Use FFALIGN and FFMAX3
[mplayer/glamo.git] / libaf / af_hrtf.c
blob30af96ad35c366ff8fc990ef9c813da08c260cde
1 /*
2 * Experimental audio filter that mixes 5.1 and 5.1 with matrix
3 * encoded rear channels into headphone signal using FIR filtering
4 * with HRTF.
6 * This file is part of MPlayer.
8 * MPlayer is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * MPlayer is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with MPlayer; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 //#include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <inttypes.h>
28 #include <math.h>
30 #include "af.h"
31 #include "dsp.h"
33 /* HRTF filter coefficients and adjustable parameters */
34 #include "af_hrtf.h"
36 typedef struct af_hrtf_s {
37 /* Lengths */
38 int dlbuflen, hrflen, basslen;
39 /* L, C, R, Ls, Rs channels */
40 float *lf, *rf, *lr, *rr, *cf, *cr;
41 const float *cf_ir, *af_ir, *of_ir, *ar_ir, *or_ir, *cr_ir;
42 int cf_o, af_o, of_o, ar_o, or_o, cr_o;
43 /* Bass */
44 float *ba_l, *ba_r;
45 float *ba_ir;
46 /* Whether to matrix decode the rear center channel */
47 int matrix_mode;
48 /* How to decode the input:
49 0 = 5/5+1 channels
50 1 = 2 channels
51 2 = matrix encoded 2 channels */
52 int decode_mode;
53 /* Full wave rectified (FWR) amplitudes and gain used to steer the
54 active matrix decoding of front channels (variable names
55 lpr/lmr means Lt + Rt, Lt - Rt) */
56 float l_fwr, r_fwr, lpr_fwr, lmr_fwr;
57 float adapt_l_gain, adapt_r_gain, adapt_lpr_gain, adapt_lmr_gain;
58 /* Matrix input decoding require special FWR buffer, since the
59 decoding is done in place. */
60 float *fwrbuf_l, *fwrbuf_r, *fwrbuf_lr, *fwrbuf_rr;
61 /* Rear channel delay buffer for matrix decoding */
62 float *rear_dlbuf;
63 /* Full wave rectified amplitude and gain used to steer the active
64 matrix decoding of center rear channel */
65 float lr_fwr, rr_fwr, lrprr_fwr, lrmrr_fwr;
66 float adapt_lr_gain, adapt_rr_gain;
67 float adapt_lrprr_gain, adapt_lrmrr_gain;
68 /* Cyclic position on the ring buffer */
69 int cyc_pos;
70 int print_flag;
71 } af_hrtf_t;
73 /* Convolution on a ring buffer
74 * nx: length of the ring buffer
75 * nk: length of the convolution kernel
76 * sx: ring buffer
77 * sk: convolution kernel
78 * offset: offset on the ring buffer, can be
80 static float conv(const int nx, const int nk, const float *sx, const float *sk,
81 const int offset)
83 /* k = reminder of offset / nx */
84 int k = offset >= 0 ? offset % nx : nx + (offset % nx);
86 if(nk + k <= nx)
87 return af_filter_fir(nk, sx + k, sk);
88 else
89 return af_filter_fir(nk + k - nx, sx, sk + nx - k) +
90 af_filter_fir(nx - k, sx + k, sk);
93 /* Detect when the impulse response starts (significantly) */
94 static int pulse_detect(const float *sx)
96 /* nmax must be the reference impulse response length (128) minus
97 s->hrflen */
98 const int nmax = 128 - HRTFFILTLEN;
99 const float thresh = IRTHRESH;
100 int i;
102 for(i = 0; i < nmax; i++)
103 if(fabs(sx[i]) > thresh)
104 return i;
105 return 0;
108 /* Fuzzy matrix coefficient transfer function to "lock" the matrix on
109 a effectively passive mode if the gain is approximately 1 */
110 static inline float passive_lock(float x)
112 const float x1 = x - 1;
113 const float ax1s = fabs(x - 1) * (1.0 / MATAGCLOCK);
115 return x1 - x1 / (1 + ax1s * ax1s) + 1;
118 /* Unified active matrix decoder for 2 channel matrix encoded surround
119 sources */
120 static inline void matrix_decode(short *in, const int k, const int il,
121 const int ir, const int decode_rear,
122 const int dlbuflen,
123 float l_fwr, float r_fwr,
124 float lpr_fwr, float lmr_fwr,
125 float *adapt_l_gain, float *adapt_r_gain,
126 float *adapt_lpr_gain, float *adapt_lmr_gain,
127 float *lf, float *rf, float *lr,
128 float *rr, float *cf)
130 const int kr = (k + MATREARDELAY) % dlbuflen;
131 float l_gain = (l_fwr + r_fwr) /
132 (1 + l_fwr + l_fwr);
133 float r_gain = (l_fwr + r_fwr) /
134 (1 + r_fwr + r_fwr);
135 /* The 2nd axis has strong gain fluctuations, and therefore require
136 limits. The factor corresponds to the 1 / amplification of (Lt
137 - Rt) when (Lt, Rt) is strongly correlated. (e.g. during
138 dialogues). It should be bigger than -12 dB to prevent
139 distortion. */
140 float lmr_lim_fwr = lmr_fwr > M9_03DB * lpr_fwr ?
141 lmr_fwr : M9_03DB * lpr_fwr;
142 float lpr_gain = (lpr_fwr + lmr_lim_fwr) /
143 (1 + lpr_fwr + lpr_fwr);
144 float lmr_gain = (lpr_fwr + lmr_lim_fwr) /
145 (1 + lmr_lim_fwr + lmr_lim_fwr);
146 float lmr_unlim_gain = (lpr_fwr + lmr_fwr) /
147 (1 + lmr_fwr + lmr_fwr);
148 float lpr, lmr;
149 float l_agc, r_agc, lpr_agc, lmr_agc;
150 float f, d_gain, c_gain, c_agc_cfk;
152 #if 0
153 static int counter = 0;
154 static FILE *fp_out;
156 if(counter == 0)
157 fp_out = fopen("af_hrtf.log", "w");
158 if(counter % 240 == 0)
159 fprintf(fp_out, "%g %g %g %g %g ", counter * (1.0 / 48000),
160 l_gain, r_gain, lpr_gain, lmr_gain);
161 #endif
163 /*** AXIS NO. 1: (Lt, Rt) -> (C, Ls, Rs) ***/
164 /* AGC adaption */
165 d_gain = (fabs(l_gain - *adapt_l_gain) +
166 fabs(r_gain - *adapt_r_gain)) * 0.5;
167 f = d_gain * (1.0 / MATAGCTRIG);
168 f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
169 *adapt_l_gain = (1 - f) * *adapt_l_gain + f * l_gain;
170 *adapt_r_gain = (1 - f) * *adapt_r_gain + f * r_gain;
171 /* Matrix */
172 l_agc = in[il] * passive_lock(*adapt_l_gain);
173 r_agc = in[ir] * passive_lock(*adapt_r_gain);
174 cf[k] = (l_agc + r_agc) * M_SQRT1_2;
175 if(decode_rear) {
176 lr[kr] = rr[kr] = (l_agc - r_agc) * M_SQRT1_2;
177 /* Stereo rear channel is steered with the same AGC steering as
178 the decoding matrix. Note this requires a fast updating AGC
179 at the order of 20 ms (which is the case here). */
180 lr[kr] *= (l_fwr + l_fwr) /
181 (1 + l_fwr + r_fwr);
182 rr[kr] *= (r_fwr + r_fwr) /
183 (1 + l_fwr + r_fwr);
186 /*** AXIS NO. 2: (Lt + Rt, Lt - Rt) -> (L, R) ***/
187 lpr = (in[il] + in[ir]) * M_SQRT1_2;
188 lmr = (in[il] - in[ir]) * M_SQRT1_2;
189 /* AGC adaption */
190 d_gain = fabs(lmr_unlim_gain - *adapt_lmr_gain);
191 f = d_gain * (1.0 / MATAGCTRIG);
192 f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
193 *adapt_lpr_gain = (1 - f) * *adapt_lpr_gain + f * lpr_gain;
194 *adapt_lmr_gain = (1 - f) * *adapt_lmr_gain + f * lmr_gain;
195 /* Matrix */
196 lpr_agc = lpr * passive_lock(*adapt_lpr_gain);
197 lmr_agc = lmr * passive_lock(*adapt_lmr_gain);
198 lf[k] = (lpr_agc + lmr_agc) * M_SQRT1_2;
199 rf[k] = (lpr_agc - lmr_agc) * M_SQRT1_2;
201 /*** CENTER FRONT CANCELLATION ***/
202 /* A heuristic approach exploits that Lt + Rt gain contains the
203 information about Lt, Rt correlation. This effectively reshapes
204 the front and rear "cones" to concentrate Lt + Rt to C and
205 introduce Lt - Rt in L, R. */
206 /* 0.67677 is the emprical lower bound for lpr_gain. */
207 c_gain = 8 * (*adapt_lpr_gain - 0.67677);
208 c_gain = c_gain > 0 ? c_gain : 0;
209 /* c_gain should not be too high, not even reaching full
210 cancellation (~ 0.50 - 0.55 at current AGC implementation), or
211 the center will s0und too narrow. */
212 c_gain = MATCOMPGAIN / (1 + c_gain * c_gain);
213 c_agc_cfk = c_gain * cf[k];
214 lf[k] -= c_agc_cfk;
215 rf[k] -= c_agc_cfk;
216 cf[k] += c_agc_cfk + c_agc_cfk;
217 #if 0
218 if(counter % 240 == 0)
219 fprintf(fp_out, "%g %g %g %g %g\n",
220 *adapt_l_gain, *adapt_r_gain,
221 *adapt_lpr_gain, *adapt_lmr_gain,
222 c_gain);
223 counter++;
224 #endif
227 static inline void update_ch(af_hrtf_t *s, short *in, const int k)
229 const int fwr_pos = (k + FWRDURATION) % s->dlbuflen;
230 /* Update the full wave rectified total amplitude */
231 /* Input matrix decoder */
232 if(s->decode_mode == HRTF_MIX_MATRIX2CH) {
233 s->l_fwr += abs(in[0]) - fabs(s->fwrbuf_l[fwr_pos]);
234 s->r_fwr += abs(in[1]) - fabs(s->fwrbuf_r[fwr_pos]);
235 s->lpr_fwr += abs(in[0] + in[1]) -
236 fabs(s->fwrbuf_l[fwr_pos] + s->fwrbuf_r[fwr_pos]);
237 s->lmr_fwr += abs(in[0] - in[1]) -
238 fabs(s->fwrbuf_l[fwr_pos] - s->fwrbuf_r[fwr_pos]);
240 /* Rear matrix decoder */
241 if(s->matrix_mode) {
242 s->lr_fwr += abs(in[2]) - fabs(s->fwrbuf_lr[fwr_pos]);
243 s->rr_fwr += abs(in[3]) - fabs(s->fwrbuf_rr[fwr_pos]);
244 s->lrprr_fwr += abs(in[2] + in[3]) -
245 fabs(s->fwrbuf_lr[fwr_pos] + s->fwrbuf_rr[fwr_pos]);
246 s->lrmrr_fwr += abs(in[2] - in[3]) -
247 fabs(s->fwrbuf_lr[fwr_pos] - s->fwrbuf_rr[fwr_pos]);
250 switch (s->decode_mode) {
251 case HRTF_MIX_51:
252 /* 5/5+1 channel sources */
253 s->lf[k] = in[0];
254 s->cf[k] = in[4];
255 s->rf[k] = in[1];
256 s->fwrbuf_lr[k] = s->lr[k] = in[2];
257 s->fwrbuf_rr[k] = s->rr[k] = in[3];
258 break;
259 case HRTF_MIX_MATRIX2CH:
260 /* Matrix encoded 2 channel sources */
261 s->fwrbuf_l[k] = in[0];
262 s->fwrbuf_r[k] = in[1];
263 matrix_decode(in, k, 0, 1, 1, s->dlbuflen,
264 s->l_fwr, s->r_fwr,
265 s->lpr_fwr, s->lmr_fwr,
266 &(s->adapt_l_gain), &(s->adapt_r_gain),
267 &(s->adapt_lpr_gain), &(s->adapt_lmr_gain),
268 s->lf, s->rf, s->lr, s->rr, s->cf);
269 break;
270 case HRTF_MIX_STEREO:
271 /* Stereo sources */
272 s->lf[k] = in[0];
273 s->rf[k] = in[1];
274 s->cf[k] = s->lr[k] = s->rr[k] = 0;
275 break;
278 /* We need to update the bass compensation delay line, too. */
279 s->ba_l[k] = in[0] + in[4] + in[2];
280 s->ba_r[k] = in[4] + in[1] + in[3];
283 /* Initialization and runtime control */
284 static int control(struct af_instance_s *af, int cmd, void* arg)
286 af_hrtf_t *s = af->setup;
287 int test_output_res;
288 char mode;
290 switch(cmd) {
291 case AF_CONTROL_REINIT:
292 af->data->rate = ((af_data_t*)arg)->rate;
293 if(af->data->rate != 48000) {
294 // automatic samplerate adjustment in the filter chain
295 // is not yet supported.
296 mp_msg(MSGT_AFILTER, MSGL_ERR,
297 "[hrtf] ERROR: Sampling rate is not 48000 Hz (%d)!\n",
298 af->data->rate);
299 return AF_ERROR;
301 af->data->nch = ((af_data_t*)arg)->nch;
302 if(af->data->nch == 2) {
303 /* 2 channel input */
304 if(s->decode_mode != HRTF_MIX_MATRIX2CH) {
305 /* Default behavior is stereo mixing. */
306 s->decode_mode = HRTF_MIX_STEREO;
309 else if (af->data->nch < 5)
310 af->data->nch = 5;
311 af->data->format = AF_FORMAT_S16_NE;
312 af->data->bps = 2;
313 test_output_res = af_test_output(af, (af_data_t*)arg);
314 af->mul = 2.0 / af->data->nch;
315 // after testing input set the real output format
316 af->data->nch = 2;
317 s->print_flag = 1;
318 return test_output_res;
319 case AF_CONTROL_COMMAND_LINE:
320 sscanf((char*)arg, "%c", &mode);
321 switch(mode) {
322 case 'm':
323 /* Use matrix rear decoding. */
324 s->matrix_mode = 1;
325 break;
326 case 's':
327 /* Input needs matrix decoding. */
328 s->decode_mode = HRTF_MIX_MATRIX2CH;
329 break;
330 case '0':
331 s->matrix_mode = 0;
332 break;
333 default:
334 mp_msg(MSGT_AFILTER, MSGL_ERR,
335 "[hrtf] Mode is neither 'm', 's', nor '0' (%c).\n",
336 mode);
337 return AF_ERROR;
339 s->print_flag = 1;
340 return AF_OK;
343 return AF_UNKNOWN;
346 /* Deallocate memory */
347 static void uninit(struct af_instance_s *af)
349 if(af->setup) {
350 af_hrtf_t *s = af->setup;
352 if(s->lf)
353 free(s->lf);
354 if(s->rf)
355 free(s->rf);
356 if(s->lr)
357 free(s->lr);
358 if(s->rr)
359 free(s->rr);
360 if(s->cf)
361 free(s->cf);
362 if(s->cr)
363 free(s->cr);
364 if(s->ba_l)
365 free(s->ba_l);
366 if(s->ba_r)
367 free(s->ba_r);
368 if(s->ba_ir)
369 free(s->ba_ir);
370 if(s->fwrbuf_l)
371 free(s->fwrbuf_l);
372 if(s->fwrbuf_r)
373 free(s->fwrbuf_r);
374 if(s->fwrbuf_lr)
375 free(s->fwrbuf_lr);
376 if(s->fwrbuf_rr)
377 free(s->fwrbuf_rr);
378 free(af->setup);
380 if(af->data)
381 free(af->data->audio);
382 free(af->data);
385 /* Filter data through filter
387 Two "tricks" are used to compensate the "color" of the KEMAR data:
389 1. The KEMAR data is refiltered to ensure that the front L, R channels
390 on the same side of the ear are equalized (especially in the high
391 frequencies).
393 2. A bass compensation is introduced to ensure that 0-200 Hz are not
394 damped (without any real 3D acoustical image, however).
396 static af_data_t* play(struct af_instance_s *af, af_data_t *data)
398 af_hrtf_t *s = af->setup;
399 short *in = data->audio; // Input audio data
400 short *out = NULL; // Output audio data
401 short *end = in + data->len / sizeof(short); // Loop end
402 float common, left, right, diff, left_b, right_b;
403 const int dblen = s->dlbuflen, hlen = s->hrflen, blen = s->basslen;
405 if(AF_OK != RESIZE_LOCAL_BUFFER(af, data))
406 return NULL;
408 if(s->print_flag) {
409 s->print_flag = 0;
410 switch (s->decode_mode) {
411 case HRTF_MIX_51:
412 mp_msg(MSGT_AFILTER, MSGL_INFO,
413 "[hrtf] Using HRTF to mix %s discrete surround into "
414 "L, R channels\n", s->matrix_mode ? "5+1" : "5");
415 break;
416 case HRTF_MIX_STEREO:
417 mp_msg(MSGT_AFILTER, MSGL_INFO,
418 "[hrtf] Using HRTF to mix stereo into "
419 "L, R channels\n");
420 break;
421 case HRTF_MIX_MATRIX2CH:
422 mp_msg(MSGT_AFILTER, MSGL_INFO,
423 "[hrtf] Using active matrix to decode 2 channel "
424 "input, HRTF to mix %s matrix surround into "
425 "L, R channels\n", "3/2");
426 break;
427 default:
428 mp_msg(MSGT_AFILTER, MSGL_WARN,
429 "[hrtf] bogus decode_mode: %d\n", s->decode_mode);
430 break;
433 if(s->matrix_mode)
434 mp_msg(MSGT_AFILTER, MSGL_INFO,
435 "[hrtf] Using active matrix to decode rear center "
436 "channel\n");
439 out = af->data->audio;
441 /* MPlayer's 5 channel layout (notation for the variable):
443 * 0: L (LF), 1: R (RF), 2: Ls (LR), 3: Rs (RR), 4: C (CF), matrix
444 * encoded: Cs (CR)
446 * or: L = left, C = center, R = right, F = front, R = rear
448 * Filter notation:
450 * CF
451 * OF AF
452 * Ear->
453 * OR AR
454 * CR
456 * or: C = center, A = same side, O = opposite, F = front, R = rear
459 while(in < end) {
460 const int k = s->cyc_pos;
462 update_ch(s, in, k);
464 /* Simulate a 7.5 ms -20 dB echo of the center channel in the
465 front channels (like reflection from a room wall) - a kind of
466 psycho-acoustically "cheating" to focus the center front
467 channel, which is normally hard to be perceived as front */
468 s->lf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
469 s->rf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
471 switch (s->decode_mode) {
472 case HRTF_MIX_51:
473 case HRTF_MIX_MATRIX2CH:
474 /* Mixer filter matrix */
475 common = conv(dblen, hlen, s->cf, s->cf_ir, k + s->cf_o);
476 if(s->matrix_mode) {
477 /* In matrix decoding mode, the rear channel gain must be
478 renormalized, as there is an additional channel. */
479 matrix_decode(in, k, 2, 3, 0, s->dlbuflen,
480 s->lr_fwr, s->rr_fwr,
481 s->lrprr_fwr, s->lrmrr_fwr,
482 &(s->adapt_lr_gain), &(s->adapt_rr_gain),
483 &(s->adapt_lrprr_gain), &(s->adapt_lrmrr_gain),
484 s->lr, s->rr, NULL, NULL, s->cr);
485 common +=
486 conv(dblen, hlen, s->cr, s->cr_ir, k + s->cr_o) *
487 M1_76DB;
488 left =
489 ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
490 conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
491 (conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
492 conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o)) *
493 M1_76DB + common);
494 right =
495 ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
496 conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
497 (conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
498 conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o)) *
499 M1_76DB + common);
500 } else {
501 left =
502 ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
503 conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
504 conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
505 conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o) +
506 common);
507 right =
508 ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
509 conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
510 conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
511 conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o) +
512 common);
514 break;
515 case HRTF_MIX_STEREO:
516 left =
517 ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
518 conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o));
519 right =
520 ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
521 conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o));
522 break;
523 default:
524 /* make gcc happy */
525 left = 0.0;
526 right = 0.0;
527 break;
530 /* Bass compensation for the lower frequency cut of the HRTF. A
531 cross talk of the left and right channel is introduced to
532 match the directional characteristics of higher frequencies.
533 The bass will not have any real 3D perception, but that is
534 OK (note at 180 Hz, the wavelength is about 2 m, and any
535 spatial perception is impossible). */
536 left_b = conv(dblen, blen, s->ba_l, s->ba_ir, k);
537 right_b = conv(dblen, blen, s->ba_r, s->ba_ir, k);
538 left += (1 - BASSCROSS) * left_b + BASSCROSS * right_b;
539 right += (1 - BASSCROSS) * right_b + BASSCROSS * left_b;
540 /* Also mix the LFE channel (if available) */
541 if(data->nch >= 6) {
542 left += in[5] * M3_01DB;
543 right += in[5] * M3_01DB;
546 /* Amplitude renormalization. */
547 left *= AMPLNORM;
548 right *= AMPLNORM;
550 switch (s->decode_mode) {
551 case HRTF_MIX_51:
552 case HRTF_MIX_STEREO:
553 /* "Cheating": linear stereo expansion to amplify the 3D
554 perception. Note: Too much will destroy the acoustic space
555 and may even result in headaches. */
556 diff = STEXPAND2 * (left - right);
557 out[0] = (int16_t)(left + diff);
558 out[1] = (int16_t)(right - diff);
559 break;
560 case HRTF_MIX_MATRIX2CH:
561 /* Do attempt any stereo expansion with matrix encoded
562 sources. The L, R channels are already stereo expanded
563 by the steering, any further stereo expansion will sound
564 very unnatural. */
565 out[0] = (int16_t)left;
566 out[1] = (int16_t)right;
567 break;
570 /* Next sample... */
571 in = &in[data->nch];
572 out = &out[af->data->nch];
573 (s->cyc_pos)--;
574 if(s->cyc_pos < 0)
575 s->cyc_pos += dblen;
578 /* Set output data */
579 data->audio = af->data->audio;
580 data->len = data->len / data->nch * 2;
581 data->nch = 2;
583 return data;
586 static int allocate(af_hrtf_t *s)
588 if ((s->lf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
589 if ((s->rf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
590 if ((s->lr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
591 if ((s->rr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
592 if ((s->cf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
593 if ((s->cr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
594 if ((s->ba_l = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
595 if ((s->ba_r = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
596 if ((s->fwrbuf_l =
597 malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
598 if ((s->fwrbuf_r =
599 malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
600 if ((s->fwrbuf_lr =
601 malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
602 if ((s->fwrbuf_rr =
603 malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
604 return 0;
607 /* Allocate memory and set function pointers */
608 static int af_open(af_instance_t* af)
610 int i;
611 af_hrtf_t *s;
612 float fc;
614 af->control = control;
615 af->uninit = uninit;
616 af->play = play;
617 af->mul = 1;
618 af->data = calloc(1, sizeof(af_data_t));
619 af->setup = calloc(1, sizeof(af_hrtf_t));
620 if((af->data == NULL) || (af->setup == NULL))
621 return AF_ERROR;
623 s = af->setup;
625 s->dlbuflen = DELAYBUFLEN;
626 s->hrflen = HRTFFILTLEN;
627 s->basslen = BASSFILTLEN;
629 s->cyc_pos = s->dlbuflen - 1;
630 /* With a full (two axis) steering matrix decoder, s->matrix_mode
631 should not be enabled lightly (it will also steer the Ls, Rs
632 channels). */
633 s->matrix_mode = 0;
634 s->decode_mode = HRTF_MIX_51;
636 s->print_flag = 1;
638 if (allocate(s) != 0) {
639 mp_msg(MSGT_AFILTER, MSGL_ERR, "[hrtf] Memory allocation error.\n");
640 return AF_ERROR;
643 for(i = 0; i < s->dlbuflen; i++)
644 s->lf[i] = s->rf[i] = s->lr[i] = s->rr[i] = s->cf[i] =
645 s->cr[i] = 0;
647 s->lr_fwr =
648 s->rr_fwr = 0;
650 s->cf_ir = cf_filt + (s->cf_o = pulse_detect(cf_filt));
651 s->af_ir = af_filt + (s->af_o = pulse_detect(af_filt));
652 s->of_ir = of_filt + (s->of_o = pulse_detect(of_filt));
653 s->ar_ir = ar_filt + (s->ar_o = pulse_detect(ar_filt));
654 s->or_ir = or_filt + (s->or_o = pulse_detect(or_filt));
655 s->cr_ir = cr_filt + (s->cr_o = pulse_detect(cr_filt));
657 if((s->ba_ir = malloc(s->basslen * sizeof(float))) == NULL) {
658 mp_msg(MSGT_AFILTER, MSGL_ERR, "[hrtf] Memory allocation error.\n");
659 return AF_ERROR;
661 fc = 2.0 * BASSFILTFREQ / (float)af->data->rate;
662 if(af_filter_design_fir(s->basslen, s->ba_ir, &fc, LP | KAISER, 4 * M_PI) ==
663 -1) {
664 mp_msg(MSGT_AFILTER, MSGL_ERR, "[hrtf] Unable to design low-pass "
665 "filter.\n");
666 return AF_ERROR;
668 for(i = 0; i < s->basslen; i++)
669 s->ba_ir[i] *= BASSGAIN;
671 return AF_OK;
674 /* Description of this filter */
675 af_info_t af_info_hrtf = {
676 "HRTF Headphone",
677 "hrtf",
678 "ylai",
680 AF_FLAGS_REENTRANT,
681 af_open