sync with en/mplayer.1 rev. 30677
[mplayer/glamo.git] / libswscale / utils.c
blob22141544b93b1286548335d9b5c412f29ef0f256
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
24 #define _SVID_SOURCE //needed for MAP_ANONYMOUS
25 #include <inttypes.h>
26 #include <string.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include "config.h"
30 #include <assert.h>
31 #if HAVE_SYS_MMAN_H
32 #include <sys/mman.h>
33 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
34 #define MAP_ANONYMOUS MAP_ANON
35 #endif
36 #endif
37 #if HAVE_VIRTUALALLOC
38 #define WIN32_LEAN_AND_MEAN
39 #include <windows.h>
40 #endif
41 #include "swscale.h"
42 #include "swscale_internal.h"
43 #include "rgb2rgb.h"
44 #include "libavutil/intreadwrite.h"
45 #include "libavutil/x86_cpu.h"
46 #include "libavutil/avutil.h"
47 #include "libavutil/bswap.h"
48 #include "libavutil/pixdesc.h"
50 unsigned swscale_version(void)
52 return LIBSWSCALE_VERSION_INT;
55 const char *swscale_configuration(void)
57 return FFMPEG_CONFIGURATION;
60 const char *swscale_license(void)
62 #define LICENSE_PREFIX "libswscale license: "
63 return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
66 #define RET 0xC3 //near return opcode for x86
68 #define isSupportedIn(x) ( \
69 (x)==PIX_FMT_YUV420P \
70 || (x)==PIX_FMT_YUVA420P \
71 || (x)==PIX_FMT_YUYV422 \
72 || (x)==PIX_FMT_UYVY422 \
73 || (x)==PIX_FMT_RGB48BE \
74 || (x)==PIX_FMT_RGB48LE \
75 || (x)==PIX_FMT_RGB32 \
76 || (x)==PIX_FMT_RGB32_1 \
77 || (x)==PIX_FMT_BGR24 \
78 || (x)==PIX_FMT_BGR565 \
79 || (x)==PIX_FMT_BGR555 \
80 || (x)==PIX_FMT_BGR32 \
81 || (x)==PIX_FMT_BGR32_1 \
82 || (x)==PIX_FMT_RGB24 \
83 || (x)==PIX_FMT_RGB565 \
84 || (x)==PIX_FMT_RGB555 \
85 || (x)==PIX_FMT_GRAY8 \
86 || (x)==PIX_FMT_YUV410P \
87 || (x)==PIX_FMT_YUV440P \
88 || (x)==PIX_FMT_NV12 \
89 || (x)==PIX_FMT_NV21 \
90 || (x)==PIX_FMT_GRAY16BE \
91 || (x)==PIX_FMT_GRAY16LE \
92 || (x)==PIX_FMT_YUV444P \
93 || (x)==PIX_FMT_YUV422P \
94 || (x)==PIX_FMT_YUV411P \
95 || (x)==PIX_FMT_YUVJ420P \
96 || (x)==PIX_FMT_YUVJ422P \
97 || (x)==PIX_FMT_YUVJ440P \
98 || (x)==PIX_FMT_YUVJ444P \
99 || (x)==PIX_FMT_PAL8 \
100 || (x)==PIX_FMT_BGR8 \
101 || (x)==PIX_FMT_RGB8 \
102 || (x)==PIX_FMT_BGR4_BYTE \
103 || (x)==PIX_FMT_RGB4_BYTE \
104 || (x)==PIX_FMT_YUV440P \
105 || (x)==PIX_FMT_MONOWHITE \
106 || (x)==PIX_FMT_MONOBLACK \
107 || (x)==PIX_FMT_YUV420P16LE \
108 || (x)==PIX_FMT_YUV422P16LE \
109 || (x)==PIX_FMT_YUV444P16LE \
110 || (x)==PIX_FMT_YUV420P16BE \
111 || (x)==PIX_FMT_YUV422P16BE \
112 || (x)==PIX_FMT_YUV444P16BE \
115 int sws_isSupportedInput(enum PixelFormat pix_fmt)
117 return isSupportedIn(pix_fmt);
120 #define isSupportedOut(x) ( \
121 (x)==PIX_FMT_YUV420P \
122 || (x)==PIX_FMT_YUVA420P \
123 || (x)==PIX_FMT_YUYV422 \
124 || (x)==PIX_FMT_UYVY422 \
125 || (x)==PIX_FMT_YUV444P \
126 || (x)==PIX_FMT_YUV422P \
127 || (x)==PIX_FMT_YUV411P \
128 || (x)==PIX_FMT_YUVJ420P \
129 || (x)==PIX_FMT_YUVJ422P \
130 || (x)==PIX_FMT_YUVJ440P \
131 || (x)==PIX_FMT_YUVJ444P \
132 || isAnyRGB(x) \
133 || (x)==PIX_FMT_NV12 \
134 || (x)==PIX_FMT_NV21 \
135 || (x)==PIX_FMT_GRAY16BE \
136 || (x)==PIX_FMT_GRAY16LE \
137 || (x)==PIX_FMT_GRAY8 \
138 || (x)==PIX_FMT_YUV410P \
139 || (x)==PIX_FMT_YUV440P \
140 || (x)==PIX_FMT_YUV420P16LE \
141 || (x)==PIX_FMT_YUV422P16LE \
142 || (x)==PIX_FMT_YUV444P16LE \
143 || (x)==PIX_FMT_YUV420P16BE \
144 || (x)==PIX_FMT_YUV422P16BE \
145 || (x)==PIX_FMT_YUV444P16BE \
148 int sws_isSupportedOutput(enum PixelFormat pix_fmt)
150 return isSupportedOut(pix_fmt);
153 #define usePal(x) (av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL)
155 extern const int32_t ff_yuv2rgb_coeffs[8][4];
157 const char *sws_format_name(enum PixelFormat format)
159 if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
160 return av_pix_fmt_descriptors[format].name;
161 else
162 return "Unknown format";
165 static double getSplineCoeff(double a, double b, double c, double d, double dist)
167 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
168 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
169 else return getSplineCoeff( 0.0,
170 b+ 2.0*c + 3.0*d,
171 c + 3.0*d,
172 -b- 3.0*c - 6.0*d,
173 dist-1.0);
176 static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
177 int srcW, int dstW, int filterAlign, int one, int flags,
178 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
180 int i;
181 int filterSize;
182 int filter2Size;
183 int minFilterSize;
184 int64_t *filter=NULL;
185 int64_t *filter2=NULL;
186 const int64_t fone= 1LL<<54;
187 int ret= -1;
188 #if ARCH_X86
189 if (flags & SWS_CPU_CAPS_MMX)
190 __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
191 #endif
193 // NOTE: the +1 is for the MMX scaler which reads over the end
194 FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
196 if (FFABS(xInc - 0x10000) <10) { // unscaled
197 int i;
198 filterSize= 1;
199 FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
201 for (i=0; i<dstW; i++) {
202 filter[i*filterSize]= fone;
203 (*filterPos)[i]=i;
206 } else if (flags&SWS_POINT) { // lame looking point sampling mode
207 int i;
208 int xDstInSrc;
209 filterSize= 1;
210 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
212 xDstInSrc= xInc/2 - 0x8000;
213 for (i=0; i<dstW; i++) {
214 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
216 (*filterPos)[i]= xx;
217 filter[i]= fone;
218 xDstInSrc+= xInc;
220 } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
221 int i;
222 int xDstInSrc;
223 filterSize= 2;
224 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
226 xDstInSrc= xInc/2 - 0x8000;
227 for (i=0; i<dstW; i++) {
228 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
229 int j;
231 (*filterPos)[i]= xx;
232 //bilinear upscale / linear interpolate / area averaging
233 for (j=0; j<filterSize; j++) {
234 int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
235 if (coeff<0) coeff=0;
236 filter[i*filterSize + j]= coeff;
237 xx++;
239 xDstInSrc+= xInc;
241 } else {
242 int xDstInSrc;
243 int sizeFactor;
245 if (flags&SWS_BICUBIC) sizeFactor= 4;
246 else if (flags&SWS_X) sizeFactor= 8;
247 else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
248 else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
249 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
250 else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
251 else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
252 else if (flags&SWS_BILINEAR) sizeFactor= 2;
253 else {
254 sizeFactor= 0; //GCC warning killer
255 assert(0);
258 if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
259 else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
261 if (filterSize > srcW-2) filterSize=srcW-2;
263 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
265 xDstInSrc= xInc - 0x10000;
266 for (i=0; i<dstW; i++) {
267 int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
268 int j;
269 (*filterPos)[i]= xx;
270 for (j=0; j<filterSize; j++) {
271 int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
272 double floatd;
273 int64_t coeff;
275 if (xInc > 1<<16)
276 d= d*dstW/srcW;
277 floatd= d * (1.0/(1<<30));
279 if (flags & SWS_BICUBIC) {
280 int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
281 int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
282 int64_t dd = ( d*d)>>30;
283 int64_t ddd= (dd*d)>>30;
285 if (d < 1LL<<30)
286 coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
287 else if (d < 1LL<<31)
288 coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
289 else
290 coeff=0.0;
291 coeff *= fone>>(30+24);
293 /* else if (flags & SWS_X) {
294 double p= param ? param*0.01 : 0.3;
295 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
296 coeff*= pow(2.0, - p*d*d);
298 else if (flags & SWS_X) {
299 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
300 double c;
302 if (floatd<1.0)
303 c = cos(floatd*M_PI);
304 else
305 c=-1.0;
306 if (c<0.0) c= -pow(-c, A);
307 else c= pow( c, A);
308 coeff= (c*0.5 + 0.5)*fone;
309 } else if (flags & SWS_AREA) {
310 int64_t d2= d - (1<<29);
311 if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
312 else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
313 else coeff=0.0;
314 coeff *= fone>>(30+16);
315 } else if (flags & SWS_GAUSS) {
316 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
317 coeff = (pow(2.0, - p*floatd*floatd))*fone;
318 } else if (flags & SWS_SINC) {
319 coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
320 } else if (flags & SWS_LANCZOS) {
321 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
322 coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
323 if (floatd>p) coeff=0;
324 } else if (flags & SWS_BILINEAR) {
325 coeff= (1<<30) - d;
326 if (coeff<0) coeff=0;
327 coeff *= fone >> 30;
328 } else if (flags & SWS_SPLINE) {
329 double p=-2.196152422706632;
330 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
331 } else {
332 coeff= 0.0; //GCC warning killer
333 assert(0);
336 filter[i*filterSize + j]= coeff;
337 xx++;
339 xDstInSrc+= 2*xInc;
343 /* apply src & dst Filter to filter -> filter2
344 av_free(filter);
346 assert(filterSize>0);
347 filter2Size= filterSize;
348 if (srcFilter) filter2Size+= srcFilter->length - 1;
349 if (dstFilter) filter2Size+= dstFilter->length - 1;
350 assert(filter2Size>0);
351 FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
353 for (i=0; i<dstW; i++) {
354 int j, k;
356 if(srcFilter) {
357 for (k=0; k<srcFilter->length; k++) {
358 for (j=0; j<filterSize; j++)
359 filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
361 } else {
362 for (j=0; j<filterSize; j++)
363 filter2[i*filter2Size + j]= filter[i*filterSize + j];
365 //FIXME dstFilter
367 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
369 av_freep(&filter);
371 /* try to reduce the filter-size (step1 find size and shift left) */
372 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
373 minFilterSize= 0;
374 for (i=dstW-1; i>=0; i--) {
375 int min= filter2Size;
376 int j;
377 int64_t cutOff=0.0;
379 /* get rid of near zero elements on the left by shifting left */
380 for (j=0; j<filter2Size; j++) {
381 int k;
382 cutOff += FFABS(filter2[i*filter2Size]);
384 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
386 /* preserve monotonicity because the core can't handle the filter otherwise */
387 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
389 // move filter coefficients left
390 for (k=1; k<filter2Size; k++)
391 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
392 filter2[i*filter2Size + k - 1]= 0;
393 (*filterPos)[i]++;
396 cutOff=0;
397 /* count near zeros on the right */
398 for (j=filter2Size-1; j>0; j--) {
399 cutOff += FFABS(filter2[i*filter2Size + j]);
401 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
402 min--;
405 if (min>minFilterSize) minFilterSize= min;
408 if (flags & SWS_CPU_CAPS_ALTIVEC) {
409 // we can handle the special case 4,
410 // so we don't want to go to the full 8
411 if (minFilterSize < 5)
412 filterAlign = 4;
414 // We really don't want to waste our time
415 // doing useless computation, so fall back on
416 // the scalar C code for very small filters.
417 // Vectorizing is worth it only if you have a
418 // decent-sized vector.
419 if (minFilterSize < 3)
420 filterAlign = 1;
423 if (flags & SWS_CPU_CAPS_MMX) {
424 // special case for unscaled vertical filtering
425 if (minFilterSize == 1 && filterAlign == 2)
426 filterAlign= 1;
429 assert(minFilterSize > 0);
430 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
431 assert(filterSize > 0);
432 filter= av_malloc(filterSize*dstW*sizeof(*filter));
433 if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
434 goto fail;
435 *outFilterSize= filterSize;
437 if (flags&SWS_PRINT_INFO)
438 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
439 /* try to reduce the filter-size (step2 reduce it) */
440 for (i=0; i<dstW; i++) {
441 int j;
443 for (j=0; j<filterSize; j++) {
444 if (j>=filter2Size) filter[i*filterSize + j]= 0;
445 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
446 if((flags & SWS_BITEXACT) && j>=minFilterSize)
447 filter[i*filterSize + j]= 0;
451 //FIXME try to align filterPos if possible
453 //fix borders
454 for (i=0; i<dstW; i++) {
455 int j;
456 if ((*filterPos)[i] < 0) {
457 // move filter coefficients left to compensate for filterPos
458 for (j=1; j<filterSize; j++) {
459 int left= FFMAX(j + (*filterPos)[i], 0);
460 filter[i*filterSize + left] += filter[i*filterSize + j];
461 filter[i*filterSize + j]=0;
463 (*filterPos)[i]= 0;
466 if ((*filterPos)[i] + filterSize > srcW) {
467 int shift= (*filterPos)[i] + filterSize - srcW;
468 // move filter coefficients right to compensate for filterPos
469 for (j=filterSize-2; j>=0; j--) {
470 int right= FFMIN(j + shift, filterSize-1);
471 filter[i*filterSize +right] += filter[i*filterSize +j];
472 filter[i*filterSize +j]=0;
474 (*filterPos)[i]= srcW - filterSize;
478 // Note the +1 is for the MMX scaler which reads over the end
479 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
480 FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
482 /* normalize & store in outFilter */
483 for (i=0; i<dstW; i++) {
484 int j;
485 int64_t error=0;
486 int64_t sum=0;
488 for (j=0; j<filterSize; j++) {
489 sum+= filter[i*filterSize + j];
491 sum= (sum + one/2)/ one;
492 for (j=0; j<*outFilterSize; j++) {
493 int64_t v= filter[i*filterSize + j] + error;
494 int intV= ROUNDED_DIV(v, sum);
495 (*outFilter)[i*(*outFilterSize) + j]= intV;
496 error= v - intV*sum;
500 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
501 for (i=0; i<*outFilterSize; i++) {
502 int j= dstW*(*outFilterSize);
503 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
506 ret=0;
507 fail:
508 av_free(filter);
509 av_free(filter2);
510 return ret;
513 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
514 static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
516 uint8_t *fragmentA;
517 x86_reg imm8OfPShufW1A;
518 x86_reg imm8OfPShufW2A;
519 x86_reg fragmentLengthA;
520 uint8_t *fragmentB;
521 x86_reg imm8OfPShufW1B;
522 x86_reg imm8OfPShufW2B;
523 x86_reg fragmentLengthB;
524 int fragmentPos;
526 int xpos, i;
528 // create an optimized horizontal scaling routine
529 /* This scaler is made of runtime-generated MMX2 code using specially
530 * tuned pshufw instructions. For every four output pixels, if four
531 * input pixels are enough for the fast bilinear scaling, then a chunk
532 * of fragmentB is used. If five input pixels are needed, then a chunk
533 * of fragmentA is used.
536 //code fragment
538 __asm__ volatile(
539 "jmp 9f \n\t"
540 // Begin
541 "0: \n\t"
542 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
543 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
544 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
545 "punpcklbw %%mm7, %%mm1 \n\t"
546 "punpcklbw %%mm7, %%mm0 \n\t"
547 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
548 "1: \n\t"
549 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
550 "2: \n\t"
551 "psubw %%mm1, %%mm0 \n\t"
552 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
553 "pmullw %%mm3, %%mm0 \n\t"
554 "psllw $7, %%mm1 \n\t"
555 "paddw %%mm1, %%mm0 \n\t"
557 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
559 "add $8, %%"REG_a" \n\t"
560 // End
561 "9: \n\t"
562 // "int $3 \n\t"
563 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
564 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
565 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
566 "dec %1 \n\t"
567 "dec %2 \n\t"
568 "sub %0, %1 \n\t"
569 "sub %0, %2 \n\t"
570 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
571 "sub %0, %3 \n\t"
574 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
575 "=r" (fragmentLengthA)
578 __asm__ volatile(
579 "jmp 9f \n\t"
580 // Begin
581 "0: \n\t"
582 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
583 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
584 "punpcklbw %%mm7, %%mm0 \n\t"
585 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
586 "1: \n\t"
587 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
588 "2: \n\t"
589 "psubw %%mm1, %%mm0 \n\t"
590 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
591 "pmullw %%mm3, %%mm0 \n\t"
592 "psllw $7, %%mm1 \n\t"
593 "paddw %%mm1, %%mm0 \n\t"
595 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
597 "add $8, %%"REG_a" \n\t"
598 // End
599 "9: \n\t"
600 // "int $3 \n\t"
601 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
602 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
603 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
604 "dec %1 \n\t"
605 "dec %2 \n\t"
606 "sub %0, %1 \n\t"
607 "sub %0, %2 \n\t"
608 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
609 "sub %0, %3 \n\t"
612 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
613 "=r" (fragmentLengthB)
616 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
617 fragmentPos=0;
619 for (i=0; i<dstW/numSplits; i++) {
620 int xx=xpos>>16;
622 if ((i&3) == 0) {
623 int a=0;
624 int b=((xpos+xInc)>>16) - xx;
625 int c=((xpos+xInc*2)>>16) - xx;
626 int d=((xpos+xInc*3)>>16) - xx;
627 int inc = (d+1<4);
628 uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
629 x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
630 x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
631 x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
632 int maxShift= 3-(d+inc);
633 int shift=0;
635 if (filterCode) {
636 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
637 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
638 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
639 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
640 filterPos[i/2]= xx;
642 memcpy(filterCode + fragmentPos, fragment, fragmentLength);
644 filterCode[fragmentPos + imm8OfPShufW1]=
645 (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
646 filterCode[fragmentPos + imm8OfPShufW2]=
647 a | (b<<2) | (c<<4) | (d<<6);
649 if (i+4-inc>=dstW) shift=maxShift; //avoid overread
650 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
652 if (shift && i>=shift) {
653 filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
654 filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
655 filterPos[i/2]-=shift;
659 fragmentPos+= fragmentLength;
661 if (filterCode)
662 filterCode[fragmentPos]= RET;
664 xpos+=xInc;
666 if (filterCode)
667 filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
669 return fragmentPos + 1;
671 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL */
673 static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
675 *h = av_pix_fmt_descriptors[format].log2_chroma_w;
676 *v = av_pix_fmt_descriptors[format].log2_chroma_h;
679 static uint16_t roundToInt16(int64_t f)
681 int r= (f + (1<<15))>>16;
682 if (r<-0x7FFF) return 0x8000;
683 else if (r> 0x7FFF) return 0x7FFF;
684 else return r;
687 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
689 int64_t crv = inv_table[0];
690 int64_t cbu = inv_table[1];
691 int64_t cgu = -inv_table[2];
692 int64_t cgv = -inv_table[3];
693 int64_t cy = 1<<16;
694 int64_t oy = 0;
696 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
697 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
699 c->brightness= brightness;
700 c->contrast = contrast;
701 c->saturation= saturation;
702 c->srcRange = srcRange;
703 c->dstRange = dstRange;
704 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
706 c->uOffset= 0x0400040004000400LL;
707 c->vOffset= 0x0400040004000400LL;
709 if (!srcRange) {
710 cy= (cy*255) / 219;
711 oy= 16<<16;
712 } else {
713 crv= (crv*224) / 255;
714 cbu= (cbu*224) / 255;
715 cgu= (cgu*224) / 255;
716 cgv= (cgv*224) / 255;
719 cy = (cy *contrast )>>16;
720 crv= (crv*contrast * saturation)>>32;
721 cbu= (cbu*contrast * saturation)>>32;
722 cgu= (cgu*contrast * saturation)>>32;
723 cgv= (cgv*contrast * saturation)>>32;
725 oy -= 256*brightness;
727 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
728 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
729 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
730 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
731 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
732 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
734 c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
735 c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
736 c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
737 c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
738 c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
739 c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
741 ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
742 //FIXME factorize
744 #if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
745 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
746 ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
747 #endif
748 return 0;
751 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
753 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
755 *inv_table = c->srcColorspaceTable;
756 *table = c->dstColorspaceTable;
757 *srcRange = c->srcRange;
758 *dstRange = c->dstRange;
759 *brightness= c->brightness;
760 *contrast = c->contrast;
761 *saturation= c->saturation;
763 return 0;
766 static int handle_jpeg(enum PixelFormat *format)
768 switch (*format) {
769 case PIX_FMT_YUVJ420P:
770 *format = PIX_FMT_YUV420P;
771 return 1;
772 case PIX_FMT_YUVJ422P:
773 *format = PIX_FMT_YUV422P;
774 return 1;
775 case PIX_FMT_YUVJ444P:
776 *format = PIX_FMT_YUV444P;
777 return 1;
778 case PIX_FMT_YUVJ440P:
779 *format = PIX_FMT_YUV440P;
780 return 1;
781 default:
782 return 0;
786 SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
787 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
788 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
790 SwsContext *c;
791 int i;
792 int usesVFilter, usesHFilter;
793 int unscaled;
794 int srcRange, dstRange;
795 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
796 #if ARCH_X86
797 if (flags & SWS_CPU_CAPS_MMX)
798 __asm__ volatile("emms\n\t"::: "memory");
799 #endif
801 #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
802 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
803 flags |= ff_hardcodedcpuflags();
804 #endif /* CONFIG_RUNTIME_CPUDETECT */
805 if (!rgb15to16) sws_rgb2rgb_init(flags);
807 unscaled = (srcW == dstW && srcH == dstH);
809 srcRange = handle_jpeg(&srcFormat);
810 dstRange = handle_jpeg(&dstFormat);
812 if (!isSupportedIn(srcFormat)) {
813 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
814 return NULL;
816 if (!isSupportedOut(dstFormat)) {
817 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
818 return NULL;
821 i= flags & ( SWS_POINT
822 |SWS_AREA
823 |SWS_BILINEAR
824 |SWS_FAST_BILINEAR
825 |SWS_BICUBIC
826 |SWS_X
827 |SWS_GAUSS
828 |SWS_LANCZOS
829 |SWS_SINC
830 |SWS_SPLINE
831 |SWS_BICUBLIN);
832 if(!i || (i & (i-1))) {
833 av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
834 return NULL;
837 /* sanity check */
838 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
839 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
840 srcW, srcH, dstW, dstH);
841 return NULL;
843 if(srcW > VOFW || dstW > VOFW) {
844 av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
845 return NULL;
848 if (!dstFilter) dstFilter= &dummyFilter;
849 if (!srcFilter) srcFilter= &dummyFilter;
851 FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail);
853 c->av_class = &sws_context_class;
854 c->srcW= srcW;
855 c->srcH= srcH;
856 c->dstW= dstW;
857 c->dstH= dstH;
858 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
859 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
860 c->flags= flags;
861 c->dstFormat= dstFormat;
862 c->srcFormat= srcFormat;
863 c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
864 c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
865 c->vRounder= 4* 0x0001000100010001ULL;
867 usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
868 (srcFilter->chrV && srcFilter->chrV->length>1) ||
869 (dstFilter->lumV && dstFilter->lumV->length>1) ||
870 (dstFilter->chrV && dstFilter->chrV->length>1);
871 usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
872 (srcFilter->chrH && srcFilter->chrH->length>1) ||
873 (dstFilter->lumH && dstFilter->lumH->length>1) ||
874 (dstFilter->chrH && dstFilter->chrH->length>1);
876 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
877 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
879 // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
880 if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
882 // drop some chroma lines if the user wants it
883 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
884 c->chrSrcVSubSample+= c->vChrDrop;
886 // drop every other pixel for chroma calculation unless user wants full chroma
887 if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
888 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
889 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
890 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
891 && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
892 c->chrSrcHSubSample=1;
894 if (param) {
895 c->param[0] = param[0];
896 c->param[1] = param[1];
897 } else {
898 c->param[0] =
899 c->param[1] = SWS_PARAM_DEFAULT;
902 // Note the -((-x)>>y) is so that we always round toward +inf.
903 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
904 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
905 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
906 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
908 sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
910 /* unscaled special cases */
911 if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isAnyRGB(dstFormat))) {
912 ff_get_unscaled_swscale(c);
914 if (c->swScale) {
915 if (flags&SWS_PRINT_INFO)
916 av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
917 sws_format_name(srcFormat), sws_format_name(dstFormat));
918 return c;
922 if (flags & SWS_CPU_CAPS_MMX2) {
923 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
924 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
925 if (flags&SWS_PRINT_INFO)
926 av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
928 if (usesHFilter) c->canMMX2BeUsed=0;
930 else
931 c->canMMX2BeUsed=0;
933 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
934 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
936 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
937 // but only for the FAST_BILINEAR mode otherwise do correct scaling
938 // n-2 is the last chrominance sample available
939 // this is not perfect, but no one should notice the difference, the more correct variant
940 // would be like the vertical one, but that would require some special code for the
941 // first and last pixel
942 if (flags&SWS_FAST_BILINEAR) {
943 if (c->canMMX2BeUsed) {
944 c->lumXInc+= 20;
945 c->chrXInc+= 20;
947 //we don't use the x86 asm scaler if MMX is available
948 else if (flags & SWS_CPU_CAPS_MMX) {
949 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
950 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
954 /* precalculate horizontal scaler filter coefficients */
956 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
957 // can't downscale !!!
958 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
959 c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
960 c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
962 #ifdef MAP_ANONYMOUS
963 c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
964 c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
965 #elif HAVE_VIRTUALALLOC
966 c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
967 c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
968 #else
969 c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
970 c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
971 #endif
973 FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
974 FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
975 FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
976 FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
978 initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
979 initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
981 #ifdef MAP_ANONYMOUS
982 mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
983 mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
984 #endif
985 } else
986 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL */
988 const int filterAlign=
989 (flags & SWS_CPU_CAPS_MMX) ? 4 :
990 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
993 if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
994 srcW , dstW, filterAlign, 1<<14,
995 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
996 srcFilter->lumH, dstFilter->lumH, c->param) < 0)
997 goto fail;
998 if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
999 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
1000 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1001 srcFilter->chrH, dstFilter->chrH, c->param) < 0)
1002 goto fail;
1004 } // initialize horizontal stuff
1006 /* precalculate vertical scaler filter coefficients */
1008 const int filterAlign=
1009 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
1010 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1013 if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
1014 srcH , dstH, filterAlign, (1<<12),
1015 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
1016 srcFilter->lumV, dstFilter->lumV, c->param) < 0)
1017 goto fail;
1018 if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
1019 c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
1020 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1021 srcFilter->chrV, dstFilter->chrV, c->param) < 0)
1022 goto fail;
1024 #if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
1025 FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
1026 FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
1028 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
1029 int j;
1030 short *p = (short *)&c->vYCoeffsBank[i];
1031 for (j=0;j<8;j++)
1032 p[j] = c->vLumFilter[i];
1035 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
1036 int j;
1037 short *p = (short *)&c->vCCoeffsBank[i];
1038 for (j=0;j<8;j++)
1039 p[j] = c->vChrFilter[i];
1041 #endif
1044 // calculate buffer sizes so that they won't run out while handling these damn slices
1045 c->vLumBufSize= c->vLumFilterSize;
1046 c->vChrBufSize= c->vChrFilterSize;
1047 for (i=0; i<dstH; i++) {
1048 int chrI= i*c->chrDstH / dstH;
1049 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
1050 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
1052 nextSlice>>= c->chrSrcVSubSample;
1053 nextSlice<<= c->chrSrcVSubSample;
1054 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
1055 c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
1056 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
1057 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
1060 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
1061 // allocate several megabytes to handle all possible cases)
1062 FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1063 FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
1064 if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1065 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1066 //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
1067 /* align at 16 bytes for AltiVec */
1068 for (i=0; i<c->vLumBufSize; i++) {
1069 FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
1070 c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
1072 for (i=0; i<c->vChrBufSize; i++) {
1073 FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
1074 c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
1076 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1077 for (i=0; i<c->vLumBufSize; i++) {
1078 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
1079 c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
1082 //try to avoid drawing green stuff between the right end and the stride end
1083 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
1085 assert(2*VOFW == VOF);
1087 assert(c->chrDstH <= dstH);
1089 if (flags&SWS_PRINT_INFO) {
1090 if (flags&SWS_FAST_BILINEAR)
1091 av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
1092 else if (flags&SWS_BILINEAR)
1093 av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
1094 else if (flags&SWS_BICUBIC)
1095 av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
1096 else if (flags&SWS_X)
1097 av_log(c, AV_LOG_INFO, "Experimental scaler, ");
1098 else if (flags&SWS_POINT)
1099 av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
1100 else if (flags&SWS_AREA)
1101 av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
1102 else if (flags&SWS_BICUBLIN)
1103 av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
1104 else if (flags&SWS_GAUSS)
1105 av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
1106 else if (flags&SWS_SINC)
1107 av_log(c, AV_LOG_INFO, "Sinc scaler, ");
1108 else if (flags&SWS_LANCZOS)
1109 av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
1110 else if (flags&SWS_SPLINE)
1111 av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
1112 else
1113 av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
1115 av_log(c, AV_LOG_INFO, "from %s to %s%s ",
1116 sws_format_name(srcFormat),
1117 #ifdef DITHER1XBPP
1118 dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ? "dithered " : "",
1119 #else
1121 #endif
1122 sws_format_name(dstFormat));
1124 if (flags & SWS_CPU_CAPS_MMX2)
1125 av_log(c, AV_LOG_INFO, "using MMX2\n");
1126 else if (flags & SWS_CPU_CAPS_3DNOW)
1127 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
1128 else if (flags & SWS_CPU_CAPS_MMX)
1129 av_log(c, AV_LOG_INFO, "using MMX\n");
1130 else if (flags & SWS_CPU_CAPS_ALTIVEC)
1131 av_log(c, AV_LOG_INFO, "using AltiVec\n");
1132 else
1133 av_log(c, AV_LOG_INFO, "using C\n");
1135 if (flags & SWS_CPU_CAPS_MMX) {
1136 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
1137 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
1138 else {
1139 if (c->hLumFilterSize==4)
1140 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
1141 else if (c->hLumFilterSize==8)
1142 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
1143 else
1144 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
1146 if (c->hChrFilterSize==4)
1147 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
1148 else if (c->hChrFilterSize==8)
1149 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
1150 else
1151 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
1153 } else {
1154 #if ARCH_X86
1155 av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
1156 #else
1157 if (flags & SWS_FAST_BILINEAR)
1158 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
1159 else
1160 av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
1161 #endif
1163 if (isPlanarYUV(dstFormat)) {
1164 if (c->vLumFilterSize==1)
1165 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1166 else
1167 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1168 } else {
1169 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
1170 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
1171 " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1172 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
1173 av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1174 else
1175 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1178 if (dstFormat==PIX_FMT_BGR24)
1179 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
1180 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
1181 else if (dstFormat==PIX_FMT_RGB32)
1182 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1183 else if (dstFormat==PIX_FMT_BGR565)
1184 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1185 else if (dstFormat==PIX_FMT_BGR555)
1186 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1188 av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1189 av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1190 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1191 av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1192 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
1195 c->swScale= ff_getSwsFunc(c);
1196 return c;
1198 fail:
1199 sws_freeContext(c);
1200 return NULL;
1203 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1204 float lumaSharpen, float chromaSharpen,
1205 float chromaHShift, float chromaVShift,
1206 int verbose)
1208 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
1209 if (!filter)
1210 return NULL;
1212 if (lumaGBlur!=0.0) {
1213 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
1214 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
1215 } else {
1216 filter->lumH= sws_getIdentityVec();
1217 filter->lumV= sws_getIdentityVec();
1220 if (chromaGBlur!=0.0) {
1221 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
1222 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
1223 } else {
1224 filter->chrH= sws_getIdentityVec();
1225 filter->chrV= sws_getIdentityVec();
1228 if (chromaSharpen!=0.0) {
1229 SwsVector *id= sws_getIdentityVec();
1230 sws_scaleVec(filter->chrH, -chromaSharpen);
1231 sws_scaleVec(filter->chrV, -chromaSharpen);
1232 sws_addVec(filter->chrH, id);
1233 sws_addVec(filter->chrV, id);
1234 sws_freeVec(id);
1237 if (lumaSharpen!=0.0) {
1238 SwsVector *id= sws_getIdentityVec();
1239 sws_scaleVec(filter->lumH, -lumaSharpen);
1240 sws_scaleVec(filter->lumV, -lumaSharpen);
1241 sws_addVec(filter->lumH, id);
1242 sws_addVec(filter->lumV, id);
1243 sws_freeVec(id);
1246 if (chromaHShift != 0.0)
1247 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
1249 if (chromaVShift != 0.0)
1250 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
1252 sws_normalizeVec(filter->chrH, 1.0);
1253 sws_normalizeVec(filter->chrV, 1.0);
1254 sws_normalizeVec(filter->lumH, 1.0);
1255 sws_normalizeVec(filter->lumV, 1.0);
1257 if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1258 if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1260 return filter;
1263 SwsVector *sws_allocVec(int length)
1265 SwsVector *vec = av_malloc(sizeof(SwsVector));
1266 if (!vec)
1267 return NULL;
1268 vec->length = length;
1269 vec->coeff = av_malloc(sizeof(double) * length);
1270 if (!vec->coeff)
1271 av_freep(&vec);
1272 return vec;
1275 SwsVector *sws_getGaussianVec(double variance, double quality)
1277 const int length= (int)(variance*quality + 0.5) | 1;
1278 int i;
1279 double middle= (length-1)*0.5;
1280 SwsVector *vec= sws_allocVec(length);
1282 if (!vec)
1283 return NULL;
1285 for (i=0; i<length; i++) {
1286 double dist= i-middle;
1287 vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
1290 sws_normalizeVec(vec, 1.0);
1292 return vec;
1295 SwsVector *sws_getConstVec(double c, int length)
1297 int i;
1298 SwsVector *vec= sws_allocVec(length);
1300 if (!vec)
1301 return NULL;
1303 for (i=0; i<length; i++)
1304 vec->coeff[i]= c;
1306 return vec;
1309 SwsVector *sws_getIdentityVec(void)
1311 return sws_getConstVec(1.0, 1);
1314 double sws_dcVec(SwsVector *a)
1316 int i;
1317 double sum=0;
1319 for (i=0; i<a->length; i++)
1320 sum+= a->coeff[i];
1322 return sum;
1325 void sws_scaleVec(SwsVector *a, double scalar)
1327 int i;
1329 for (i=0; i<a->length; i++)
1330 a->coeff[i]*= scalar;
1333 void sws_normalizeVec(SwsVector *a, double height)
1335 sws_scaleVec(a, height/sws_dcVec(a));
1338 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
1340 int length= a->length + b->length - 1;
1341 int i, j;
1342 SwsVector *vec= sws_getConstVec(0.0, length);
1344 if (!vec)
1345 return NULL;
1347 for (i=0; i<a->length; i++) {
1348 for (j=0; j<b->length; j++) {
1349 vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
1353 return vec;
1356 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
1358 int length= FFMAX(a->length, b->length);
1359 int i;
1360 SwsVector *vec= sws_getConstVec(0.0, length);
1362 if (!vec)
1363 return NULL;
1365 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1366 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
1368 return vec;
1371 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
1373 int length= FFMAX(a->length, b->length);
1374 int i;
1375 SwsVector *vec= sws_getConstVec(0.0, length);
1377 if (!vec)
1378 return NULL;
1380 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1381 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
1383 return vec;
1386 /* shift left / or right if "shift" is negative */
1387 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
1389 int length= a->length + FFABS(shift)*2;
1390 int i;
1391 SwsVector *vec= sws_getConstVec(0.0, length);
1393 if (!vec)
1394 return NULL;
1396 for (i=0; i<a->length; i++) {
1397 vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
1400 return vec;
1403 void sws_shiftVec(SwsVector *a, int shift)
1405 SwsVector *shifted= sws_getShiftedVec(a, shift);
1406 av_free(a->coeff);
1407 a->coeff= shifted->coeff;
1408 a->length= shifted->length;
1409 av_free(shifted);
1412 void sws_addVec(SwsVector *a, SwsVector *b)
1414 SwsVector *sum= sws_sumVec(a, b);
1415 av_free(a->coeff);
1416 a->coeff= sum->coeff;
1417 a->length= sum->length;
1418 av_free(sum);
1421 void sws_subVec(SwsVector *a, SwsVector *b)
1423 SwsVector *diff= sws_diffVec(a, b);
1424 av_free(a->coeff);
1425 a->coeff= diff->coeff;
1426 a->length= diff->length;
1427 av_free(diff);
1430 void sws_convVec(SwsVector *a, SwsVector *b)
1432 SwsVector *conv= sws_getConvVec(a, b);
1433 av_free(a->coeff);
1434 a->coeff= conv->coeff;
1435 a->length= conv->length;
1436 av_free(conv);
1439 SwsVector *sws_cloneVec(SwsVector *a)
1441 int i;
1442 SwsVector *vec= sws_allocVec(a->length);
1444 if (!vec)
1445 return NULL;
1447 for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
1449 return vec;
1452 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1454 int i;
1455 double max=0;
1456 double min=0;
1457 double range;
1459 for (i=0; i<a->length; i++)
1460 if (a->coeff[i]>max) max= a->coeff[i];
1462 for (i=0; i<a->length; i++)
1463 if (a->coeff[i]<min) min= a->coeff[i];
1465 range= max - min;
1467 for (i=0; i<a->length; i++) {
1468 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
1469 av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1470 for (;x>0; x--) av_log(log_ctx, log_level, " ");
1471 av_log(log_ctx, log_level, "|\n");
1475 #if LIBSWSCALE_VERSION_MAJOR < 1
1476 void sws_printVec(SwsVector *a)
1478 sws_printVec2(a, NULL, AV_LOG_DEBUG);
1480 #endif
1482 void sws_freeVec(SwsVector *a)
1484 if (!a) return;
1485 av_freep(&a->coeff);
1486 a->length=0;
1487 av_free(a);
1490 void sws_freeFilter(SwsFilter *filter)
1492 if (!filter) return;
1494 if (filter->lumH) sws_freeVec(filter->lumH);
1495 if (filter->lumV) sws_freeVec(filter->lumV);
1496 if (filter->chrH) sws_freeVec(filter->chrH);
1497 if (filter->chrV) sws_freeVec(filter->chrV);
1498 av_free(filter);
1501 void sws_freeContext(SwsContext *c)
1503 int i;
1504 if (!c) return;
1506 if (c->lumPixBuf) {
1507 for (i=0; i<c->vLumBufSize; i++)
1508 av_freep(&c->lumPixBuf[i]);
1509 av_freep(&c->lumPixBuf);
1512 if (c->chrPixBuf) {
1513 for (i=0; i<c->vChrBufSize; i++)
1514 av_freep(&c->chrPixBuf[i]);
1515 av_freep(&c->chrPixBuf);
1518 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1519 for (i=0; i<c->vLumBufSize; i++)
1520 av_freep(&c->alpPixBuf[i]);
1521 av_freep(&c->alpPixBuf);
1524 av_freep(&c->vLumFilter);
1525 av_freep(&c->vChrFilter);
1526 av_freep(&c->hLumFilter);
1527 av_freep(&c->hChrFilter);
1528 #if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
1529 av_freep(&c->vYCoeffsBank);
1530 av_freep(&c->vCCoeffsBank);
1531 #endif
1533 av_freep(&c->vLumFilterPos);
1534 av_freep(&c->vChrFilterPos);
1535 av_freep(&c->hLumFilterPos);
1536 av_freep(&c->hChrFilterPos);
1538 #if ARCH_X86 && CONFIG_GPL
1539 #ifdef MAP_ANONYMOUS
1540 if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
1541 if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
1542 #elif HAVE_VIRTUALALLOC
1543 if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, MEM_RELEASE);
1544 if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, MEM_RELEASE);
1545 #else
1546 av_free(c->lumMmx2FilterCode);
1547 av_free(c->chrMmx2FilterCode);
1548 #endif
1549 c->lumMmx2FilterCode=NULL;
1550 c->chrMmx2FilterCode=NULL;
1551 #endif /* ARCH_X86 && CONFIG_GPL */
1553 av_freep(&c->yuvTable);
1555 av_free(c);
1558 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
1559 int srcW, int srcH, enum PixelFormat srcFormat,
1560 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
1561 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
1563 static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
1565 if (!param)
1566 param = default_param;
1568 if (context &&
1569 (context->srcW != srcW ||
1570 context->srcH != srcH ||
1571 context->srcFormat != srcFormat ||
1572 context->dstW != dstW ||
1573 context->dstH != dstH ||
1574 context->dstFormat != dstFormat ||
1575 context->flags != flags ||
1576 context->param[0] != param[0] ||
1577 context->param[1] != param[1])) {
1578 sws_freeContext(context);
1579 context = NULL;
1582 if (!context) {
1583 return sws_getContext(srcW, srcH, srcFormat,
1584 dstW, dstH, dstFormat, flags,
1585 srcFilter, dstFilter, param);
1587 return context;