Give better name to Inverse_Table_6_9
[mplayer/glamo.git] / libfaad2 / sbr_qmf.c
blob7a49886e2cddfd49a18b45de07cbc1f6e101f1e8
1 /*
2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
4 **
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
9 **
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ** GNU General Public License for more details.
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 ** Any non-GPL usage of this software or parts of this software is strictly
20 ** forbidden.
22 ** Commercial non-GPL licensing of this software is possible.
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
25 ** $Id: sbr_qmf.c,v 1.27 2004/09/04 14:56:28 menno Exp $
26 **/
28 #include "common.h"
29 #include "structs.h"
31 #ifdef SBR_DEC
34 #include <stdlib.h>
35 #include <string.h>
36 #include "sbr_dct.h"
37 #include "sbr_qmf.h"
38 #include "sbr_qmf_c.h"
39 #include "sbr_syntax.h"
41 qmfa_info *qmfa_init(uint8_t channels)
43 qmfa_info *qmfa = (qmfa_info*)faad_malloc(sizeof(qmfa_info));
45 /* x is implemented as double ringbuffer */
46 qmfa->x = (real_t*)faad_malloc(2 * channels * 10 * sizeof(real_t));
47 memset(qmfa->x, 0, 2 * channels * 10 * sizeof(real_t));
49 /* ringbuffer index */
50 qmfa->x_index = 0;
52 qmfa->channels = channels;
54 return qmfa;
57 void qmfa_end(qmfa_info *qmfa)
59 if (qmfa)
61 if (qmfa->x) faad_free(qmfa->x);
62 faad_free(qmfa);
66 void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input,
67 qmf_t X[MAX_NTSRHFG][64], uint8_t offset, uint8_t kx)
69 ALIGN real_t u[64];
70 #ifndef SBR_LOW_POWER
71 ALIGN real_t in_real[32], in_imag[32], out_real[32], out_imag[32];
72 #else
73 ALIGN real_t y[32];
74 #endif
75 uint16_t in = 0;
76 uint8_t l;
78 /* qmf subsample l */
79 for (l = 0; l < sbr->numTimeSlotsRate; l++)
81 int16_t n;
83 /* shift input buffer x */
84 /* input buffer is not shifted anymore, x is implemented as double ringbuffer */
85 //memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t));
87 /* add new samples to input buffer x */
88 for (n = 32 - 1; n >= 0; n--)
90 #ifdef FIXED_POINT
91 qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = (input[in++]) >> 4;
92 #else
93 qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = input[in++];
94 #endif
97 /* window and summation to create array u */
98 for (n = 0; n < 64; n++)
100 u[n] = MUL_F(qmfa->x[qmfa->x_index + n], qmf_c[2*n]) +
101 MUL_F(qmfa->x[qmfa->x_index + n + 64], qmf_c[2*(n + 64)]) +
102 MUL_F(qmfa->x[qmfa->x_index + n + 128], qmf_c[2*(n + 128)]) +
103 MUL_F(qmfa->x[qmfa->x_index + n + 192], qmf_c[2*(n + 192)]) +
104 MUL_F(qmfa->x[qmfa->x_index + n + 256], qmf_c[2*(n + 256)]);
107 /* update ringbuffer index */
108 qmfa->x_index -= 32;
109 if (qmfa->x_index < 0)
110 qmfa->x_index = (320-32);
112 /* calculate 32 subband samples by introducing X */
113 #ifdef SBR_LOW_POWER
114 y[0] = u[48];
115 for (n = 1; n < 16; n++)
116 y[n] = u[n+48] + u[48-n];
117 for (n = 16; n < 32; n++)
118 y[n] = -u[n-16] + u[48-n];
120 DCT3_32_unscaled(u, y);
122 for (n = 0; n < 32; n++)
124 if (n < kx)
126 #ifdef FIXED_POINT
127 QMF_RE(X[l + offset][n]) = u[n] /*<< 1*/;
128 #else
129 QMF_RE(X[l + offset][n]) = 2. * u[n];
130 #endif
131 } else {
132 QMF_RE(X[l + offset][n]) = 0;
135 #else
137 // Reordering of data moved from DCT_IV to here
138 in_imag[31] = u[1];
139 in_real[0] = u[0];
140 for (n = 1; n < 31; n++)
142 in_imag[31 - n] = u[n+1];
143 in_real[n] = -u[64-n];
145 in_imag[0] = u[32];
146 in_real[31] = -u[33];
148 // dct4_kernel is DCT_IV without reordering which is done before and after FFT
149 dct4_kernel(in_real, in_imag, out_real, out_imag);
151 // Reordering of data moved from DCT_IV to here
152 for (n = 0; n < 16; n++) {
153 if (2*n+1 < kx) {
154 #ifdef FIXED_POINT
155 QMF_RE(X[l + offset][2*n]) = out_real[n];
156 QMF_IM(X[l + offset][2*n]) = out_imag[n];
157 QMF_RE(X[l + offset][2*n+1]) = -out_imag[31-n];
158 QMF_IM(X[l + offset][2*n+1]) = -out_real[31-n];
159 #else
160 QMF_RE(X[l + offset][2*n]) = 2. * out_real[n];
161 QMF_IM(X[l + offset][2*n]) = 2. * out_imag[n];
162 QMF_RE(X[l + offset][2*n+1]) = -2. * out_imag[31-n];
163 QMF_IM(X[l + offset][2*n+1]) = -2. * out_real[31-n];
164 #endif
165 } else {
166 if (2*n < kx) {
167 #ifdef FIXED_POINT
168 QMF_RE(X[l + offset][2*n]) = out_real[n];
169 QMF_IM(X[l + offset][2*n]) = out_imag[n];
170 #else
171 QMF_RE(X[l + offset][2*n]) = 2. * out_real[n];
172 QMF_IM(X[l + offset][2*n]) = 2. * out_imag[n];
173 #endif
175 else {
176 QMF_RE(X[l + offset][2*n]) = 0;
177 QMF_IM(X[l + offset][2*n]) = 0;
179 QMF_RE(X[l + offset][2*n+1]) = 0;
180 QMF_IM(X[l + offset][2*n+1]) = 0;
183 #endif
187 static const complex_t qmf32_pre_twiddle[] =
189 { FRAC_CONST(0.999924701839145), FRAC_CONST(-0.012271538285720) },
190 { FRAC_CONST(0.999322384588350), FRAC_CONST(-0.036807222941359) },
191 { FRAC_CONST(0.998118112900149), FRAC_CONST(-0.061320736302209) },
192 { FRAC_CONST(0.996312612182778), FRAC_CONST(-0.085797312344440) },
193 { FRAC_CONST(0.993906970002356), FRAC_CONST(-0.110222207293883) },
194 { FRAC_CONST(0.990902635427780), FRAC_CONST(-0.134580708507126) },
195 { FRAC_CONST(0.987301418157858), FRAC_CONST(-0.158858143333861) },
196 { FRAC_CONST(0.983105487431216), FRAC_CONST(-0.183039887955141) },
197 { FRAC_CONST(0.978317370719628), FRAC_CONST(-0.207111376192219) },
198 { FRAC_CONST(0.972939952205560), FRAC_CONST(-0.231058108280671) },
199 { FRAC_CONST(0.966976471044852), FRAC_CONST(-0.254865659604515) },
200 { FRAC_CONST(0.960430519415566), FRAC_CONST(-0.278519689385053) },
201 { FRAC_CONST(0.953306040354194), FRAC_CONST(-0.302005949319228) },
202 { FRAC_CONST(0.945607325380521), FRAC_CONST(-0.325310292162263) },
203 { FRAC_CONST(0.937339011912575), FRAC_CONST(-0.348418680249435) },
204 { FRAC_CONST(0.928506080473216), FRAC_CONST(-0.371317193951838) },
205 { FRAC_CONST(0.919113851690058), FRAC_CONST(-0.393992040061048) },
206 { FRAC_CONST(0.909167983090522), FRAC_CONST(-0.416429560097637) },
207 { FRAC_CONST(0.898674465693954), FRAC_CONST(-0.438616238538528) },
208 { FRAC_CONST(0.887639620402854), FRAC_CONST(-0.460538710958240) },
209 { FRAC_CONST(0.876070094195407), FRAC_CONST(-0.482183772079123) },
210 { FRAC_CONST(0.863972856121587), FRAC_CONST(-0.503538383725718) },
211 { FRAC_CONST(0.851355193105265), FRAC_CONST(-0.524589682678469) },
212 { FRAC_CONST(0.838224705554838), FRAC_CONST(-0.545324988422046) },
213 { FRAC_CONST(0.824589302785025), FRAC_CONST(-0.565731810783613) },
214 { FRAC_CONST(0.810457198252595), FRAC_CONST(-0.585797857456439) },
215 { FRAC_CONST(0.795836904608884), FRAC_CONST(-0.605511041404326) },
216 { FRAC_CONST(0.780737228572094), FRAC_CONST(-0.624859488142386) },
217 { FRAC_CONST(0.765167265622459), FRAC_CONST(-0.643831542889791) },
218 { FRAC_CONST(0.749136394523459), FRAC_CONST(-0.662415777590172) },
219 { FRAC_CONST(0.732654271672413), FRAC_CONST(-0.680600997795453) },
220 { FRAC_CONST(0.715730825283819), FRAC_CONST(-0.698376249408973) }
223 qmfs_info *qmfs_init(uint8_t channels)
225 qmfs_info *qmfs = (qmfs_info*)faad_malloc(sizeof(qmfs_info));
227 /* v is a double ringbuffer */
228 qmfs->v = (real_t*)faad_malloc(2 * channels * 20 * sizeof(real_t));
229 memset(qmfs->v, 0, 2 * channels * 20 * sizeof(real_t));
231 qmfs->v_index = 0;
233 qmfs->channels = channels;
235 return qmfs;
238 void qmfs_end(qmfs_info *qmfs)
240 if (qmfs)
242 if (qmfs->v) faad_free(qmfs->v);
243 faad_free(qmfs);
247 #ifdef SBR_LOW_POWER
249 void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
250 real_t *output)
252 ALIGN real_t x[16];
253 ALIGN real_t y[16];
254 int16_t n, k, out = 0;
255 uint8_t l;
257 /* qmf subsample l */
258 for (l = 0; l < sbr->numTimeSlotsRate; l++)
260 /* shift buffers */
261 /* we are not shifting v, it is a double ringbuffer */
262 //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t));
264 /* calculate 64 samples */
265 for (k = 0; k < 16; k++)
267 #ifdef FIXED_POINT
268 y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k]));
269 x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k]));
270 #else
271 y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k])) / 32.0;
272 x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k])) / 32.0;
273 #endif
276 /* even n samples */
277 DCT2_16_unscaled(x, x);
278 /* odd n samples */
279 DCT4_16(y, y);
281 for (n = 8; n < 24; n++)
283 qmfs->v[qmfs->v_index + n*2] = qmfs->v[qmfs->v_index + 640 + n*2] = x[n-8];
284 qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 640 + n*2+1] = y[n-8];
286 for (n = 0; n < 16; n++)
288 qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 640 + n] = qmfs->v[qmfs->v_index + 32-n];
290 qmfs->v[qmfs->v_index + 48] = qmfs->v[qmfs->v_index + 640 + 48] = 0;
291 for (n = 1; n < 16; n++)
293 qmfs->v[qmfs->v_index + 48+n] = qmfs->v[qmfs->v_index + 640 + 48+n] = -qmfs->v[qmfs->v_index + 48-n];
296 /* calculate 32 output samples and window */
297 for (k = 0; k < 32; k++)
299 output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[2*k]) +
300 MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[64 + 2*k]) +
301 MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[128 + 2*k]) +
302 MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[192 + 2*k]) +
303 MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[256 + 2*k]) +
304 MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[320 + 2*k]) +
305 MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[384 + 2*k]) +
306 MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[448 + 2*k]) +
307 MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[512 + 2*k]) +
308 MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[576 + 2*k]);
311 /* update the ringbuffer index */
312 qmfs->v_index -= 64;
313 if (qmfs->v_index < 0)
314 qmfs->v_index = (640-64);
318 void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
319 real_t *output)
321 ALIGN real_t x[64];
322 ALIGN real_t y[64];
323 int16_t n, k, out = 0;
324 uint8_t l;
327 /* qmf subsample l */
328 for (l = 0; l < sbr->numTimeSlotsRate; l++)
330 /* shift buffers */
331 /* we are not shifting v, it is a double ringbuffer */
332 //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t));
334 /* calculate 128 samples */
335 for (k = 0; k < 32; k++)
337 #ifdef FIXED_POINT
338 y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][63 - k]));
339 x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][63 - k]));
340 #else
341 y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][63 - k])) / 32.0;
342 x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][63 - k])) / 32.0;
343 #endif
346 /* even n samples */
347 DCT2_32_unscaled(x, x);
348 /* odd n samples */
349 DCT4_32(y, y);
351 for (n = 16; n < 48; n++)
353 qmfs->v[qmfs->v_index + n*2] = qmfs->v[qmfs->v_index + 1280 + n*2] = x[n-16];
354 qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 1280 + n*2+1] = y[n-16];
356 for (n = 0; n < 32; n++)
358 qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 1280 + n] = qmfs->v[qmfs->v_index + 64-n];
360 qmfs->v[qmfs->v_index + 96] = qmfs->v[qmfs->v_index + 1280 + 96] = 0;
361 for (n = 1; n < 32; n++)
363 qmfs->v[qmfs->v_index + 96+n] = qmfs->v[qmfs->v_index + 1280 + 96+n] = -qmfs->v[qmfs->v_index + 96-n];
366 /* calculate 64 output samples and window */
367 for (k = 0; k < 64; k++)
369 output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[k]) +
370 MUL_F(qmfs->v[qmfs->v_index + 192 + k], qmf_c[64 + k]) +
371 MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[128 + k]) +
372 MUL_F(qmfs->v[qmfs->v_index + 256 + 192 + k], qmf_c[128 + 64 + k]) +
373 MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[256 + k]) +
374 MUL_F(qmfs->v[qmfs->v_index + 512 + 192 + k], qmf_c[256 + 64 + k]) +
375 MUL_F(qmfs->v[qmfs->v_index + 768 + k], qmf_c[384 + k]) +
376 MUL_F(qmfs->v[qmfs->v_index + 768 + 192 + k], qmf_c[384 + 64 + k]) +
377 MUL_F(qmfs->v[qmfs->v_index + 1024 + k], qmf_c[512 + k]) +
378 MUL_F(qmfs->v[qmfs->v_index + 1024 + 192 + k], qmf_c[512 + 64 + k]);
381 /* update the ringbuffer index */
382 qmfs->v_index -= 128;
383 if (qmfs->v_index < 0)
384 qmfs->v_index = (1280-128);
387 #else
388 void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
389 real_t *output)
391 ALIGN real_t x1[32], x2[32];
392 #ifndef FIXED_POINT
393 real_t scale = 1.f/64.f;
394 #endif
395 int16_t n, k, out = 0;
396 uint8_t l;
399 /* qmf subsample l */
400 for (l = 0; l < sbr->numTimeSlotsRate; l++)
402 /* shift buffer v */
403 /* buffer is not shifted, we are using a ringbuffer */
404 //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t));
406 /* calculate 64 samples */
407 /* complex pre-twiddle */
408 for (k = 0; k < 32; k++)
410 x1[k] = MUL_F(QMF_RE(X[l][k]), RE(qmf32_pre_twiddle[k])) - MUL_F(QMF_IM(X[l][k]), IM(qmf32_pre_twiddle[k]));
411 x2[k] = MUL_F(QMF_IM(X[l][k]), RE(qmf32_pre_twiddle[k])) + MUL_F(QMF_RE(X[l][k]), IM(qmf32_pre_twiddle[k]));
413 #ifndef FIXED_POINT
414 x1[k] *= scale;
415 x2[k] *= scale;
416 #else
417 x1[k] >>= 1;
418 x2[k] >>= 1;
419 #endif
422 /* transform */
423 DCT4_32(x1, x1);
424 DST4_32(x2, x2);
426 for (n = 0; n < 32; n++)
428 qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 640 + n] = -x1[n] + x2[n];
429 qmfs->v[qmfs->v_index + 63 - n] = qmfs->v[qmfs->v_index + 640 + 63 - n] = x1[n] + x2[n];
432 /* calculate 32 output samples and window */
433 for (k = 0; k < 32; k++)
435 output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[2*k]) +
436 MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[64 + 2*k]) +
437 MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[128 + 2*k]) +
438 MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[192 + 2*k]) +
439 MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[256 + 2*k]) +
440 MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[320 + 2*k]) +
441 MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[384 + 2*k]) +
442 MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[448 + 2*k]) +
443 MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[512 + 2*k]) +
444 MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[576 + 2*k]);
447 /* update ringbuffer index */
448 qmfs->v_index -= 64;
449 if (qmfs->v_index < 0)
450 qmfs->v_index = (640 - 64);
454 void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
455 real_t *output)
457 // ALIGN real_t x1[64], x2[64];
458 #ifndef SBR_LOW_POWER
459 ALIGN real_t in_real1[32], in_imag1[32], out_real1[32], out_imag1[32];
460 ALIGN real_t in_real2[32], in_imag2[32], out_real2[32], out_imag2[32];
461 #endif
462 qmf_t * pX;
463 real_t * pring_buffer_1, * pring_buffer_3;
464 // real_t * ptemp_1, * ptemp_2;
465 #ifdef PREFER_POINTERS
466 // These pointers are used if target platform has autoinc address generators
467 real_t * pring_buffer_2, * pring_buffer_4;
468 real_t * pring_buffer_5, * pring_buffer_6;
469 real_t * pring_buffer_7, * pring_buffer_8;
470 real_t * pring_buffer_9, * pring_buffer_10;
471 const real_t * pqmf_c_1, * pqmf_c_2, * pqmf_c_3, * pqmf_c_4;
472 const real_t * pqmf_c_5, * pqmf_c_6, * pqmf_c_7, * pqmf_c_8;
473 const real_t * pqmf_c_9, * pqmf_c_10;
474 #endif // #ifdef PREFER_POINTERS
475 #ifndef FIXED_POINT
476 real_t scale = 1.f/64.f;
477 #endif
478 int16_t n, k, out = 0;
479 uint8_t l;
482 /* qmf subsample l */
483 for (l = 0; l < sbr->numTimeSlotsRate; l++)
485 /* shift buffer v */
486 /* buffer is not shifted, we use double ringbuffer */
487 //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t));
489 /* calculate 128 samples */
490 #ifndef FIXED_POINT
492 pX = X[l];
494 in_imag1[31] = scale*QMF_RE(pX[1]);
495 in_real1[0] = scale*QMF_RE(pX[0]);
496 in_imag2[31] = scale*QMF_IM(pX[63-1]);
497 in_real2[0] = scale*QMF_IM(pX[63-0]);
498 for (k = 1; k < 31; k++)
500 in_imag1[31 - k] = scale*QMF_RE(pX[2*k + 1]);
501 in_real1[ k] = scale*QMF_RE(pX[2*k ]);
502 in_imag2[31 - k] = scale*QMF_IM(pX[63 - (2*k + 1)]);
503 in_real2[ k] = scale*QMF_IM(pX[63 - (2*k )]);
505 in_imag1[0] = scale*QMF_RE(pX[63]);
506 in_real1[31] = scale*QMF_RE(pX[62]);
507 in_imag2[0] = scale*QMF_IM(pX[63-63]);
508 in_real2[31] = scale*QMF_IM(pX[63-62]);
510 #else
512 pX = X[l];
514 in_imag1[31] = QMF_RE(pX[1]) >> 1;
515 in_real1[0] = QMF_RE(pX[0]) >> 1;
516 in_imag2[31] = QMF_IM(pX[62]) >> 1;
517 in_real2[0] = QMF_IM(pX[63]) >> 1;
518 for (k = 1; k < 31; k++)
520 in_imag1[31 - k] = QMF_RE(pX[2*k + 1]) >> 1;
521 in_real1[ k] = QMF_RE(pX[2*k ]) >> 1;
522 in_imag2[31 - k] = QMF_IM(pX[63 - (2*k + 1)]) >> 1;
523 in_real2[ k] = QMF_IM(pX[63 - (2*k )]) >> 1;
525 in_imag1[0] = QMF_RE(pX[63]) >> 1;
526 in_real1[31] = QMF_RE(pX[62]) >> 1;
527 in_imag2[0] = QMF_IM(pX[0]) >> 1;
528 in_real2[31] = QMF_IM(pX[1]) >> 1;
530 #endif
533 // dct4_kernel is DCT_IV without reordering which is done before and after FFT
534 dct4_kernel(in_real1, in_imag1, out_real1, out_imag1);
535 dct4_kernel(in_real2, in_imag2, out_real2, out_imag2);
538 pring_buffer_1 = qmfs->v + qmfs->v_index;
539 pring_buffer_3 = pring_buffer_1 + 1280;
540 #ifdef PREFER_POINTERS
541 pring_buffer_2 = pring_buffer_1 + 127;
542 pring_buffer_4 = pring_buffer_1 + (1280 + 127);
543 #endif // #ifdef PREFER_POINTERS
544 // ptemp_1 = x1;
545 // ptemp_2 = x2;
546 #ifdef PREFER_POINTERS
547 for (n = 0; n < 32; n ++)
549 //real_t x1 = *ptemp_1++;
550 //real_t x2 = *ptemp_2++;
551 // pring_buffer_3 and pring_buffer_4 are needed only for double ring buffer
552 *pring_buffer_1++ = *pring_buffer_3++ = out_real2[n] - out_real1[n];
553 *pring_buffer_2-- = *pring_buffer_4-- = out_real2[n] + out_real1[n];
554 //x1 = *ptemp_1++;
555 //x2 = *ptemp_2++;
556 *pring_buffer_1++ = *pring_buffer_3++ = out_imag2[31-n] + out_imag1[31-n];
557 *pring_buffer_2-- = *pring_buffer_4-- = out_imag2[31-n] - out_imag1[31-n];
559 #else // #ifdef PREFER_POINTERS
561 for (n = 0; n < 32; n++)
563 // pring_buffer_3 and pring_buffer_4 are needed only for double ring buffer
564 pring_buffer_1[2*n] = pring_buffer_3[2*n] = out_real2[n] - out_real1[n];
565 pring_buffer_1[127-2*n] = pring_buffer_3[127-2*n] = out_real2[n] + out_real1[n];
566 pring_buffer_1[2*n+1] = pring_buffer_3[2*n+1] = out_imag2[31-n] + out_imag1[31-n];
567 pring_buffer_1[127-(2*n+1)] = pring_buffer_3[127-(2*n+1)] = out_imag2[31-n] - out_imag1[31-n];
570 #endif // #ifdef PREFER_POINTERS
572 pring_buffer_1 = qmfs->v + qmfs->v_index;
573 #ifdef PREFER_POINTERS
574 pring_buffer_2 = pring_buffer_1 + 192;
575 pring_buffer_3 = pring_buffer_1 + 256;
576 pring_buffer_4 = pring_buffer_1 + (256 + 192);
577 pring_buffer_5 = pring_buffer_1 + 512;
578 pring_buffer_6 = pring_buffer_1 + (512 + 192);
579 pring_buffer_7 = pring_buffer_1 + 768;
580 pring_buffer_8 = pring_buffer_1 + (768 + 192);
581 pring_buffer_9 = pring_buffer_1 + 1024;
582 pring_buffer_10 = pring_buffer_1 + (1024 + 192);
583 pqmf_c_1 = qmf_c;
584 pqmf_c_2 = qmf_c + 64;
585 pqmf_c_3 = qmf_c + 128;
586 pqmf_c_4 = qmf_c + 192;
587 pqmf_c_5 = qmf_c + 256;
588 pqmf_c_6 = qmf_c + 320;
589 pqmf_c_7 = qmf_c + 384;
590 pqmf_c_8 = qmf_c + 448;
591 pqmf_c_9 = qmf_c + 512;
592 pqmf_c_10 = qmf_c + 576;
593 #endif // #ifdef PREFER_POINTERS
595 /* calculate 64 output samples and window */
596 for (k = 0; k < 64; k++)
598 #ifdef PREFER_POINTERS
599 output[out++] =
600 MUL_F(*pring_buffer_1++, *pqmf_c_1++) +
601 MUL_F(*pring_buffer_2++, *pqmf_c_2++) +
602 MUL_F(*pring_buffer_3++, *pqmf_c_3++) +
603 MUL_F(*pring_buffer_4++, *pqmf_c_4++) +
604 MUL_F(*pring_buffer_5++, *pqmf_c_5++) +
605 MUL_F(*pring_buffer_6++, *pqmf_c_6++) +
606 MUL_F(*pring_buffer_7++, *pqmf_c_7++) +
607 MUL_F(*pring_buffer_8++, *pqmf_c_8++) +
608 MUL_F(*pring_buffer_9++, *pqmf_c_9++) +
609 MUL_F(*pring_buffer_10++, *pqmf_c_10++);
610 #else // #ifdef PREFER_POINTERS
611 output[out++] =
612 MUL_F(pring_buffer_1[k+0], qmf_c[k+0]) +
613 MUL_F(pring_buffer_1[k+192], qmf_c[k+64]) +
614 MUL_F(pring_buffer_1[k+256], qmf_c[k+128]) +
615 MUL_F(pring_buffer_1[k+(256+192)], qmf_c[k+192]) +
616 MUL_F(pring_buffer_1[k+512], qmf_c[k+256]) +
617 MUL_F(pring_buffer_1[k+(512+192)], qmf_c[k+320]) +
618 MUL_F(pring_buffer_1[k+768], qmf_c[k+384]) +
619 MUL_F(pring_buffer_1[k+(768+192)], qmf_c[k+448]) +
620 MUL_F(pring_buffer_1[k+1024], qmf_c[k+512]) +
621 MUL_F(pring_buffer_1[k+(1024+192)], qmf_c[k+576]);
622 #endif // #ifdef PREFER_POINTERS
625 /* update ringbuffer index */
626 qmfs->v_index -= 128;
627 if (qmfs->v_index < 0)
628 qmfs->v_index = (1280 - 128);
631 #endif
633 #endif