2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ** GNU General Public License for more details.
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 ** Any non-GPL usage of this software or parts of this software is strictly
22 ** Commercial non-GPL licensing of this software is possible.
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
25 ** $Id: mdct.c,v 1.43 2004/09/04 14:56:28 menno Exp $
29 * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
30 * and consists of three steps: pre-(I)FFT complex multiplication, complex
31 * (I)FFT, post-(I)FFT complex multiplication,
34 * P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
35 * Implementation of Filter Banks Based on 'Time Domain Aliasing
36 * Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212.
39 * As of April 6th 2002 completely rewritten.
40 * This (I)MDCT can now be used for any data size n, where n is divisible by 8.
59 mdct_info
*faad_mdct_init(uint16_t N
)
61 mdct_info
*mdct
= (mdct_info
*)faad_malloc(sizeof(mdct_info
));
67 /* NOTE: For "small framelengths" in FIXED_POINT the coefficients need to be
68 * scaled by sqrt("(nearest power of 2) > N" / N) */
70 /* RE(mdct->sincos[k]) = scale*(real_t)(cos(2.0*M_PI*(k+1./8.) / (real_t)N));
71 * IM(mdct->sincos[k]) = scale*(real_t)(sin(2.0*M_PI*(k+1./8.) / (real_t)N)); */
72 /* scale is 1 for fixed point, sqrt(N) for floating point */
75 case 2048: mdct
->sincos
= (complex_t
*)mdct_tab_2048
; break;
76 case 256: mdct
->sincos
= (complex_t
*)mdct_tab_256
; break;
78 case 1024: mdct
->sincos
= (complex_t
*)mdct_tab_1024
; break;
80 #ifdef ALLOW_SMALL_FRAMELENGTH
81 case 1920: mdct
->sincos
= (complex_t
*)mdct_tab_1920
; break;
82 case 240: mdct
->sincos
= (complex_t
*)mdct_tab_240
; break;
84 case 960: mdct
->sincos
= (complex_t
*)mdct_tab_960
; break;
88 case 512: mdct
->sincos
= (complex_t
*)mdct_tab_512
; break;
89 case 64: mdct
->sincos
= (complex_t
*)mdct_tab_64
; break;
94 mdct
->cfft
= cffti(N
/4);
104 void faad_mdct_end(mdct_info
*mdct
)
109 printf("MDCT[%.4d]: %I64d cycles\n", mdct
->N
, mdct
->cycles
);
110 printf("CFFT[%.4d]: %I64d cycles\n", mdct
->N
/4, mdct
->fft_cycles
);
119 void faad_imdct(mdct_info
*mdct
, real_t
*X_in
, real_t
*X_out
)
124 #ifdef ALLOW_SMALL_FRAMELENGTH
126 real_t scale
, b_scale
= 0;
129 ALIGN complex_t Z1
[512];
130 complex_t
*sincos
= mdct
->sincos
;
132 uint16_t N
= mdct
->N
;
133 uint16_t N2
= N
>> 1;
134 uint16_t N4
= N
>> 2;
135 uint16_t N8
= N
>> 3;
138 int64_t count1
, count2
= faad_get_ts();
141 #ifdef ALLOW_SMALL_FRAMELENGTH
143 /* detect non-power of 2 */
146 /* adjust scale for non-power of 2 MDCT */
149 scale
= COEF_CONST(1.0666666666666667);
154 /* pre-IFFT complex multiplication */
155 for (k
= 0; k
< N4
; k
++)
157 ComplexMult(&IM(Z1
[k
]), &RE(Z1
[k
]),
158 X_in
[2*k
], X_in
[N2
- 1 - 2*k
], RE(sincos
[k
]), IM(sincos
[k
]));
162 count1
= faad_get_ts();
165 /* complex IFFT, any non-scaling FFT can be used here */
166 cfftb(mdct
->cfft
, Z1
);
169 count1
= faad_get_ts() - count1
;
172 /* post-IFFT complex multiplication */
173 for (k
= 0; k
< N4
; k
++)
177 ComplexMult(&IM(Z1
[k
]), &RE(Z1
[k
]),
178 IM(x
), RE(x
), RE(sincos
[k
]), IM(sincos
[k
]));
180 #ifdef ALLOW_SMALL_FRAMELENGTH
182 /* non-power of 2 MDCT scaling */
185 RE(Z1
[k
]) = MUL_C(RE(Z1
[k
]), scale
);
186 IM(Z1
[k
]) = MUL_C(IM(Z1
[k
]), scale
);
193 for (k
= 0; k
< N8
; k
+=2)
195 X_out
[ 2*k
] = IM(Z1
[N8
+ k
]);
196 X_out
[ 2 + 2*k
] = IM(Z1
[N8
+ 1 + k
]);
198 X_out
[ 1 + 2*k
] = -RE(Z1
[N8
- 1 - k
]);
199 X_out
[ 3 + 2*k
] = -RE(Z1
[N8
- 2 - k
]);
201 X_out
[N4
+ 2*k
] = RE(Z1
[ k
]);
202 X_out
[N4
+ + 2 + 2*k
] = RE(Z1
[ 1 + k
]);
204 X_out
[N4
+ 1 + 2*k
] = -IM(Z1
[N4
- 1 - k
]);
205 X_out
[N4
+ 3 + 2*k
] = -IM(Z1
[N4
- 2 - k
]);
207 X_out
[N2
+ 2*k
] = RE(Z1
[N8
+ k
]);
208 X_out
[N2
+ + 2 + 2*k
] = RE(Z1
[N8
+ 1 + k
]);
210 X_out
[N2
+ 1 + 2*k
] = -IM(Z1
[N8
- 1 - k
]);
211 X_out
[N2
+ 3 + 2*k
] = -IM(Z1
[N8
- 2 - k
]);
213 X_out
[N2
+ N4
+ 2*k
] = -IM(Z1
[ k
]);
214 X_out
[N2
+ N4
+ 2 + 2*k
] = -IM(Z1
[ 1 + k
]);
216 X_out
[N2
+ N4
+ 1 + 2*k
] = RE(Z1
[N4
- 1 - k
]);
217 X_out
[N2
+ N4
+ 3 + 2*k
] = RE(Z1
[N4
- 2 - k
]);
221 count2
= faad_get_ts() - count2
;
222 mdct
->fft_cycles
+= count1
;
223 mdct
->cycles
+= (count2
- count1
);
228 void faad_mdct(mdct_info
*mdct
, real_t
*X_in
, real_t
*X_out
)
233 ALIGN complex_t Z1
[512];
234 complex_t
*sincos
= mdct
->sincos
;
236 uint16_t N
= mdct
->N
;
237 uint16_t N2
= N
>> 1;
238 uint16_t N4
= N
>> 2;
239 uint16_t N8
= N
>> 3;
242 real_t scale
= REAL_CONST(N
);
244 real_t scale
= REAL_CONST(4.0/N
);
247 #ifdef ALLOW_SMALL_FRAMELENGTH
249 /* detect non-power of 2 */
252 /* adjust scale for non-power of 2 MDCT */
253 /* *= sqrt(2048/1920) */
254 scale
= MUL_C(scale
, COEF_CONST(1.0327955589886444));
259 /* pre-FFT complex multiplication */
260 for (k
= 0; k
< N8
; k
++)
263 RE(x
) = X_in
[N
- N4
- 1 - n
] + X_in
[N
- N4
+ n
];
264 IM(x
) = X_in
[ N4
+ n
] - X_in
[ N4
- 1 - n
];
266 ComplexMult(&RE(Z1
[k
]), &IM(Z1
[k
]),
267 RE(x
), IM(x
), RE(sincos
[k
]), IM(sincos
[k
]));
269 RE(Z1
[k
]) = MUL_R(RE(Z1
[k
]), scale
);
270 IM(Z1
[k
]) = MUL_R(IM(Z1
[k
]), scale
);
272 RE(x
) = X_in
[N2
- 1 - n
] - X_in
[ n
];
273 IM(x
) = X_in
[N2
+ n
] + X_in
[N
- 1 - n
];
275 ComplexMult(&RE(Z1
[k
+ N8
]), &IM(Z1
[k
+ N8
]),
276 RE(x
), IM(x
), RE(sincos
[k
+ N8
]), IM(sincos
[k
+ N8
]));
278 RE(Z1
[k
+ N8
]) = MUL_R(RE(Z1
[k
+ N8
]), scale
);
279 IM(Z1
[k
+ N8
]) = MUL_R(IM(Z1
[k
+ N8
]), scale
);
282 /* complex FFT, any non-scaling FFT can be used here */
283 cfftf(mdct
->cfft
, Z1
);
285 /* post-FFT complex multiplication */
286 for (k
= 0; k
< N4
; k
++)
289 ComplexMult(&RE(x
), &IM(x
),
290 RE(Z1
[k
]), IM(Z1
[k
]), RE(sincos
[k
]), IM(sincos
[k
]));
293 X_out
[N2
- 1 - n
] = IM(x
);
294 X_out
[N2
+ n
] = -IM(x
);
295 X_out
[N
- 1 - n
] = RE(x
);