Default to -correct-pts off if -fps was given, since -fps has no effect
[mplayer/glamo.git] / libaf / window.c
bloba970bdcbeab600fac34f01b216173c99658fe4c2
1 /*
2 * Copyright (C) 2001 Anders Johansson ajh@atri.curtin.edu.au
4 * This file is part of MPlayer.
6 * MPlayer is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * MPlayer is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with MPlayer; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 /* Calculates a number of window functions. The following window
22 functions are currently implemented: Boxcar, Triang, Hanning,
23 Hamming, Blackman, Flattop and Kaiser. In the function call n is
24 the number of filter taps and w the buffer in which the filter
25 coefficients will be stored.
28 #include <math.h>
29 #include "dsp.h"
32 // Boxcar
34 // n window length
35 // w buffer for the window parameters
37 void af_window_boxcar(int n, FLOAT_TYPE* w)
39 int i;
40 // Calculate window coefficients
41 for (i=0 ; i<n ; i++)
42 w[i] = 1.0;
47 // Triang a.k.a Bartlett
49 // | (N-1)|
50 // 2 * |k - -----|
51 // | 2 |
52 // w = 1.0 - ---------------
53 // N+1
54 // n window length
55 // w buffer for the window parameters
57 void af_window_triang(int n, FLOAT_TYPE* w)
59 FLOAT_TYPE k1 = (FLOAT_TYPE)(n & 1);
60 FLOAT_TYPE k2 = 1/((FLOAT_TYPE)n + k1);
61 int end = (n + 1) >> 1;
62 int i;
64 // Calculate window coefficients
65 for (i=0 ; i<end ; i++)
66 w[i] = w[n-i-1] = (2.0*((FLOAT_TYPE)(i+1))-(1.0-k1))*k2;
71 // Hanning
72 // 2*pi*k
73 // w = 0.5 - 0.5*cos(------), where 0 < k <= N
74 // N+1
75 // n window length
76 // w buffer for the window parameters
78 void af_window_hanning(int n, FLOAT_TYPE* w)
80 int i;
81 FLOAT_TYPE k = 2*M_PI/((FLOAT_TYPE)(n+1)); // 2*pi/(N+1)
83 // Calculate window coefficients
84 for (i=0; i<n; i++)
85 *w++ = 0.5*(1.0 - cos(k*(FLOAT_TYPE)(i+1)));
89 // Hamming
90 // 2*pi*k
91 // w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
92 // N-1
94 // n window length
95 // w buffer for the window parameters
97 void af_window_hamming(int n,FLOAT_TYPE* w)
99 int i;
100 FLOAT_TYPE k = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1)
102 // Calculate window coefficients
103 for (i=0; i<n; i++)
104 *w++ = 0.54 - 0.46*cos(k*(FLOAT_TYPE)i);
108 // Blackman
109 // 2*pi*k 4*pi*k
110 // w(k) = 0.42 - 0.5*cos(------) + 0.08*cos(------), where 0 <= k < N
111 // N-1 N-1
113 // n window length
114 // w buffer for the window parameters
116 void af_window_blackman(int n,FLOAT_TYPE* w)
118 int i;
119 FLOAT_TYPE k1 = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1)
120 FLOAT_TYPE k2 = 2*k1; // 4*pi/(N-1)
122 // Calculate window coefficients
123 for (i=0; i<n; i++)
124 *w++ = 0.42 - 0.50*cos(k1*(FLOAT_TYPE)i) + 0.08*cos(k2*(FLOAT_TYPE)i);
128 // Flattop
129 // 2*pi*k 4*pi*k
130 // w(k) = 0.2810638602 - 0.5208971735*cos(------) + 0.1980389663*cos(------), where 0 <= k < N
131 // N-1 N-1
133 // n window length
134 // w buffer for the window parameters
136 void af_window_flattop(int n,FLOAT_TYPE* w)
138 int i;
139 FLOAT_TYPE k1 = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1)
140 FLOAT_TYPE k2 = 2*k1; // 4*pi/(N-1)
142 // Calculate window coefficients
143 for (i=0; i<n; i++)
144 *w++ = 0.2810638602 - 0.5208971735*cos(k1*(FLOAT_TYPE)i)
145 + 0.1980389663*cos(k2*(FLOAT_TYPE)i);
148 /* Computes the 0th order modified Bessel function of the first kind.
149 // (Needed to compute Kaiser window)
151 // y = sum( (x/(2*n))^2 )
152 // n
154 #define BIZ_EPSILON 1E-21 // Max error acceptable
156 static FLOAT_TYPE besselizero(FLOAT_TYPE x)
158 FLOAT_TYPE temp;
159 FLOAT_TYPE sum = 1.0;
160 FLOAT_TYPE u = 1.0;
161 FLOAT_TYPE halfx = x/2.0;
162 int n = 1;
164 do {
165 temp = halfx/(FLOAT_TYPE)n;
166 u *=temp * temp;
167 sum += u;
168 n++;
169 } while (u >= BIZ_EPSILON * sum);
170 return sum;
174 // Kaiser
176 // n window length
177 // w buffer for the window parameters
178 // b beta parameter of Kaiser window, Beta >= 1
180 // Beta trades the rejection of the low pass filter against the
181 // transition width from passband to stop band. Larger Beta means a
182 // slower transition and greater stop band rejection. See Rabiner and
183 // Gold (Theory and Application of DSP) under Kaiser windows for more
184 // about Beta. The following table from Rabiner and Gold gives some
185 // feel for the effect of Beta:
187 // All ripples in dB, width of transition band = D*N where N = window
188 // length
190 // BETA D PB RIP SB RIP
191 // 2.120 1.50 +-0.27 -30
192 // 3.384 2.23 0.0864 -40
193 // 4.538 2.93 0.0274 -50
194 // 5.658 3.62 0.00868 -60
195 // 6.764 4.32 0.00275 -70
196 // 7.865 5.0 0.000868 -80
197 // 8.960 5.7 0.000275 -90
198 // 10.056 6.4 0.000087 -100
200 void af_window_kaiser(int n, FLOAT_TYPE* w, FLOAT_TYPE b)
202 FLOAT_TYPE tmp;
203 FLOAT_TYPE k1 = 1.0/besselizero(b);
204 int k2 = 1 - (n & 1);
205 int end = (n + 1) >> 1;
206 int i;
208 // Calculate window coefficients
209 for (i=0 ; i<end ; i++){
210 tmp = (FLOAT_TYPE)(2*i + k2) / ((FLOAT_TYPE)n - 1.0);
211 w[end-(1&(!k2))+i] = w[end-1-i] = k1 * besselizero(b*sqrt(1.0 - tmp*tmp));