPtr
+= srcStride
[0];
1655 dstPtr
+= dstStride
[0];
1660 { /* Planar YUV or gray */
1662 for(plane
=0; plane
<3; plane
++)
1664 int length
= plane
==0 ? c
->srcW
: -((-c
->srcW
)>>c
->chrDstHSubSample
);
1665 int y
= plane
==0 ? srcSliceY
: -((-srcSliceY
)>>c
->chrDstVSubSample
);
1666 int height
= plane
==0 ? srcSliceH
: -((-srcSliceH
)>>c
->chrDstVSubSample
);
1668 if((isGray(c
->srcFormat
) || isGray(c
->dstFormat
)) && plane
>0)
1670 if(!isGray(c
->dstFormat
))
1671 memset(dst
[plane
], 128, dstStride
[plane
]*height
);
1675 if(dstStride
[plane
]==srcStride
[plane
] && srcStride
[plane
] > 0)
1676 memcpy(dst
[plane
] + dstStride
[plane
]*y
, src
[plane
], height
*dstStride
[plane
]);
1680 uint8_t *srcPtr
= src
[plane
];
1681 uint8_t *dstPtr
= dst
[plane
] + dstStride
[plane
]*y
;
1682 for(i
=0; i
<height
; i
++)
1684 memcpy(dstPtr
, srcPtr
, length
);
1685 srcPtr
+= srcStride
[plane
];
1686 dstPtr
+= dstStride
[plane
];
1695 static int remove_dup_fourcc(int fourcc
)
1700 case IMGFMT_IYUV
: return IMGFMT_YV12
;
1701 case IMGFMT_Y8
: return IMGFMT_Y800
;
1702 case IMGFMT_IF09
: return IMGFMT_YVU9
;
1703 default: return fourcc
;
1707 static void getSubSampleFactors(int *h
, int *v
, int format
){
1715 case IMGFMT_Y800
: //FIXME remove after different subsamplings are fully implemented
1744 static uint16_t roundToInt16(int64_t f
){
1745 int r
= (f
+ (1<<15))>>16;
1746 if(r
<-0x7FFF) return 0x8000;
1747 else if(r
> 0x7FFF) return 0x7FFF;
1752 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1753 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1754 * @return -1 if not supported
1756 int sws_setColorspaceDetails(SwsContext
*c
, const int inv_table
[4], int srcRange
, const int table
[4], int dstRange
, int brightness
, int contrast
, int saturation
){
1757 int64_t crv
= inv_table
[0];
1758 int64_t cbu
= inv_table
[1];
1759 int64_t cgu
= -inv_table
[2];
1760 int64_t cgv
= -inv_table
[3];
1764 if(isYUV(c
->dstFormat
) || isGray(c
->dstFormat
)) return -1;
1765 memcpy(c
->srcColorspaceTable
, inv_table
, sizeof(int)*4);
1766 memcpy(c
->dstColorspaceTable
, table
, sizeof(int)*4);
1768 c
->brightness
= brightness
;
1769 c
->contrast
= contrast
;
1770 c
->saturation
= saturation
;
1771 c
->srcRange
= srcRange
;
1772 c
->dstRange
= dstRange
;
1774 c
->uOffset
= 0x0400040004000400LL
;
1775 c
->vOffset
= 0x0400040004000400LL
;
1782 cy
= (cy
*contrast
)>>16;
1783 crv
= (crv
*contrast
* saturation
)>>32;
1784 cbu
= (cbu
*contrast
* saturation
)>>32;
1785 cgu
= (cgu
*contrast
* saturation
)>>32;
1786 cgv
= (cgv
*contrast
* saturation
)>>32;
1788 oy
-= 256*brightness
;
1790 c
->yCoeff
= roundToInt16(cy
*8192) * 0x0001000100010001ULL
;
1791 c
->vrCoeff
= roundToInt16(crv
*8192) * 0x0001000100010001ULL
;
1792 c
->ubCoeff
= roundToInt16(cbu
*8192) * 0x0001000100010001ULL
;
1793 c
->vgCoeff
= roundToInt16(cgv
*8192) * 0x0001000100010001ULL
;
1794 c
->ugCoeff
= roundToInt16(cgu
*8192) * 0x0001000100010001ULL
;
1795 c
->yOffset
= roundToInt16(oy
* 8) * 0x0001000100010001ULL
;
1797 yuv2rgb_c_init_tables(c
, inv_table
, srcRange
, brightness
, contrast
, saturation
);
1800 #ifdef COMPILE_ALTIVEC
1801 if (c
->flags
& SWS_CPU_CAPS_ALTIVEC
)
1802 yuv2rgb_altivec_init_tables (c
, inv_table
, brightness
, contrast
, saturation
);
1808 * @return -1 if not supported
1810 int sws_getColorspaceDetails(SwsContext
*c
, int **inv_table
, int *srcRange
, int **table
, int *dstRange
, int *brightness
, int *contrast
, int *saturation
){
1811 if(isYUV(c
->dstFormat
) || isGray(c
->dstFormat
)) return -1;
1813 *inv_table
= c
->srcColorspaceTable
;
1814 *table
= c
->dstColorspaceTable
;
1815 *srcRange
= c
->srcRange
;
1816 *dstRange
= c
->dstRange
;
1817 *brightness
= c
->brightness
;
1818 *contrast
= c
->contrast
;
1819 *saturation
= c
->saturation
;
1824 SwsContext
*sws_getContext(int srcW
, int srcH
, int origSrcFormat
, int dstW
, int dstH
, int origDstFormat
, int flags
,
1825 SwsFilter
*srcFilter
, SwsFilter
*dstFilter
, double *param
){
1829 int usesVFilter
, usesHFilter
;
1830 int unscaled
, needsDither
;
1831 int srcFormat
, dstFormat
;
1832 SwsFilter dummyFilter
= {NULL
, NULL
, NULL
, NULL
};
1833 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1834 if(flags
& SWS_CPU_CAPS_MMX
)
1835 asm volatile("emms\n\t"::: "memory");
1838 #ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1839 flags
&= ~(SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_MMX2
|SWS_CPU_CAPS_3DNOW
|SWS_CPU_CAPS_ALTIVEC
);
1841 flags
|= SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_MMX2
;
1842 #elif defined (HAVE_3DNOW)
1843 flags
|= SWS_CPU_CAPS_MMX
|SWS_CPU_CAPS_3DNOW
;
1844 #elif defined (HAVE_MMX)
1845 flags
|= SWS_CPU_CAPS_MMX
;
1846 #elif defined (HAVE_ALTIVEC)
1847 flags
|= SWS_CPU_CAPS_ALTIVEC
;
1850 if(clip_table
[512] != 255) globalInit();
1851 if(rgb15to16
== NULL
) sws_rgb2rgb_init(flags
);
1853 /* avoid duplicate Formats, so we don't need to check to much */
1854 srcFormat
= remove_dup_fourcc(origSrcFormat
);
1855 dstFormat
= remove_dup_fourcc(origDstFormat
);
1857 unscaled
= (srcW
== dstW
&& srcH
== dstH
);
1858 needsDither
= (isBGR(dstFormat
) || isRGB(dstFormat
))
1859 && (dstFormat
&0xFF)<24
1860 && ((dstFormat
&0xFF)<(srcFormat
&0xFF) || (!(isRGB(srcFormat
) || isBGR(srcFormat
))));
1862 if(!isSupportedIn(srcFormat
))
1864 MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat
));
1867 if(!isSupportedOut(dstFormat
))
1869 MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat
));
1874 if(srcW
<4 || srcH
<1 || dstW
<8 || dstH
<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1876 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
1877 srcW
, srcH
, dstW
, dstH
);
1881 if(!dstFilter
) dstFilter
= &dummyFilter
;
1882 if(!srcFilter
) srcFilter
= &dummyFilter
;
1884 c
= memalign(64, sizeof(SwsContext
));
1885 memset(c
, 0, sizeof(SwsContext
));
1891 c
->lumXInc
= ((srcW
<<16) + (dstW
>>1))/dstW
;
1892 c
->lumYInc
= ((srcH
<<16) + (dstH
>>1))/dstH
;
1894 c
->dstFormat
= dstFormat
;
1895 c
->srcFormat
= srcFormat
;
1896 c
->origDstFormat
= origDstFormat
;
1897 c
->origSrcFormat
= origSrcFormat
;
1898 c
->vRounder
= 4* 0x0001000100010001ULL
;
1900 usesHFilter
= usesVFilter
= 0;
1901 if(dstFilter
->lumV
!=NULL
&& dstFilter
->lumV
->length
>1) usesVFilter
=1;
1902 if(dstFilter
->lumH
!=NULL
&& dstFilter
->lumH
->length
>1) usesHFilter
=1;
1903 if(dstFilter
->chrV
!=NULL
&& dstFilter
->chrV
->length
>1) usesVFilter
=1;
1904 if(dstFilter
->chrH
!=NULL
&& dstFilter
->chrH
->length
>1) usesHFilter
=1;
1905 if(srcFilter
->lumV
!=NULL
&& srcFilter
->lumV
->length
>1) usesVFilter
=1;
1906 if(srcFilter
->lumH
!=NULL
&& srcFilter
->lumH
->length
>1) usesHFilter
=1;
1907 if(srcFilter
->chrV
!=NULL
&& srcFilter
->chrV
->length
>1) usesVFilter
=1;
1908 if(srcFilter
->chrH
!=NULL
&& srcFilter
->chrH
->length
>1) usesHFilter
=1;
1910 getSubSampleFactors(&c
->chrSrcHSubSample
, &c
->chrSrcVSubSample
, srcFormat
);
1911 getSubSampleFactors(&c
->chrDstHSubSample
, &c
->chrDstVSubSample
, dstFormat
);
1913 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1914 if((isBGR(dstFormat
) || isRGB(dstFormat
)) && !(flags
&SWS_FULL_CHR_H_INT
)) c
->chrDstHSubSample
=1;
1916 // drop some chroma lines if the user wants it
1917 c
->vChrDrop
= (flags
&SWS_SRC_V_CHR_DROP_MASK
)>>SWS_SRC_V_CHR_DROP_SHIFT
;
1918 c
->chrSrcVSubSample
+= c
->vChrDrop
;
1920 // drop every 2. pixel for chroma calculation unless user wants full chroma
1921 if((isBGR(srcFormat
) || isRGB(srcFormat
)) && !(flags
&SWS_FULL_CHR_H_INP
))
1922 c
->chrSrcHSubSample
=1;
1925 c
->param
[0] = param
[0];
1926 c
->param
[1] = param
[1];
1929 c
->param
[1] = SWS_PARAM_DEFAULT
;
1932 c
->chrIntHSubSample
= c
->chrDstHSubSample
;
1933 c
->chrIntVSubSample
= c
->chrSrcVSubSample
;
1935 // note the -((-x)>>y) is so that we allways round toward +inf
1936 c
->chrSrcW
= -((-srcW
) >> c
->chrSrcHSubSample
);
1937 c
->chrSrcH
= -((-srcH
) >> c
->chrSrcVSubSample
);
1938 c
->chrDstW
= -((-dstW
) >> c
->chrDstHSubSample
);
1939 c
->chrDstH
= -((-dstH
) >> c
->chrDstVSubSample
);
1941 sws_setColorspaceDetails(c
, Inverse_Table_6_9
[SWS_CS_DEFAULT
], 0, Inverse_Table_6_9
[SWS_CS_DEFAULT
] /* FIXME*/, 0, 0, 1<<16, 1<<16);
1943 /* unscaled special Cases */
1944 if(unscaled
&& !usesHFilter
&& !usesVFilter
)
1947 if(srcFormat
== IMGFMT_YV12
&& (dstFormat
== IMGFMT_NV12
|| dstFormat
== IMGFMT_NV21
))
1949 c
->swScale
= PlanarToNV12Wrapper
;
1952 if((srcFormat
==IMGFMT_YV12
|| srcFormat
==IMGFMT_422P
) && (isBGR(dstFormat
) || isRGB(dstFormat
)))
1954 c
->swScale
= yuv2rgb_get_func_ptr(c
);
1957 if( srcFormat
==IMGFMT_YVU9
&& dstFormat
==IMGFMT_YV12
)
1959 c
->swScale
= yvu9toyv12Wrapper
;
1963 if(srcFormat
==IMGFMT_BGR24
&& dstFormat
==IMGFMT_YV12
)
1964 c
->swScale
= bgr24toyv12Wrapper
;
1966 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1967 if( (isBGR(srcFormat
) || isRGB(srcFormat
))
1968 && (isBGR(dstFormat
) || isRGB(dstFormat
))
1970 c
->swScale
= rgb2rgbWrapper
;
1972 /* LQ converters if -sws 0 or -sws 4*/
1973 if(c
->flags
&(SWS_FAST_BILINEAR
|SWS_POINT
)){
1974 /* rgb/bgr -> rgb/bgr (dither needed forms) */
1975 if( (isBGR(srcFormat
) || isRGB(srcFormat
))
1976 && (isBGR(dstFormat
) || isRGB(dstFormat
))
1978 c
->swScale
= rgb2rgbWrapper
;
1981 if(srcFormat
== IMGFMT_YV12
&&
1982 (dstFormat
== IMGFMT_YUY2
|| dstFormat
== IMGFMT_UYVY
))
1984 if (dstFormat
== IMGFMT_YUY2
)
1985 c
->swScale
= PlanarToYuy2Wrapper
;
1987 c
->swScale
= PlanarToUyvyWrapper
;
1991 #ifdef COMPILE_ALTIVEC
1992 if ((c
->flags
& SWS_CPU_CAPS_ALTIVEC
) &&
1993 ((srcFormat
== IMGFMT_YV12
&&
1994 (dstFormat
== IMGFMT_YUY2
|| dstFormat
== IMGFMT_UYVY
)))) {
1995 // unscaled YV12 -> packed YUV, we want speed
1996 if (dstFormat
== IMGFMT_YUY2
)
1997 c
->swScale
= yv12toyuy2_unscaled_altivec
;
1999 c
->swScale
= yv12touyvy_unscaled_altivec
;
2004 if( srcFormat
== dstFormat
2005 || (isPlanarYUV(srcFormat
) && isGray(dstFormat
))
2006 || (isPlanarYUV(dstFormat
) && isGray(srcFormat
))
2009 c
->swScale
= simpleCopy
;
2013 if(flags
&SWS_PRINT_INFO
)
2014 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n",
2015 vo_format_name(srcFormat
), vo_format_name(dstFormat
));
2020 if(flags
& SWS_CPU_CAPS_MMX2
)
2022 c
->canMMX2BeUsed
= (dstW
>=srcW
&& (dstW
&31)==0 && (srcW
&15)==0) ? 1 : 0;
2023 if(!c
->canMMX2BeUsed
&& dstW
>=srcW
&& (srcW
&15)==0 && (flags
&SWS_FAST_BILINEAR
))
2025 if(flags
&SWS_PRINT_INFO
)
2026 MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2028 if(usesHFilter
) c
->canMMX2BeUsed
=0;
2033 c
->chrXInc
= ((c
->chrSrcW
<<16) + (c
->chrDstW
>>1))/c
->chrDstW
;
2034 c
->chrYInc
= ((c
->chrSrcH
<<16) + (c
->chrDstH
>>1))/c
->chrDstH
;
2036 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2037 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2038 // n-2 is the last chrominance sample available
2039 // this is not perfect, but noone shuld notice the difference, the more correct variant
2040 // would be like the vertical one, but that would require some special code for the
2041 // first and last pixel
2042 if(flags
&SWS_FAST_BILINEAR
)
2044 if(c
->canMMX2BeUsed
)
2049 //we don't use the x86asm scaler if mmx is available
2050 else if(flags
& SWS_CPU_CAPS_MMX
)
2052 c
->lumXInc
= ((srcW
-2)<<16)/(dstW
-2) - 20;
2053 c
->chrXInc
= ((c
->chrSrcW
-2)<<16)/(c
->chrDstW
-2) - 20;
2057 /* precalculate horizontal scaler filter coefficients */
2059 const int filterAlign
=
2060 (flags
& SWS_CPU_CAPS_MMX
) ? 4 :
2061 (flags
& SWS_CPU_CAPS_ALTIVEC
) ? 8 :
2064 initFilter(&c
->hLumFilter
, &c
->hLumFilterPos
, &c
->hLumFilterSize
, c
->lumXInc
,
2065 srcW
, dstW
, filterAlign
, 1<<14,
2066 (flags
&SWS_BICUBLIN
) ? (flags
|SWS_BICUBIC
) : flags
,
2067 srcFilter
->lumH
, dstFilter
->lumH
, c
->param
);
2068 initFilter(&c
->hChrFilter
, &c
->hChrFilterPos
, &c
->hChrFilterSize
, c
->chrXInc
,
2069 c
->chrSrcW
, c
->chrDstW
, filterAlign
, 1<<14,
2070 (flags
&SWS_BICUBLIN
) ? (flags
|SWS_BILINEAR
) : flags
,
2071 srcFilter
->chrH
, dstFilter
->chrH
, c
->param
);
2073 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2074 // can't downscale !!!
2075 if(c
->canMMX2BeUsed
&& (flags
& SWS_FAST_BILINEAR
))
2077 #define MAX_FUNNY_CODE_SIZE 10000
2078 #ifdef MAP_ANONYMOUS
2079 c
->funnyYCode
= (uint8_t*)mmap(NULL
, MAX_FUNNY_CODE_SIZE
, PROT_EXEC
| PROT_READ
| PROT_WRITE
, MAP_PRIVATE
| MAP_ANONYMOUS
, 0, 0);
2080 c
->funnyUVCode
= (uint8_t*)mmap(NULL
, MAX_FUNNY_CODE_SIZE
, PROT_EXEC
| PROT_READ
| PROT_WRITE
, MAP_PRIVATE
| MAP_ANONYMOUS
, 0, 0);
2082 c
->funnyYCode
= (uint8_t*)memalign(32, MAX_FUNNY_CODE_SIZE
);
2083 c
->funnyUVCode
= (uint8_t*)memalign(32, MAX_FUNNY_CODE_SIZE
);
2086 c
->lumMmx2Filter
= (int16_t*)memalign(8, (dstW
/8+8)*sizeof(int16_t));
2087 c
->chrMmx2Filter
= (int16_t*)memalign(8, (c
->chrDstW
/4+8)*sizeof(int16_t));
2088 c
->lumMmx2FilterPos
= (int32_t*)memalign(8, (dstW
/2/8+8)*sizeof(int32_t));
2089 c
->chrMmx2FilterPos
= (int32_t*)memalign(8, (c
->chrDstW
/2/4+8)*sizeof(int32_t));
2091 initMMX2HScaler( dstW
, c
->lumXInc
, c
->funnyYCode
, c
->lumMmx2Filter
, c
->lumMmx2FilterPos
, 8);
2092 initMMX2HScaler(c
->chrDstW
, c
->chrXInc
, c
->funnyUVCode
, c
->chrMmx2Filter
, c
->chrMmx2FilterPos
, 4);
2095 } // Init Horizontal stuff
2099 /* precalculate vertical scaler filter coefficients */
2101 const int filterAlign
=
2102 (flags
& SWS_CPU_CAPS_ALTIVEC
) ? 8 :
2105 initFilter(&c
->vLumFilter
, &c
->vLumFilterPos
, &c
->vLumFilterSize
, c
->lumYInc
,
2106 srcH
, dstH
, filterAlign
, (1<<12)-4,
2107 (flags
&SWS_BICUBLIN
) ? (flags
|SWS_BICUBIC
) : flags
,
2108 srcFilter
->lumV
, dstFilter
->lumV
, c
->param
);
2109 initFilter(&c
->vChrFilter
, &c
->vChrFilterPos
, &c
->vChrFilterSize
, c
->chrYInc
,
2110 c
->chrSrcH
, c
->chrDstH
, filterAlign
, (1<<12)-4,
2111 (flags
&SWS_BICUBLIN
) ? (flags
|SWS_BILINEAR
) : flags
,
2112 srcFilter
->chrV
, dstFilter
->chrV
, c
->param
);
2115 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2116 c
->vLumBufSize
= c
->vLumFilterSize
;
2117 c
->vChrBufSize
= c
->vChrFilterSize
;
2118 for(i
=0; i
<dstH
; i
++)
2120 int chrI
= i
*c
->chrDstH
/ dstH
;
2121 int nextSlice
= MAX(c
->vLumFilterPos
[i
] + c
->vLumFilterSize
- 1,
2122 ((c
->vChrFilterPos
[chrI
] + c
->vChrFilterSize
- 1)<<c
->chrSrcVSubSample
));
2124 nextSlice
>>= c
->chrSrcVSubSample
;
2125 nextSlice
<<= c
->chrSrcVSubSample
;
2126 if(c
->vLumFilterPos
[i
] + c
->vLumBufSize
< nextSlice
)
2127 c
->vLumBufSize
= nextSlice
- c
->vLumFilterPos
[i
];
2128 if(c
->vChrFilterPos
[chrI
] + c
->vChrBufSize
< (nextSlice
>>c
->chrSrcVSubSample
))
2129 c
->vChrBufSize
= (nextSlice
>>c
->chrSrcVSubSample
) - c
->vChrFilterPos
[chrI
];
2132 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2133 c
->lumPixBuf
= (int16_t**)memalign(4, c
->vLumBufSize
*2*sizeof(int16_t*));
2134 c
->chrPixBuf
= (int16_t**)memalign(4, c
->vChrBufSize
*2*sizeof(int16_t*));
2135 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2136 /* align at 16 bytes for AltiVec */
2137 for(i
=0; i
<c
->vLumBufSize
; i
++)
2138 c
->lumPixBuf
[i
]= c
->lumPixBuf
[i
+c
->vLumBufSize
]= (uint16_t*)memalign(16, 4000);
2139 for(i
=0; i
<c
->vChrBufSize
; i
++)
2140 c
->chrPixBuf
[i
]= c
->chrPixBuf
[i
+c
->vChrBufSize
]= (uint16_t*)memalign(16, 8000);
2142 //try to avoid drawing green stuff between the right end and the stride end
2143 for(i
=0; i
<c
->vLumBufSize
; i
++) memset(c
->lumPixBuf
[i
], 0, 4000);
2144 for(i
=0; i
<c
->vChrBufSize
; i
++) memset(c
->chrPixBuf
[i
], 64, 8000);
2146 ASSERT(c
->chrDstH
<= dstH
)
2148 if(flags
&SWS_PRINT_INFO
)
2151 char *dither
= " dithered";
2155 if(flags
&SWS_FAST_BILINEAR
)
2156 MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2157 else if(flags
&SWS_BILINEAR
)
2158 MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2159 else if(flags
&SWS_BICUBIC
)
2160 MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2161 else if(flags
&SWS_X
)
2162 MSG_INFO("\nSwScaler: Experimental scaler, ");
2163 else if(flags
&SWS_POINT
)
2164 MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2165 else if(flags
&SWS_AREA
)
2166 MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2167 else if(flags
&SWS_BICUBLIN
)
2168 MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2169 else if(flags
&SWS_GAUSS
)
2170 MSG_INFO("\nSwScaler: Gaussian scaler, ");
2171 else if(flags
&SWS_SINC
)
2172 MSG_INFO("\nSwScaler: Sinc scaler, ");
2173 else if(flags
&SWS_LANCZOS
)
2174 MSG_INFO("\nSwScaler: Lanczos scaler, ");
2175 else if(flags
&SWS_SPLINE
)
2176 MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2178 MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2180 if(dstFormat
==IMGFMT_BGR15
|| dstFormat
==IMGFMT_BGR16
)
2181 MSG_INFO("from %s to%s %s ",
2182 vo_format_name(srcFormat
), dither
, vo_format_name(dstFormat
));
2184 MSG_INFO("from %s to %s ",
2185 vo_format_name(srcFormat
), vo_format_name(dstFormat
));
2187 if(flags
& SWS_CPU_CAPS_MMX2
)
2188 MSG_INFO("using MMX2\n");
2189 else if(flags
& SWS_CPU_CAPS_3DNOW
)
2190 MSG_INFO("using 3DNOW\n");
2191 else if(flags
& SWS_CPU_CAPS_MMX
)
2192 MSG_INFO("using MMX\n");
2193 else if(flags
& SWS_CPU_CAPS_ALTIVEC
)
2194 MSG_INFO("using AltiVec\n");
2196 MSG_INFO("using C\n");
2199 if(flags
& SWS_PRINT_INFO
)
2201 if(flags
& SWS_CPU_CAPS_MMX
)
2203 if(c
->canMMX2BeUsed
&& (flags
&SWS_FAST_BILINEAR
))
2204 MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2207 if(c
->hLumFilterSize
==4)
2208 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2209 else if(c
->hLumFilterSize
==8)
2210 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2212 MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2214 if(c
->hChrFilterSize
==4)
2215 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2216 else if(c
->hChrFilterSize
==8)
2217 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2219 MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2224 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2225 MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2227 if(flags
& SWS_FAST_BILINEAR
)
2228 MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2230 MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2233 if(isPlanarYUV(dstFormat
))
2235 if(c
->vLumFilterSize
==1)
2236 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2238 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2242 if(c
->vLumFilterSize
==1 && c
->vChrFilterSize
==2)
2243 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2244 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2245 else if(c
->vLumFilterSize
==2 && c
->vChrFilterSize
==2)
2246 MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2248 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2251 if(dstFormat
==IMGFMT_BGR24
)
2252 MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2253 (flags
& SWS_CPU_CAPS_MMX2
) ? "MMX2" : ((flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C"));
2254 else if(dstFormat
==IMGFMT_BGR32
)
2255 MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2256 else if(dstFormat
==IMGFMT_BGR16
)
2257 MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2258 else if(dstFormat
==IMGFMT_BGR15
)
2259 MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags
& SWS_CPU_CAPS_MMX
) ? "MMX" : "C");
2261 MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW
, srcH
, dstW
, dstH
);
2263 if(flags
& SWS_PRINT_INFO
)
2265 MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2266 c
->srcW
, c
->srcH
, c
->dstW
, c
->dstH
, c
->lumXInc
, c
->lumYInc
);
2267 MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2268 c
->chrSrcW
, c
->chrSrcH
, c
->chrDstW
, c
->chrDstH
, c
->chrXInc
, c
->chrYInc
);
2271 c
->swScale
= getSwsFunc(flags
);
2276 * swscale warper, so we don't need to export the SwsContext.
2277 * assumes planar YUV to be in YUV order instead of YVU
2279 int sws_scale_ordered(SwsContext
*c
, uint8_t* src
[], int srcStride
[], int srcSliceY
,
2280 int srcSliceH
, uint8_t* dst
[], int dstStride
[]){
2281 if (c
->sliceDir
== 0 && srcSliceY
!= 0 && srcSliceY
+ srcSliceH
!= c
->srcH
) {
2282 MSG_ERR("swScaler: slices start in the middle!\n");
2285 if (c
->sliceDir
== 0) {
2286 if (srcSliceY
== 0) c
->sliceDir
= 1; else c
->sliceDir
= -1;
2289 // copy strides, so they can safely be modified
2290 if (c
->sliceDir
== 1) {
2291 // slices go from top to bottom
2292 int srcStride2
[3]= {srcStride
[0], srcStride
[1], srcStride
[2]};
2293 int dstStride2
[3]= {dstStride
[0], dstStride
[1], dstStride
[2]};
2294 return c
->swScale(c
, src
, srcStride2
, srcSliceY
, srcSliceH
, dst
, dstStride2
);
2296 // slices go from bottom to top => we flip the image internally
2297 uint8_t* src2
[3]= {src
[0] + (srcSliceH
-1)*srcStride
[0],
2298 src
[1] + ((srcSliceH
>>c
->chrSrcVSubSample
)-1)*srcStride
[1],
2299 src
[2] + ((srcSliceH
>>c
->chrSrcVSubSample
)-1)*srcStride
[2]
2301 uint8_t* dst2
[3]= {dst
[0] + (c
->dstH
-1)*dstStride
[0],
2302 dst
[1] + ((c
->dstH
>>c
->chrDstVSubSample
)-1)*dstStride
[1],
2303 dst
[2] + ((c
->dstH
>>c
->chrDstVSubSample
)-1)*dstStride
[2]};
2304 int srcStride2
[3]= {-srcStride
[0], -srcStride
[1], -srcStride
[2]};
2305 int dstStride2
[3]= {-dstStride
[0], -dstStride
[1], -dstStride
[2]};
2307 return c
->swScale(c
, src2
, srcStride2
, c
->srcH
-srcSliceY
-srcSliceH
, srcSliceH
, dst2
, dstStride2
);
2312 * swscale warper, so we don't need to export the SwsContext
2314 int sws_scale(SwsContext
*c
, uint8_t* srcParam
[], int srcStrideParam
[], int srcSliceY
,
2315 int srcSliceH
, uint8_t* dstParam
[], int dstStrideParam
[]){
2320 sws_orderYUV(c
->origSrcFormat
, src
, srcStride
, srcParam
, srcStrideParam
);
2321 sws_orderYUV(c
->origDstFormat
, dst
, dstStride
, dstParam
, dstStrideParam
);
2322 //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2324 return c
->swScale(c
, src
, srcStride
, srcSliceY
, srcSliceH
, dst
, dstStride
);
2327 SwsFilter
*sws_getDefaultFilter(float lumaGBlur
, float chromaGBlur
,
2328 float lumaSharpen
, float chromaSharpen
,
2329 float chromaHShift
, float chromaVShift
,
2332 SwsFilter
*filter
= malloc(sizeof(SwsFilter
));
2335 filter
->lumH
= sws_getGaussianVec(lumaGBlur
, 3.0);
2336 filter
->lumV
= sws_getGaussianVec(lumaGBlur
, 3.0);
2338 filter
->lumH
= sws_getIdentityVec();
2339 filter
->lumV
= sws_getIdentityVec();
2342 if(chromaGBlur
!=0.0){
2343 filter
->chrH
= sws_getGaussianVec(chromaGBlur
, 3.0);
2344 filter
->chrV
= sws_getGaussianVec(chromaGBlur
, 3.0);
2346 filter
->chrH
= sws_getIdentityVec();
2347 filter
->chrV
= sws_getIdentityVec();
2350 if(chromaSharpen
!=0.0){
2351 SwsVector
*id
= sws_getIdentityVec();
2352 sws_scaleVec(filter
->chrH
, -chromaSharpen
);
2353 sws_scaleVec(filter
->chrV
, -chromaSharpen
);
2354 sws_addVec(filter
->chrH
, id
);
2355 sws_addVec(filter
->chrV
, id
);
2359 if(lumaSharpen
!=0.0){
2360 SwsVector
*id
= sws_getIdentityVec();
2361 sws_scaleVec(filter
->lumH
, -lumaSharpen
);
2362 sws_scaleVec(filter
->lumV
, -lumaSharpen
);
2363 sws_addVec(filter
->lumH
, id
);
2364 sws_addVec(filter
->lumV
, id
);
2368 if(chromaHShift
!= 0.0)
2369 sws_shiftVec(filter
->chrH
, (int)(chromaHShift
+0.5));
2371 if(chromaVShift
!= 0.0)
2372 sws_shiftVec(filter
->chrV
, (int)(chromaVShift
+0.5));
2374 sws_normalizeVec(filter
->chrH
, 1.0);
2375 sws_normalizeVec(filter
->chrV
, 1.0);
2376 sws_normalizeVec(filter
->lumH
, 1.0);
2377 sws_normalizeVec(filter
->lumV
, 1.0);
2379 if(verbose
) sws_printVec(filter
->chrH
);
2380 if(verbose
) sws_printVec(filter
->lumH
);
2386 * returns a normalized gaussian curve used to filter stuff
2387 * quality=3 is high quality, lowwer is lowwer quality
2389 SwsVector
*sws_getGaussianVec(double variance
, double quality
){
2390 const int length
= (int)(variance
*quality
+ 0.5) | 1;
2392 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2393 double middle
= (length
-1)*0.5;
2394 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2397 vec
->length
= length
;
2399 for(i
=0; i
<length
; i
++)
2401 double dist
= i
-middle
;
2402 coeff
[i
]= exp( -dist
*dist
/(2*variance
*variance
) ) / sqrt(2*variance
*PI
);
2405 sws_normalizeVec(vec
, 1.0);
2410 SwsVector
*sws_getConstVec(double c
, int length
){
2412 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2413 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2416 vec
->length
= length
;
2418 for(i
=0; i
<length
; i
++)
2425 SwsVector
*sws_getIdentityVec(void){
2426 return sws_getConstVec(1.0, 1);
2429 double sws_dcVec(SwsVector
*a
){
2433 for(i
=0; i
<a
->length
; i
++)
2439 void sws_scaleVec(SwsVector
*a
, double scalar
){
2442 for(i
=0; i
<a
->length
; i
++)
2443 a
->coeff
[i
]*= scalar
;
2446 void sws_normalizeVec(SwsVector
*a
, double height
){
2447 sws_scaleVec(a
, height
/sws_dcVec(a
));
2450 static SwsVector
*sws_getConvVec(SwsVector
*a
, SwsVector
*b
){
2451 int length
= a
->length
+ b
->length
- 1;
2452 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2454 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2457 vec
->length
= length
;
2459 for(i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2461 for(i
=0; i
<a
->length
; i
++)
2463 for(j
=0; j
<b
->length
; j
++)
2465 coeff
[i
+j
]+= a
->coeff
[i
]*b
->coeff
[j
];
2472 static SwsVector
*sws_sumVec(SwsVector
*a
, SwsVector
*b
){
2473 int length
= MAX(a
->length
, b
->length
);
2474 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2476 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2479 vec
->length
= length
;
2481 for(i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2483 for(i
=0; i
<a
->length
; i
++) coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2]+= a
->coeff
[i
];
2484 for(i
=0; i
<b
->length
; i
++) coeff
[i
+ (length
-1)/2 - (b
->length
-1)/2]+= b
->coeff
[i
];
2489 static SwsVector
*sws_diffVec(SwsVector
*a
, SwsVector
*b
){
2490 int length
= MAX(a
->length
, b
->length
);
2491 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2493 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2496 vec
->length
= length
;
2498 for(i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2500 for(i
=0; i
<a
->length
; i
++) coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2]+= a
->coeff
[i
];
2501 for(i
=0; i
<b
->length
; i
++) coeff
[i
+ (length
-1)/2 - (b
->length
-1)/2]-= b
->coeff
[i
];
2506 /* shift left / or right if "shift" is negative */
2507 static SwsVector
*sws_getShiftedVec(SwsVector
*a
, int shift
){
2508 int length
= a
->length
+ ABS(shift
)*2;
2509 double *coeff
= memalign(sizeof(double), length
*sizeof(double));
2511 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2514 vec
->length
= length
;
2516 for(i
=0; i
<length
; i
++) coeff
[i
]= 0.0;
2518 for(i
=0; i
<a
->length
; i
++)
2520 coeff
[i
+ (length
-1)/2 - (a
->length
-1)/2 - shift
]= a
->coeff
[i
];
2526 void sws_shiftVec(SwsVector
*a
, int shift
){
2527 SwsVector
*shifted
= sws_getShiftedVec(a
, shift
);
2529 a
->coeff
= shifted
->coeff
;
2530 a
->length
= shifted
->length
;
2534 void sws_addVec(SwsVector
*a
, SwsVector
*b
){
2535 SwsVector
*sum
= sws_sumVec(a
, b
);
2537 a
->coeff
= sum
->coeff
;
2538 a
->length
= sum
->length
;
2542 void sws_subVec(SwsVector
*a
, SwsVector
*b
){
2543 SwsVector
*diff
= sws_diffVec(a
, b
);
2545 a
->coeff
= diff
->coeff
;
2546 a
->length
= diff
->length
;
2550 void sws_convVec(SwsVector
*a
, SwsVector
*b
){
2551 SwsVector
*conv
= sws_getConvVec(a
, b
);
2553 a
->coeff
= conv
->coeff
;
2554 a
->length
= conv
->length
;
2558 SwsVector
*sws_cloneVec(SwsVector
*a
){
2559 double *coeff
= memalign(sizeof(double), a
->length
*sizeof(double));
2561 SwsVector
*vec
= malloc(sizeof(SwsVector
));
2564 vec
->length
= a
->length
;
2566 for(i
=0; i
<a
->length
; i
++) coeff
[i
]= a
->coeff
[i
];
2571 void sws_printVec(SwsVector
*a
){
2577 for(i
=0; i
<a
->length
; i
++)
2578 if(a
->coeff
[i
]>max
) max
= a
->coeff
[i
];
2580 for(i
=0; i
<a
->length
; i
++)
2581 if(a
->coeff
[i
]<min
) min
= a
->coeff
[i
];
2585 for(i
=0; i
<a
->length
; i
++)
2587 int x
= (int)((a
->coeff
[i
]-min
)*60.0/range
+0.5);
2588 MSG_DBG2("%1.3f ", a
->coeff
[i
]);
2589 for(;x
>0; x
--) MSG_DBG2(" ");
2594 void sws_freeVec(SwsVector
*a
){
2596 if(a
->coeff
) free(a
->coeff
);
2602 void sws_freeFilter(SwsFilter
*filter
){
2605 if(filter
->lumH
) sws_freeVec(filter
->lumH
);
2606 if(filter
->lumV
) sws_freeVec(filter
->lumV
);
2607 if(filter
->chrH
) sws_freeVec(filter
->chrH
);
2608 if(filter
->chrV
) sws_freeVec(filter
->chrV
);
2613 void sws_freeContext(SwsContext
*c
){
2619 for(i
=0; i
<c
->vLumBufSize
; i
++)
2621 if(c
->lumPixBuf
[i
]) free(c
->lumPixBuf
[i
]);
2622 c
->lumPixBuf
[i
]=NULL
;
2630 for(i
=0; i
<c
->vChrBufSize
; i
++)
2632 if(c
->chrPixBuf
[i
]) free(c
->chrPixBuf
[i
]);
2633 c
->chrPixBuf
[i
]=NULL
;
2639 if(c
->vLumFilter
) free(c
->vLumFilter
);
2640 c
->vLumFilter
= NULL
;
2641 if(c
->vChrFilter
) free(c
->vChrFilter
);
2642 c
->vChrFilter
= NULL
;
2643 if(c
->hLumFilter
) free(c
->hLumFilter
);
2644 c
->hLumFilter
= NULL
;
2645 if(c
->hChrFilter
) free(c
->hChrFilter
);
2646 c
->hChrFilter
= NULL
;
2648 if(c
->vLumFilterPos
) free(c
->vLumFilterPos
);
2649 c
->vLumFilterPos
= NULL
;
2650 if(c
->vChrFilterPos
) free(c
->vChrFilterPos
);
2651 c
->vChrFilterPos
= NULL
;
2652 if(c
->hLumFilterPos
) free(c
->hLumFilterPos
);
2653 c
->hLumFilterPos
= NULL
;
2654 if(c
->hChrFilterPos
) free(c
->hChrFilterPos
);
2655 c
->hChrFilterPos
= NULL
;
2657 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2658 #ifdef MAP_ANONYMOUS
2659 if(c
->funnyYCode
) munmap(c
->funnyYCode
, MAX_FUNNY_CODE_SIZE
);
2660 if(c
->funnyUVCode
) munmap(c
->funnyUVCode
, MAX_FUNNY_CODE_SIZE
);
2662 if(c
->funnyYCode
) free(c
->funnyYCode
);
2663 if(c
->funnyUVCode
) free(c
->funnyUVCode
);
2666 c
->funnyUVCode
=NULL
;
2669 if(c
->lumMmx2Filter
) free(c
->lumMmx2Filter
);
2670 c
->lumMmx2Filter
=NULL
;
2671 if(c
->chrMmx2Filter
) free(c
->chrMmx2Filter
);
2672 c
->chrMmx2Filter
=NULL
;
2673 if(c
->lumMmx2FilterPos
) free(c
->lumMmx2FilterPos
);
2674 c
->lumMmx2FilterPos
=NULL
;
2675 if(c
->chrMmx2FilterPos
) free(c
->chrMmx2FilterPos
);
2676 c
->chrMmx2FilterPos
=NULL
;
2677 if(c
->yuvTable
) free(c
->yuvTable
);