synced with r24788
[mplayer/glamo.git] / libaf / window.c
blob06830b8dfc27f27d547b8de0b0e8980c3238e776
1 /*=============================================================================
2 //
3 // This software has been released under the terms of the GNU General Public
4 // license. See http://www.gnu.org/copyleft/gpl.html for details.
5 //
6 // Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
7 //
8 //=============================================================================
9 */
11 /* Calculates a number of window functions. The following window
12 functions are currently implemented: Boxcar, Triang, Hanning,
13 Hamming, Blackman, Flattop and Kaiser. In the function call n is
14 the number of filter taps and w the buffer in which the filter
15 coefficients will be stored.
18 #include <math.h>
19 #include "dsp.h"
22 // Boxcar
24 // n window length
25 // w buffer for the window parameters
27 void af_window_boxcar(int n, _ftype_t* w)
29 int i;
30 // Calculate window coefficients
31 for (i=0 ; i<n ; i++)
32 w[i] = 1.0;
37 // Triang a.k.a Bartlett
39 // | (N-1)|
40 // 2 * |k - -----|
41 // | 2 |
42 // w = 1.0 - ---------------
43 // N+1
44 // n window length
45 // w buffer for the window parameters
47 void af_window_triang(int n, _ftype_t* w)
49 _ftype_t k1 = (_ftype_t)(n & 1);
50 _ftype_t k2 = 1/((_ftype_t)n + k1);
51 int end = (n + 1) >> 1;
52 int i;
54 // Calculate window coefficients
55 for (i=0 ; i<end ; i++)
56 w[i] = w[n-i-1] = (2.0*((_ftype_t)(i+1))-(1.0-k1))*k2;
61 // Hanning
62 // 2*pi*k
63 // w = 0.5 - 0.5*cos(------), where 0 < k <= N
64 // N+1
65 // n window length
66 // w buffer for the window parameters
68 void af_window_hanning(int n, _ftype_t* w)
70 int i;
71 _ftype_t k = 2*M_PI/((_ftype_t)(n+1)); // 2*pi/(N+1)
73 // Calculate window coefficients
74 for (i=0; i<n; i++)
75 *w++ = 0.5*(1.0 - cos(k*(_ftype_t)(i+1)));
79 // Hamming
80 // 2*pi*k
81 // w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
82 // N-1
84 // n window length
85 // w buffer for the window parameters
87 void af_window_hamming(int n,_ftype_t* w)
89 int i;
90 _ftype_t k = 2*M_PI/((_ftype_t)(n-1)); // 2*pi/(N-1)
92 // Calculate window coefficients
93 for (i=0; i<n; i++)
94 *w++ = 0.54 - 0.46*cos(k*(_ftype_t)i);
98 // Blackman
99 // 2*pi*k 4*pi*k
100 // w(k) = 0.42 - 0.5*cos(------) + 0.08*cos(------), where 0 <= k < N
101 // N-1 N-1
103 // n window length
104 // w buffer for the window parameters
106 void af_window_blackman(int n,_ftype_t* w)
108 int i;
109 _ftype_t k1 = 2*M_PI/((_ftype_t)(n-1)); // 2*pi/(N-1)
110 _ftype_t k2 = 2*k1; // 4*pi/(N-1)
112 // Calculate window coefficients
113 for (i=0; i<n; i++)
114 *w++ = 0.42 - 0.50*cos(k1*(_ftype_t)i) + 0.08*cos(k2*(_ftype_t)i);
118 // Flattop
119 // 2*pi*k 4*pi*k
120 // w(k) = 0.2810638602 - 0.5208971735*cos(------) + 0.1980389663*cos(------), where 0 <= k < N
121 // N-1 N-1
123 // n window length
124 // w buffer for the window parameters
126 void af_window_flattop(int n,_ftype_t* w)
128 int i;
129 _ftype_t k1 = 2*M_PI/((_ftype_t)(n-1)); // 2*pi/(N-1)
130 _ftype_t k2 = 2*k1; // 4*pi/(N-1)
132 // Calculate window coefficients
133 for (i=0; i<n; i++)
134 *w++ = 0.2810638602 - 0.5208971735*cos(k1*(_ftype_t)i) + 0.1980389663*cos(k2*(_ftype_t)i);
137 /* Computes the 0th order modified Bessel function of the first kind.
138 // (Needed to compute Kaiser window)
140 // y = sum( (x/(2*n))^2 )
141 // n
143 #define BIZ_EPSILON 1E-21 // Max error acceptable
145 static _ftype_t besselizero(_ftype_t x)
147 _ftype_t temp;
148 _ftype_t sum = 1.0;
149 _ftype_t u = 1.0;
150 _ftype_t halfx = x/2.0;
151 int n = 1;
153 do {
154 temp = halfx/(_ftype_t)n;
155 u *=temp * temp;
156 sum += u;
157 n++;
158 } while (u >= BIZ_EPSILON * sum);
159 return(sum);
163 // Kaiser
165 // n window length
166 // w buffer for the window parameters
167 // b beta parameter of Kaiser window, Beta >= 1
169 // Beta trades the rejection of the low pass filter against the
170 // transition width from passband to stop band. Larger Beta means a
171 // slower transition and greater stop band rejection. See Rabiner and
172 // Gold (Theory and Application of DSP) under Kaiser windows for more
173 // about Beta. The following table from Rabiner and Gold gives some
174 // feel for the effect of Beta:
176 // All ripples in dB, width of transition band = D*N where N = window
177 // length
179 // BETA D PB RIP SB RIP
180 // 2.120 1.50 +-0.27 -30
181 // 3.384 2.23 0.0864 -40
182 // 4.538 2.93 0.0274 -50
183 // 5.658 3.62 0.00868 -60
184 // 6.764 4.32 0.00275 -70
185 // 7.865 5.0 0.000868 -80
186 // 8.960 5.7 0.000275 -90
187 // 10.056 6.4 0.000087 -100
189 void af_window_kaiser(int n, _ftype_t* w, _ftype_t b)
191 _ftype_t tmp;
192 _ftype_t k1 = 1.0/besselizero(b);
193 int k2 = 1 - (n & 1);
194 int end = (n + 1) >> 1;
195 int i;
197 // Calculate window coefficients
198 for (i=0 ; i<end ; i++){
199 tmp = (_ftype_t)(2*i + k2) / ((_ftype_t)n - 1.0);
200 w[end-(1&(!k2))+i] = w[end-1-i] = k1 * besselizero(b*sqrt(1.0 - tmp*tmp));